
Support Vector Machines

Alan Yuille

Feb 5 2024

Support Vector Machines: Overview

▶ SVM’s were originally formulated for binary classification. They could be
interpreted geometrically in terms of finding the separating hyperplane
with the maximum margin and with slack variables.

▶ They are formulated in terms of minimizing an energy function of the
weights which was quadratic. This ensured convexity, a primal dual
formulation, enabled the kernel trick, and showed that the solution was a
function only of a limited number of support vectors.

▶ This could be solved by exploiting primal-duality or simply by steepest
descent of the energy function. The motivation is that you should
concentrate your resources on the decision boundary.

Support Vector Machines: Overview

▶ SVM’s could be re-derived and generalized by first formulating an
empirical loss function and a quadratic regularizer for the weights, Then
obtaining a quadratic upper bound.

▶ This could be applied to energy functions defined over graphs (similar to
exponential probability models but without the normalization terms). This
formulation has the same advantages as the original SVMs (primal-dual,
support vectors, etc.). When defined over graphs it requires inference
algorithms, like dynamic programming or belief propagation.

Support Vector Machines: Overview

▶ SVMs can be extended to have internal hidden/latent variables. This can
also be formulated in terms of an empirical loss function and then replaced
by an upper bound. This difference is that the upper bound is the sum of
a convex and a concave term. CCCP can be applied to get a learning
algorithm which has a natural interpretation in terms of alternatively
estimating the hidden variables and then solving for the weights by
minimizing the SVM energy function, hence we retain support vectors and
prime-dual formulations.

▶ Dynamic programming, belief propagation, or alternatives will be needed
to perform inference over the graphs.

▶ For some problems (Girschick et al.) you can relate latent SVMs to Deep
Network models. This is done by observing that the latent variables can
be estimated by max-operations, and then requires generalizing the
concept of max-pooling.

▶ It is possible to derive these SVM formulations as computationally
tractable approximations to probability models (Yuille and He).

Basic Support Vector Machines

▶ Support Vector Machine (SVM) is a modern approach to linear separation.
Suppose you have
Data: {(x⃗µ, yµ) : µ = 1 to N}, yµ ∈ {−1, 1}
Hyperplane: < x⃗ : x⃗ · a⃗+ b = 0 > |a⃗| = 1

▶ The signed distance of a point x⃗ to the plane is a⃗ · x⃗ + b.

▶ Proof. If we project the line x⃗(λ⃗) = x⃗ + λa⃗, it hits plane when
a⃗ · (x⃗ + λa⃗) = −b. Follows that λ = −(a⃗ · x⃗ + b)/|a⃗|2, and if |a⃗| = 1, then
λ = −(a⃗ · x⃗ + b).

Basic Support Vector Machines

▶ In SVM we seek a classifier with biggest margin:

max
a⃗,b,|a⃗|=1

C s.t. yµ(x⃗µ · a⃗+ b) ≥ C , ∀µ ≥ 1 to N

I.e, the positive examples are at least distance C above the plane, and
negative examples are at least C below the plane.

▶ Having a large margin is good for generalization. This can be shown
intuitively.

Basic Support Vector Machines (2)

▶ Perfect separation is not always possible. Let’s allow for some data points
to be misclassified. We define the slack variables {z1, ..., zn} allow data
points to move in direction a⃗, so that they are on the right side of the
margin.

▶ Criterion:
max

a,b,|a⃗|=1
C s.t. yµ(x⃗µ · a⃗+ b) ≥ C(1− zµ), ∀µ ∈ {1,N} s.t. zµ ≥ 0, ∀µ.

▶ Alternately, yµ{(x⃗µ + Czµa⃗) · a⃗+ b} ≥ C , which is like moving x⃗µ to
x⃗µ + zµa⃗.

▶ We pay a penalty
∑N

µ=1 zµ for the slack variables. If zµ = 0 then the data
point is correctly classified and is on the correct side of the margin. If
zµ > 0, then the data point is on the wrong side of the margin and the
slack variable is needed to move it to the correct side.

The Max-Margin Criterion

▶ Here the task is to estimate several quantities simultaneously: (1) The
plane a⃗, b. (2) The margin C . (3) The slack variables {zµ}.

▶ We need a criterion that maximizes the margin and minimizes the amount
of slack variables used. We absorb C into a⃗ by a⃗ → a/c and remove the
constraint |a| = 1. Hence, C = 1

|a⃗| .

▶ The Max-Margin Criterion:
min 1

2

∑
a⃗ · a⃗+ γ

∑
µ zµ s.t. yµ(x⃗µ · a⃗+ b) ≥ 1− zµ, ∀ µ, zµ ≥ 0.

▶ We need to solve the Quadratic Primal Problem using Lagrange
multipliers: Lp(a⃗, b, z ;α, τ) =
1
2
a⃗ · a⃗+ γ

∑
µ zµ −

∑
µ αµ{yµ(x⃗µ · a⃗+ b)− (1− zµ)} −

∑
µ τµzµ. The

{αµ} and {τµ} are Lagrange parameters needed to enforce the inequality
constraints. We require that αµ ≥ 0, τµ ≥ 0, ∀µ.

The Max-Margin Criterion

▶ The function Lp(a⃗, b, z ;α, τ) should be minimized with respect to the
primal variables a⃗, z and maximized with respect to the dual variables α, τ .

▶ This means that if the constraints are satisfied then we need to set the
corresponding lagrange parameter to be zero (to maximize).

▶ For example, if yµ(x⃗µ · a⃗+ b)− (1− zµ) > 0 for some µ then we set
αµ = 0 because the term −αµ{yµ(x⃗µ · a⃗+ b)− (1− zµ)} is non-positive,
and so the maximum value occurs when αµ = 0. But if the constraint is
not satisfied – e.g., yµ(x⃗µ · a⃗+ b)− (1− zµ) ≤ 0 – then the lagrange
parameter will be positive.

▶ The lagrange parameters will only be positive (non-zero) if the data lies on
the margin after the use of slack variables.

The Support Vectors

▶ Lp is a function of the primal variable a⃗, b, {zµ} and the Lagrange
parameters {αµ, τµ}. There is no analytic solution for these variables, but
we can use analytic techniques to get some understanding of their
properties.
∂Lp

∂a⃗
= 0 ⇒ ˆ⃗a =

∑
µ αµyµx⃗µ

∂Lp

∂b
= 0 ⇒

∑
µ αµyµ = 0

∂Lp

∂zµ
= 0 ⇒ αµ = γ − τ̂µ,∀µ

The Support Vectors

▶ The classifier is: sign < ˆ⃗a · x⃗ + b̂ >= sign <
∑

µ αµyµx⃗µ · x⃗ + b >, by

using the equation
∂Lp
∂a⃗

= 0.

▶ Given that the solution depends only on the vectors x⃗µ for which αµ ̸= 0,
we call them support vectors.

▶ The constraints are yµ(x⃗µ ·˜⃗a+ b̃) ≥ 1− ẑµ, ẑµ ≥ 0, and τ̂µ ≥ 0.

▶ By theory of Quadratic Programming, αµ > 0, only if either:
(i) zµ > 0, i.e, slack variable is used.
(ii) zµ, but yµ(x⃗µ ·˜⃗a+ b̃) = 1, i.e. data point is on the margin.

▶ The classifier depends only on the support vectors, the other data points
do not matter. This is intuitively reasonable - the classifier must pay close
attention to the data that is difficult to classify - the data near the
boundary. By contrast the probabilistic approach models all the data
which may be a waste of resources.

The Dual and its Relation to the Primal

▶ We can solve the problem more easily in the dual formulation – this is a
function of Lagrange multipliers only.
Lp =

∑
µ αµ − 1

2

∑
µ,ν αµανyµyν x⃗µx⃗ν s.t 0 ≤ αµ ≤ τ,

∑
µ αµyµ = 0.

▶ There are standard packages to solve this. (Although they get slow if you
have a very large amount of data). Knowing {α̂µ}, will give us the
solution ˆ⃗α =

∑
µ α̂µyµx⃗µ, (only a little more work needed to get b̂).

▶ Now we show how to obtain the dual formulation from the primal. The
method we use is only correct if the primal is a convex function (but it is a
positive quadratic function with linear constraints, which is convex).

▶ Start with the dual formulation Lp. Rewrite it as
Lp =
− 1

2
a⃗ · a⃗+

∑
µ αµ+ a⃗ ·(a⃗−

∑
µ αµyµx⃗µ)+

∑
µ zµ(γ−τµ−αµ)−b

∑
µ αµyµ.

▶ Extremize w.r.t. a⃗, b, {zµ}. The result is:
ˆ⃗a =

∑
µ αµyµx⃗µ,

∑
µ αµyµ = 0, γ − τµ − αµ = 0

Substituting back into Lp gives:
Lp = − 1

2

∑
µ,ν αµανyµyν x⃗µx⃗ν +

∑
µ αµ,

which has to be maximized w.r.t. {αµ}.

Reformulation of the Perceptron Algorithm

▶ The original Perceptron algorithm can be reformulated as follows. By SVM
theory, the weight hypothesis will always be of form: a⃗ =

∑
µ αµyµx⃗µ.

▶ The Perceptron update rule is: If data x⃗µ is misclassified (i.e,
yµ(a⃗ · x⃗µ + b) ≤ 0), then set
α⃗µ → α⃗µ + 1
b → b + yµK

2,
where K is the radius of the smallest ball containing the data.

▶ So the Perceptron algorithm is an update on the dual variables α⃗.

Max Margin from Empirical Risk

▶ We re-express the SVM primal function in a way that relates it to
minimizing the empirical risk.

▶ The primal function Lp includes the constraint yµ(x⃗µ · a⃗+ b)− 1 > 0. If
this constraint is satisfied, then it is best to set the slack variable zµ = 0
(because otherwise we pay a penalty γ for it). If the constraint is not
satisfied, then we set the slack variable to be zµ = 1− yµ(x⃗µ · a⃗) because
this is the smallest value of the slack variable which satisfies the constraint.

▶ We can summarize this by paying a Hinge Loss penalty
max{0, 1− yµ(x⃗µ · a⃗+ b)} – if the constraint is satisfied, then the
maximum is 0 but, if not, the maximum is 1− yµ(x⃗µ · a⃗) which is
minimum value of the slack variable (to make the constraint satisfied).

▶ We re-express Lp as the (convex) loss function:
L(a⃗, b) = 1

2
a⃗ · a⃗+ γ

∑
µ max{0, 1− yµ(x⃗µ · a⃗+ b)}.

Max Margin from Empirical Risk

▶ We re-express Lp as the sum of the empirical risk (with hinge loss
function) plus a term 1

2
|a⃗|2, multiplied by 1

γN
:

Lp
γN

= 1
2γN

|a⃗|2 + 1
N

∑N
µ=1 max{0, 1− yµ(x⃗µ · a⃗+ b)}.

▶ The first term is a regularizer. It penalizes decision rules
ŷ(x⃗) = sign(x⃗ · a⃗+ b) which have large |a⃗|. This is done in order to help
generalization.

▶ If we only minimize the loss function, we may overfit the data, because the
space of possible decision rules is very big (all values of a⃗ and b). If we
penalize those rules with big |a⃗|, then we restrict our set of rules and are
more likely to generalize to new data.

Online Learning: AKA Steepest Descent

▶ We can do online learning (update with new data) using the cost function
L(a⃗, b) = 1

2
a⃗ · a⃗+ γ

∑
µ max{0, 1− yµ(x⃗µ · a⃗+ b)}.

Consider the second term for one datapoint x⃗µ, yµ:
∂
∂a⃗

max{0, 1− yµ(x⃗µ · a⃗+ b)} = −yµx⃗µ, if yµ(x⃗µ · a⃗+ b) < 1,
= 0 otherwise.

▶ Online learning requires: (i) selecting the data (x⃗µ, yµ) at random, (ii)
computing ∂

∂a⃗
max{0, 1− yµ(x⃗µ · a⃗+ b)}, (iii) if µ(x⃗µ · a⃗+ b) < 1,

updating a⃗t → a⃗t − 1
2N

a⃗t − γ{−yµx⃗µ},
or if µ(x⃗µ · a⃗+ b) > 1, updating a⃗t → a⃗t − 1

2N
a⃗t − γ{0}.

▶ This is almost exactly the 1950’s perceptron algorithm. The −yµ term is
like converting negative examples to positive ones. The 1

2N
a⃗t is from the

regularizer.

Structure SVM

▶ Structure Max-Margin extends binary-classification methods so they can
be applied to learn the parameters of an MRF, HMM, SCFG or other
methods. Recall standard SVM, for binary classification,
R(λ) = 1

2
||λ||2 + C

∑M
i=1 max⟨0, 1− yiλ · ϕ(xi)⟩ where {(yi , xi)}is training

data, and yi ∈ {±1},
▶ The goal is a Decision rule ŷi (λ) = argmaxy yλ · ϕ(xi) = sign(λ · ϕ(xi))
▶ The task is to minimize R(λ) w.r.t λ which maximize the “margin” 1

||λ|| .

Structure SVM

▶ Here is a more general formulation that can be used if the output variable
y is a vector y = (y1, . . . , yn). i.e. it could be the state of an MRF, or
HMM, or a SCFG. R(λ) = 1

2
||λ||2 + c

∑M
i=1 ∆(yi , ŷi (λ)). The decision

rule: ŷi (λ) = argmaxy λ · ϕ(xi , y). The error function ∆(yi , ŷi (λ)) is any
measure of distance between the true solution yi and the estimate ŷi (λ),

▶ Binary is a special case:(i) set yi ∈ {−1, 1}, (ii) ϕ(x , y) = yϕ(x), (iii)
∆(yi , ŷi (λ)) = max⟨0, 1− yiλ · ϕ(xi)⟩. This is the hinge loss because the
function is 0 if yiλ · ϕ(xi) > 1 i.e. point is on the right side of the margin
and the function increases linearly with λ · ϕ(xi). (iv)
ŷi (λ) = argmaxy yλ · ϕ(x).

Structure SVM: Convex Upper Bound

▶ This more general formulation is R(λ) = 1
2
||λ||2 + C

∑M
i=1 ∆(yi , ŷi (λ))

with ŷi (λ) = argmax yλϕ(y , xi)

▶ But this is non-convex and hard to minimize. The non-convexity is due to
the error term ∆(yi , ŷi (λ)) which a highly complicated function of λ.
Instead we replace R(λ) by a convex upper bound R̄(λ).

▶ R̄(λ) = 1
2
||λ||2 + C

∑M
i=1 maxŷ{∆(yi , ŷ) + λ · ϕ(xi , ŷ)− λ · ϕ(xi , yi)} which

is convex in λ.

▶ We obtain this bound in two steps: Step 1:
maxŷ {∆(yi , ŷ) + λ · ϕ(xi , ŷ)} ≥ ∆(yi , ŷi (λ)) + λ · ϕ(xi , ŷi (λ)). Step 2:
λ · ϕ(xi , ŷi (λ)) ≥ λ · ϕ(xi , yi).

▶ Note: these bounds are “tight” because if we can find a good solution
then yi ≈ ŷi (λ).

Structure SVM: How to Minimize R(λ).

▶ How to minimize R(λ)?

▶ (1) Solve in the Dual Space. Like the original SVM for the binary problem.

▶ (2) Stochastic gradient descent. Pick example (xi , yi), take derivative of
R(λ) w.r.t λ

λt+1 = λt − βt(ϕ(xi , ŷ
t)− ϕ(xi , yi))

where ŷ t = argmaxŷ ∆(yi , ŷ) + λ · ϕ(xi , ŷ))
▶ To compute argmax ŷ will require an inference algorithm. This depends

on whether this is a graph with closed loops or not. If no closed loops, we
can use dynamical programming. If closed loops we would need an
approximate algorithm like mean field theory or belief propagation.

Latent SVM

▶ How to extend to module with latent (hidden) variables? Denote these
variables by h with decision rule (ŷ , ĥ) = argmax(y,h)∈Y,H λ · ϕ(x , y , h)

▶ Training data ⟨(xi , yi); i = 1, . . . ,M⟩. The hidden variables are not known.

▶ The Loss function ∆(yi , ŷi (λ), ĥi (λ)) depends on the truth yi , the estimate
of ŷi (λ), ĥi (λ) from the model

R(λ) =
1

2
||λ||2 + C

M∑
i=1

∆(yi ; ŷi (λ), ĥi (λ))

which is typically a highly non-convex function of λ.

Latent SVM

▶ Replace R(λ) by an upper bound

R̄(λ) =
1

2
||λ||2+C

M∑
i=1

max
(ŷ,ĥ)

(∆(yi ; ŷ , ĥ)+λ ·ϕ(xi , ŷ , ĥ))−max
h

λ · ϕ(xi , yi , h)

▶
f (λ) = max

(ŷ,ĥ)
(∆(yi ; ŷ , ĥ) + λ · ϕ(xi , ŷ , ĥ))

g(λ) = −max
h

λ · ϕ(xi , yi , h)

▶ This is an upper bound but it is not convex, From general principles, it is
impossible to get a useful convex upper bound for any problem that
involves learning with hidden variables.

Latent SVM: Concavity and Convexity

▶ Here f (·) is convex and g(·) is concave.
▶ To show convexity and concavity. Let

τ(λ) =
M∑
i=1

max
ŷi

λ · ϕ(xi , ŷi)

▶ This is convex if τ(αλ1 + (1− α)λ2) ≤ ατ(λ1) + (1− α)τ(λ2) for all
λ1, λ2, α.

Latent SVM: Concavity and Convexity

▶ Now

τ(αλ1 + (1− α)λ2) = α
M∑
i=1

max
ŷi

αλ1 + (1− α)λ2), ϕ(xi , ŷi)

ατ(λ1)+(1−α)τ(λ2) = α

M∑
i=1

max
yi

{λ1, ϕ(xi , ŷi)⟩+(1−α)
M∑
i=1

max
yi

λ2ϕ(xi , ŷi)}

▶ and the result follows from

max
ŷi

αλ1ϕ(xi , ŷi)+max
ŷi

{(1−α)λ2ϕ(xi , ŷi)} ≥ max
ŷi

{(αλ1+(1−α)λ2)ϕ(xi , ŷi)}

Latent SVM: CCCP

▶ There are two steps.

▶ Step 1: involves estimating the hidden state h∗
i

∂g(λt)

∂λ
= −ϕ(xi , yi , h

∗)

where h∗ = argmax hλtϕ(xi , yi , h), λ
t is the current estimate of λ. This

reduces to a modified SVM with known state:

min
λ

1

2
||λ||2+C

M∑
i=1

max
(y,h)

{λ ·ϕ(xi , yi , h)+∆(yi , y , h)}−C
M∑
i=1

λ ·ϕ(xi , yi , h∗
i)

▶ Step 2 estimate λ. This is equivalent to minimizing a structured SVM
(now that h is known).

▶ Repeat steps 1 and 2 until convergence. This is the CCCP algorithns so it
guaranteed to converge to a local minimum.

	Introduction
	Support Vector Machines: Overview
	Support Vector Machines: Overview
	Support Vector Machines: Overview
	Basic Support Vector Machines
	Basic Support Vector Machines
	Basic Support Vector Machines (2)
	The Max-Margin Criterion
	The Max-Margin Criterion
	The Support Vectors
	The Support Vectors
	The Dual and its Relation to the Primal
	Reformulation of the Perceptron Algorithm
	Max Margin from Empirical Risk
	Max Margin from Empirical Risk
	Online Learning: AKA Steepest Descent
	Structure SVM
	Structure SVM
	Structure SVM: Convex Upper Bound
	Structure SVM: How to Minimize R().
	Latent SVM
	Latent SVM
	Latent SVM: Concavity and Convexity
	Latent SVM: Concavity and Convexity
	Latent SVM: CCCP

