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So far...

• Symmetric encryption

• Two people want to communicate

• Share a secret key

• Want their communication to be private 
and authenticated



So far...

IND-CPA Symmetric Encryption Scheme
+

Strongly Unforgable MAC
↓

IND-CCA Authenticated Encryption Scheme



Today

• Symmetric encryption

• Two people want to communicate

• Share a secret key

• Want their communication to be private 
and authenticated



Today

• Asymmetric encryption

• Two people want to communicate

• Don’t share a secret key

• Want their communication to be private 
and authenticated (?)



Asymmetric Encryption

• Also called public key encryption

• Instead of one key that both people share, 
now there are two per person

• Public key which does not need to be 
kept secret (k)

• Private key which only the owner should 

know (k-1)
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Private key Private key

Public Key Public Key

Attack at dawn

Decrypt

Message could have
come from anyone



A New Atomic 
Primitive

• Family of one-way trapdoor permutations

• Family of permutations (f, f -1) 

• One-way means that given f and y, it’s hard 
to come up with the x where f(x) = y

• The inverse, f -1, is the trapdoor

• Examples: RSA, Rabin, etc...



RSA is a one-way 
trapdoor permutation, 

not an encryption 
scheme



OAEP

• Just like we built secure symmetric 
encryption out of PRPs (CTR), we want to 
build secure asymmetric encryption 
schemes out of OWTPs (OAEP)

• Optimal Asymmetric Encryption Protocol



Attack at dawn
Message



Attack at dawn 000000000
Message Zeros



Attack at dawn 000000000 010110101
Random bitsMessage Zeros
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Attack at dawn 000000000 010110101
Random bitsMessage Zeros

⊕ G

H ⊕

s t

Public key: f

Private key: f -1

E(m)=f(s||t)



s t

s||t = f -1(c)



H

s t
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Attack at dawn 000000000 010110101
Random bitsMessage Zeros

⊕ G

H ⊕

s t

The Zeros must 
all be 0, 

otherwise we 
return ⊥



What are G and H?

• Publicly computable (no keys)

• Randomish

• Onewayish

• Collision resistantish

• None of these properties are sufficient



Real Cryptographic 
Hash Functions

• Unkeyed SHA-1 is (hopefully):

• Collision resistant

• One-way

• “Random looking”

• And more...



Need Some Way To 
Model These Functions
• Can’t enumerate all the properties they’re 

supposed to have, but have some intuition

• We will replace these functions with 
something that has all the properties that 
we want hash functions to have, but we’ll 
overshoot

• No real function has the properties we 
claim



Random Oracles

R



Random Oracles

Rx



Random Oracles

Rx 010010110101...

Each bit of the output
is chosen uniformly

at random



Random Oracles

Ry 110100100111...



Random Oracles

Rx 010010110101...

On the same input
always returns the

same output



Random Oracles

Rx 010010110101...

If you want a shorter
output just ignore

the rest



Key Thing To Note

• There’s no way to figure out anything about 
the output of R when given x short of 
asking R for the output

• So, if the adversary knows R(x) we know he 
must have asked R for it



Random Oracles Can’t 
Exist

• We will approximate them with 
cryptographic hash functions

• We will prove that a construction that uses 
random oracles is secure

• We then implement the construction using 
cryptographic hash functions and hope that 
the hash functions are a good approximation 



Why Does This Make 
Sense?

• We want to accomplish some real world 
goal

• Some construction is going to be used no 
matter what

• If we can’t prove anything about any of the 
efficient constructions without random 
oracles, we might as well use one that we 
can prove secure under the R.O. assumption



Proof of Security

• Similar game to before:

• Adversary given access to encryption and 
decryption oracles

• Also given access to the random oracles 
G and H

• Given the encryption of either m0 or m1, 

has to decide which it is



Break OAEP, you’ve 
broken the OWTP

• Use the adversary that breaks OAEP to 
break the underlying one-way trapdoor 
permutation

• If the adversary can win at the m0 or m1 

game, we can invert f (i.e. given a y, come up 
with x s.t. f(x) = y)



Adversary B(f, y)
// Wants to find x s.t. f(x) = y
Run A

When A asks for G(x):
  See if G[x] exists, if so return it
  Generate G[x] at random, return it
When A asks for H(x):
  See if H[x] exists, if so return it
  Generate H[x] at random, return it

...



Adversary B(f, y)
// Wants to find x s.t. f(x) = y
Run A

When A asks for G(x):
  See if G[x] exists, if so return it
  Generate G[x] at random, return it
When A asks for H(x):
  See if H[x] exists, if so return it
  Generate H[x] at random, return it

...

Just a table



m 000000000 010110101

⊕

⊕

s t

When A asks for E(m):

return f(s || t)

G[ ]

H[ ]
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When A asks for D(c):

G[ ]

H[ ]

aG[a]

b H[b]



m 000000000 010110101

⊕

⊕

s = b t = a ⊕H[b]
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G[a] ⊕ b a



m 000000000 010110101

⊕

⊕

s = b t = a ⊕H[b]

When A asks for D(c):

G[ ]

H[ ]

For index a of G[]
  For index b of H[]
    if f(b || a⊕H[b]) = c
       if G[a]⊕b has Zeros

   return G[a]⊕b
return ⊥

aG[a]

b H[b]

G[a] ⊕ b a 



A gives us m0 and m1

No matter what, we say that

the encryption is y 

(remember that y is the thing 

we’re trying to invert)

What if y isn’t the encryption of

either m0 or m1?



000000000
Random bitsmb Zeros

⊕

⊕

s t

There will be 
some Random 

Bits and answers 
to G and H s.t.

y = f(s || t)

G[ ]

H[ ]



000000000
Random bitsmb Zeros

⊕

⊕

s t

The only way A 
can win is if it 
has asked for 
G[r] and H[s]

We just look at 
our tables

G[ ]

H[ ]

r

y = f(x) = f(s || t)



The Result

• If someone can mount a chosen ciphertext 
attack on OAEP, they can invert the 
underlying trapdoor permutation in the 
random oracle world



Not So Fast...

• There’s a subtle flaw in the proof

• It took 7 years for someone to find

• OAEP was already being used

• We’ll look at what happened


