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So far...

® Symmetric encryption
® Two people want to communicate
® Share a secret key

® Want their communication to be private
and authenticated




So far...

IND-CPA Symmetric Encryption Scheme
+

Strongly Unforgable MAC

!
IND-CCA Authenticated Encryption Scheme




Today

® Symmetric encryption
® Two people want to communicate
® Share a secret key

® Want their communication to be private
and authenticated




Today

® Asymmetric encryption
® Two people want to communicate
® Don’t share a secret key

® Want their communication to be private
and authenticated (?)




Asymmetric Encryption

® Also called public key encryption

® |nstead of one key that both people share,
now there are two per person

® Public key which does not need to be
kept secret (k)

® Private key which only the owner should

know (k | )




Public Key  Public Key

Attack at dawn

Private key Private key




Private key

Public Key  Public Key

Encrypt
Attack at dawn[)

Private key




Public Key  Public Key

Attack at dawn[)

Private key Private key




Public Key  Public Key

Private key

Attack at dawn

Decrypt

Private key




Public Key  Public Key

Message could have
come from anyone

Attack at dawn

Decrypt

4 Private key Private key |




A New Atomic
Primitive
Family of one-way trapdoor permutations

Family of permutations (f, f 'I)

One-way means that given f and y, it’s hard
to come up with the x where f(x) =y

The inverse, f - I, is the trapdoor

Examples: RSA, Rabin, etc...




RSA is a one-way
trapdoor permutation,
not an encryption
scheme




OAEP

® Just like we built secure symmetric
encryption out of PRPs (CTR), we want to

build secure asymmetric encryption
schemes out of OWTPs (OAEP)

® Optimal Asymmetric Encryption Protocol
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What are G and H?

Publicly computable (no keys)
Randomish

Onewayish

Collision resistantish

None of these properties are sufficient




Real Cryptographic
Hash Functions

® Unkeyed SHA-I is (hopefully):
® Collision resistant
® One-way
® “Random looking”

® And more...




Need Some Way To
Model These Functions

® Can’t enumerate all the properties they're
supposed to have, but have some intuition

® We will replace these functions with
something that has all the properties that
we want hash functions to have, but we’ll
overshoot

® No real function has the properties we
claim




Random Oracles




Random Oracles




Random Oracles

X R O010010110101...

Each bit of the output
is chosen uniformly
at random




Random Oracles

y R 1101001001 11...




Random Oracles

X R O010010110101...

On the same input
always returns the
same output




Random Oracles

X R O010010110101...

If you want a shorter
output just ignore
the rest




Key Thing To Note

® There’s no way to figure out anything about
the output of R when given x short of
asking R for the output

® So, if the adversary knows R(x) we know he
must have asked R for it




Random Oracles Can’t
Exist

® We will approximate them with
cryptographic hash functions

® We will prove that a construction that uses
random oracles is secure

® We then implement the construction using
cryptographic hash functions and hope that
the hash functions are a good approximation




Why Does This Make
Sense?

® We want to accomplish some real world
goal

® Some construction is going to be used no
matter what

® |[f we can’t prove anything about any of the
efficient constructions without random
oracles, we might as well use one that we
can prove secure under the R.O. assumption




Proof of Security

® Similar game to before:

® Adversary given access to encryption and
decryption oracles

® Also given access to the random oracles
Gand H

e Given the encryption of either my or m,

has to decide which it is




Break OAEP, you've
broken the OWTP

® Use the adversary that breaks OAEP to
break the underlying one-way trapdoor
permutation

o If the adversary can win at the my or m

game, we can invert f (i.e. given a y, come up
with x s.t. f(x) = y)




Adversary B(f, y)
// Wants to find x s.t. f(x) =y
Run A
When A asks for G(x):
See if G[x] exists, if so return it
Generate G[x] at random, return it
When A asks for H(x):
See if H[x] exists, if so return it
Generate H[x] at random, return it




Adversary B(f, y)
// Wants to find x s.t. f(x) =y
Run A
When A asks for G(x):
See if G[x] exists, if so return it
Generate G[x] at random, return it
When A asks for H(x):
See if H[x] exists, if so return it
Generate H[x] at random, return it

Just a table




When A asks for E(m):

m 000000000 010110101
d< G['] <
\V
> H[ ] P
return f(s || t)
\\/4 \4




When A asks for D(c):

m 000000000 010110101
d< G['] <
\V
> H[] ——
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When A asks for D(c):

G[] ¢

> H[ ]

P




When A asks for D(c):

b H[b]




When A asks for D(c):




When A asks for D(c):

G[a] D b

G
% Sl G['] <

> H[ ]

H[b]
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= a PHI[b]




When A asks for D(c):

G[a] D b a

For index a of G[] éé Gla] G['] < 2

For index b of HI[]
if f(b || aDH[b]) = ¢
if G[a]®b has Zeros b H[b] |
return G[a]Pb > H[] >P
return L

V \4

s=b t = a @H[b]




A gives us My and m |

No matter what, we say that
the encryption is y
(remember that y is the thing

we're trying to invert)

What if y isn’t the encryption of

either Mm@ or m |?




my Zeros Random bits
000000000

There will be éé G[] <
some Random

Bits and answers

to G and H s.t. S HI- v
y =119 > AUl /9




my Zeros Random bits
000000000 r

The only way A éé G[] ¢
can win is if it
has asked for

GJ[r] and HJs N
rand > H[ 1 ——p
We just look at
our tables
\\ /4 \\ 4
S t

y =f(x) =f(s ||




The Result

® |f someone can mount a chosen ciphertext
attack on OAEP, they can invert the
underlying trapdoor permutation in the
random oracle world




Not So Fast...

There’s a subtle flaw in the proof
It took 7 years for someone to find
OAEP was already being used

We'll look at what happened




