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Regression versus Bayes

▶ The Bayesian approach to vision involves learning a probability distribution
P(x |y) for generating the data x (e.g., images) conditioned on the state y
of the world and a prior distribution P(y). Then we estimate y by
maximizing the posterior distribution p(y |x) = p(x |y)p(y)/p(x). For
simplicity, loss functions are ignored but it is easy to introduce them.

▶ For images this requires learning probability distributions p(x |y), a
generative model, for images. This is very difficult because images are
complicated and very high dimensional. Typically y is much lower
dimensional than x . E.g., y is binary valued for edge detection and for
object classification can take 1,000 different values.

▶ So why not simply the problem by directly learning the probability
distribution p(y |x)? Why learn a generative model at all? After all, the
decision should be based on p(y |x). Learning p(y) and p(x |y) may be
difficult/impossible and a waste of effort. In many situations particularly
those used in the AI community to evaluate algorithms there is no need to
learn a generative model and we only need p(y |x).

▶ Modeling p(y |x) directly is considered to be a discriminative approach. In
statistics terminology this is called regression. Note: in neural networks
terminology it is only regression if y is continuous-valued.



Regression versus Bayes

▶ To learn p(y |x) we need to specify a family of distributions pω(y |x) and
then estimate the best parameters ω from the training data
X = {(xi , yi ) : i = 1, ...,N}. This can be done by MLE: find
ω̂ = argmin

∑N
i=1{− log pω(yi |xi )}.

▶ How to specify the form of the probability distribution pω(y |x)? The
exponential models can be used, examples will be given later in the course,
but there are difficulties in using them because it is not clear what type of
statistics should be used.

▶ pω(y |x) is specified by a neural network where the ω are the weights of
the neural network. This gives an alternative to neural network models.
They have the advantages that they scale to large amounts of data and
also can enable probability models with long range context.

▶ The original neural network models, or architectures, are convolutional
neural networks (CNNs). Other important architectures, like transformers,
have other important properties and advantages and will be discussed later.

▶ We will start by discussion the basic ideas of regression and then proceed
to convolutional neural networks.



Linear Regression

▶ This was invented by Gauss (roughly in 1800) when trying to find the
planetoid Ceres by predicting its position from previous estimates. This
could be formulated as expressing y = ax + b+ ϵ , where a, b are unknown
parameters and ϵ is zero mean Gaussian noise. This can be written as a
probabilistic model P(y |x : a, b) = 1√

2πσ
exp{−(y − ax − b)2/(2σ2)}.

▶ Given training data {(xn, yn) : n = 1, ...,N} the variables a, b, σ can be
estimated by (a∗, b∗, σ∗) = argmax

∏N
n=1 P(yn|xn; a, b, σ). For estimating

a, b this is equivalent to minimizing
∑N

n=1(yn − axn − b)2 which gives
linear equations for a∗, b∗, hence linear regression. There is also a closed
form solution for σ∗.

▶ This can be extended in many ways, e.g. by allowing y and x to be
vector-valued. It is straightforward to generalize this approach so that y is
a non-linear parametric function of x (but for some non-linear functions
estimating the parameters can be non-trivial).



The Perceptron (1)

▶ The Perceptron was developed by Rosenblatt in the 1950’s and started the
first wave of neural networks.

▶ The Perceptron specified a classification rule
y∗(x) = argmaxy∈{±1} y(w⃗ · x⃗ + w0). I.e. y = 1 if w⃗ · x⃗ + w0 > 0 and
y = −1 if w⃗ · x⃗ + w0 < 0.

▶ Geometrically, w⃗ · x⃗ +w0 = 0 specifies a hyperplane and points x⃗ which are
above the hyperplane – i.e. w⃗ · x⃗ +w0 > 0 are classified as positive (y = 1)
– while points x⃗ which are above the hyperplane are classified as negative.

▶ This was based on a (extremely) simplified model of a neuron, where x⃗
denotes the input at different synapses, w⃗ correspond to synaptic weights,
−w0 is a threshold, and the neuron fires an action potential if total
stimulation to the cell – given by the weighted sum w⃗ · x⃗ of the inputs – is
bigger than the threshold.



The Perceptron (2)

▶ The Perceptron can be learnt from a set of trained data
{(x⃗n, yn) : n = 1, ...,N}. Rosenblatt specified the Perceptron algorithm
that was guaranteed to converge to a hyper-plane w⃗ · x⃗ + w0 which
separated the positive from the negative examples, provided a separating
hyper-plane existed. If the positive and negative examples cannot be
separated by a hyper-plane then the algorithm will not converge. Later
researchers showed that, in this case, the average of the weights w⃗ and
the threshold w0 converge to reasonable result, which separates the
positive and negative examples as well as possible.

▶ The limitation of the Perceptron is that a separating hyperplane is only
useful for a limited class of problems. To make it useful you would have to
find a principled way to find features ϕ⃗(x⃗) and apply the Perceptron to
those features.



The Perceptron as logistic regression

▶ We can reformulate the problem as (logistic) regression by specifying a

conditional probability distribution P(y |x⃗) = exp{y{w⃗ ·⃗x+w0}}
exp{w⃗ ·⃗x+w0}+exp{−w⃗ ·⃗x−w0}

.

▶ The parameters can be estimated from the training set
{(x⃗n, yn) : n = 1, ...,N} by (w⃗∗,w∗

0 ) = argmin−
∑N

n=1 logP(yn|x⃗n).
▶ This can be performed by gradient descent:

(w⃗ t+1,w t+1
0 ) = (w⃗ t ,w t

0)− ζt(
∂
∂w⃗

, ∂
∂w0

){−
∑N

n=1 logP(yn|x⃗n)}.
▶ This is guaranteed to converge to the global optimum (if ζt is well chosen)

because −
∑N

n=1 logP(yn|x⃗n) is a convex function of w⃗ ,w0. There is also a
discrete update rule (see lecture on variational bounding and CCCP) which
converges (without needing to specify a learning rate ζn).

▶ Observe that, after learning, data points which lie above the hyper-plane
w⃗ · x⃗ + w0 = 0 will have P(y = 1|x⃗) > 1/2, while points below the
hyperplane will have probability P(y = −1|x⃗) > 1/2. So the hyper-plane
still separates the positive and negative examples by a hyper-plane. But
the separation is [soft] and specified by a number P(y = 1|x⃗ ∈ [0, 1]
which tends to 1 for data points which are infinitely above the
hyperplane and to 0 for points infinitely below.

▶ Note that the original Perceptron assigned output values ±1, but these
can be modified to be {0, 1} by a simple transformation.



Multi-layer Perceptrons (1)

▶ ”Soft” Perceptrons represent the output by a continuous function –
P(y |x⃗) or σ(w⃗ · x⃗ + w0) – which is differentiable as a function of w⃗ ,w0.
This makes it possible to build a network, called a multi-layer perceptron,
by stacking perceptrons on top of each other so that the input to a
perceptron is the output of another perceptron. The differentiability of the
individual perceptrons ensures that the final output is a differentiable
function of the parameters of all the neurons. This gives a natural learning
rule which performs steepest descent on the input-output function.

▶ A simple example has output y = f (w⃗ , {Ω⃗i}, x⃗), where y = σ(w⃗ · z⃗) with
z⃗ = (z1, z2, z3) and zi = σ(Ω⃗i · x⃗), for i = 1, 2, 3. Here the {zi} are called
hidden variables since they cannot be observed directly.

▶ The weights w⃗ , {Ω⃗i} can be learnt from training data
{(x⃗n, yn) : n = 1, ...,N} by minimizing an energy function.

E(w⃗ , {Ω⃗i}) =
∑N

i=1 E(x⃗n, yn : w⃗ , {Ω⃗i}). Here E(.) is a measure of
similarity between the true output yn and the predicted output
f (w⃗ , {Ω⃗i}, x⃗n). From the regression perspective, this can be formulated as

P(y , x⃗) = (1/Z) exp{−E(x⃗n, yn : w⃗ , {Ω⃗i})} (strictly speaking you must

require the condition that
∫
dy exp{−E(n⃗, yn : w⃗ , {Ω⃗i})} is independent of

w⃗ , {Ω⃗i}).



Multi-layer Perceptrons (2)

▶ The learning rule requires differentiating with respect to the weights. This
is straightfroward to do for w⃗ (since the output fnction depends directly in

w⃗). It is harder for {Ω⃗i} but can be done by the chain rule – known as
backpropagation because it propagates the error back so as to reward the
weights of the neurons in the early layers of the network (this solves the
credit assignment problem).

▶ Solving for the weights is a non-convex optimization problem. This can be
easily realized because the network has hidden symmetries – there are
several different ways to get the same input-output function by permuting
the hidden units (and making changes to the output weights). This means
that for any minimum of the energy function there exist several other
minima with exactly the same values. Hence there cannot be any single
global minimum (unless these minima are all connected by a valley).

▶ This symmetry means that there are a set of minima which are equally
good as solutions and we only need to converge to one of them. We can
perform steepest descent on the energy function – which risks getting
stuck in a local minima or a saddle point before reaching one of the
”good” minima.



Multi-layer Perceptrons (3)

▶ An alternative is stochastic gradient descent. This selects a single training
example at random, performing one iteration of steepest descent, then
selecting another example, and so on. If the learning rate ζt satisfies
certain fall-off conditions for large t then in some cases (not multi-layer
perceptrons) the learning algorithm can be guaranteed to converge to the
global optimum. This is known as Robbins-Monroe. Intuitively, stochastic
gradient descent will prevent the algorithm from getting stuck in local
minima (because these are unlikely to be at the same positions for all
training data).

▶ In the second wave of neural networks, batch-processing meant using all
your training examples at the same time and online learning meant doing
stochastic gradient descent. But in the third wave datasets are so big that
it is impractical to use the full batch. Instead we select sub-batches at
random, which means that we do stochastic gradient descent.



Deep Networks and the Chain Rule

▶ Deep Networks were first shown to be successful for object classification.
Their structure was well suited for this task and is motivated by
conjectures about the structure of the human/mamalian visual system,
See the slides aboyt AlexNet. This is ”course” task where the aim is to
classify an image as a single object. This is naturally suited to a
hierarchical structure which learns features which are invariant to
irrelevant details about the object.

▶ But deep networks could rapidly be adapted to fine-detail tasks like
estimating edges in image or for semantic segmentation. Both tasks
require specify results per-pixel (hence fine-detail). For edge detection this
is addressed by having loss functions at different levels of the network.

▶ Nueral networks are learnt using the chain rule. The output of a deep
network can be expressed in terms of compositions of elementary
functions, where each elementary function depends on weights. This
compositional structure can be exploited to calculate the derivatives of all
the weights in the network, hence enabling an efficient learning algorithm.
We illustrate this for a network with two layers of hidden variables (but the
same procedure can be applied to networks with any numbers of layers).



Deep Networks and the Chain Rule

▶ Formally, O⃗ = O(W⃗3, H⃗2), H⃗2 = H2(W⃗2, H⃗1), H⃗1 = H1(W⃗1, I⃗ ). A special

case is H⃗2 = ReLu(W⃗2 · H⃗1) (etc). The input-output can be expressed as

O⃗ = O(W⃗3, W⃗2, W⃗1, I⃗ ).

▶ The loss function takes the form L(O(W⃗3, W⃗2, W⃗1, I⃗ ),T ), where T is the
groundtruth.

▶ The learning update rule – to estimate the ML estimate – requires
computing the partial derivatives of the weights. This can be done
efficiently by exploiting the chain rule of differentiation. This is known as
the backpropagation algorithm (because errors are propaged backwards
done the hierarchy).



Backpropagation: The Chain Rule of Differentiation

▶ For W⃗3 the derivative is simple: ∂L

∂W⃗3
= ∂L

∂W⃗2
, ∂L

∂W⃗1
. (because the weights

W⃗3 directly affect the output O so it easy to assign them credit).

▶ For W⃗2, the derivative is given by ∂L

∂W⃗2
= ∂L

∂H⃗2

∂H⃗2
∂W2

with ∂L

∂H⃗2
= ∂L

∂O
∂O
∂H2

.

(This requires backpropagating information back to the earlier layers so to
give credit to weights that do not directly affect the output).

▶ For W⃗1, the derivative is given by ∂L

∂W⃗1
= ∂L

∂H⃗1

∂H⃗1
∂W1

with ∂L

∂H⃗1
= ∂L

∂H⃗2

∂O
∂H1

.

(This requires backpropagating information back to the earlier layers so to
give credit to weights that do not directly affect the output).

▶ These expressions yield the derivatives of the loss function with respect to
the weights in terms of the derivatives of the compositional functions
O⃗ = O(W⃗3, H⃗2), H⃗2 = H2(W⃗2, H⃗1), H⃗1 = H1(W⃗1, I⃗ ).



Edge Detection: HED
▶ The HED edge detector exploits the fact that edges occur at different

scales in the image. Intuitively, we could detect edges at different scales by
convolving the image with a Gaussian at different scales (scale corresponds
to the standard deviation of the Gaussian) and taking the derivative.
Small edges (i.e., small changes in intensity across the edge) will be
blurred out by Gaussians with large variances and so will only give cues for
edges at the smallest scales (e.g., texture edges, which HED does not
want to detect). By contrast, large edges will remain as we blur the image
with larger Gaussians. There will be information about edges at all scales
(as exploited by statistical edge detectors).

▶ HED captures this intuition by having side layers which give evidence for
edges at different levels of the hierarchy. These side layers have access to
the ground truth and have a corresponding loss function. The side layers
are combined together to yield the final decision which combines
information from all scales. This enables the lower-layers, which have
higher spatial resolution, to give accurate estimates for the local positions
of edges while the higher-layers validate that there is an edge (HED wants
to detect boundary edges which are large and which have evidence for
them at most scales of the network).

▶ In summary, HED has a standard deep network architecture with side
layers and a sum of loss functions for detecting edges at different scales.

▶ Note that, like statistical edge detection, the loss functions must stromgly
penalize false negatives.
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