
Random Oracles and
OAEP

Adam Stubblefield

So far...

• Symmetric encryption

• Two people want to communicate

• Share a secret key

• Want their communication to be private
and authenticated

So far...

IND-CPA Symmetric Encryption Scheme
+

Strongly Unforgable MAC
↓

IND-CCA Authenticated Encryption Scheme

Today

• Symmetric encryption

• Two people want to communicate

• Share a secret key

• Want their communication to be private
and authenticated

Today

• Asymmetric encryption

• Two people want to communicate

• Don’t share a secret key

• Want their communication to be private
and authenticated (?)

Asymmetric Encryption

• Also called public key encryption

• Instead of one key that both people share,
now there are two per person

• Public key which does not need to be
kept secret (k)

• Private key which only the owner should

know (k-1)

Private key Private key

Public Key Public Key

Attack at dawn

Private key Private key

Public Key Public Key

Attack at dawn

Encrypt

Private key Private key

Public Key Public Key

Attack at dawn

Private key Private key

Public Key Public Key

Attack at dawn

Decrypt

Private key Private key

Public Key Public Key

Attack at dawn

Decrypt

Message could have
come from anyone

A New Atomic
Primitive

• Family of one-way trapdoor permutations

• Family of permutations (f, f -1)

• One-way means that given f and y, it’s hard
to come up with the x where f(x) = y

• The inverse, f -1, is the trapdoor

• Examples: RSA, Rabin, etc...

RSA is a one-way
trapdoor permutation,

not an encryption
scheme

OAEP

• Just like we built secure symmetric
encryption out of PRPs (CTR), we want to
build secure asymmetric encryption
schemes out of OWTPs (OAEP)

• Optimal Asymmetric Encryption Protocol

Attack at dawn
Message

Attack at dawn 000000000
Message Zeros

Attack at dawn 000000000 010110101
Random bitsMessage Zeros

Attack at dawn 000000000 010110101
Random bitsMessage Zeros

G

Attack at dawn 000000000 010110101
Random bitsMessage Zeros

⊕ G

s

Attack at dawn 000000000 010110101
Random bitsMessage Zeros

⊕ G

H

s

Attack at dawn 000000000 010110101
Random bitsMessage Zeros

⊕ G

H ⊕

s

Attack at dawn 000000000 010110101
Random bitsMessage Zeros

⊕ G

H ⊕

s t

Attack at dawn 000000000 010110101
Random bitsMessage Zeros

⊕ G

H ⊕

s t

Public key: f

Private key: f -1

E(m)=f(s||t)

s t

s||t = f -1(c)

H

s t

010110101

H ⊕

s t

010110101

G

H ⊕

s t

Attack at dawn 000000000 010110101

⊕ G

H ⊕

s t

Attack at dawn 000000000 010110101
Random bitsMessage Zeros

⊕ G

H ⊕

s t

Attack at dawn 000000000 010110101
Random bitsMessage Zeros

⊕ G

H ⊕

s t

Attack at dawn 000000000 010110101
Random bitsMessage Zeros

⊕ G

H ⊕

s t

The Zeros must
all be 0,

otherwise we
return ⊥

What are G and H?

• Publicly computable (no keys)

• Randomish

• Onewayish

• Collision resistantish

• None of these properties are sufficient

Real Cryptographic
Hash Functions

• Unkeyed SHA-1 is (hopefully):

• Collision resistant

• One-way

• “Random looking”

• And more...

Need Some Way To
Model These Functions
• Can’t enumerate all the properties they’re

supposed to have, but have some intuition

• We will replace these functions with
something that has all the properties that
we want hash functions to have, but we’ll
overshoot

• No real function has the properties we
claim

Random Oracles

R

Random Oracles

Rx

Random Oracles

Rx 010010110101...

Each bit of the output
is chosen uniformly

at random

Random Oracles

Ry 110100100111...

Random Oracles

Rx 010010110101...

On the same input
always returns the

same output

Random Oracles

Rx 010010110101...

If you want a shorter
output just ignore

the rest

Key Thing To Note

• There’s no way to figure out anything about
the output of R when given x short of
asking R for the output

• So, if the adversary knows R(x) we know he
must have asked R for it

Random Oracles Can’t
Exist

• We will approximate them with
cryptographic hash functions

• We will prove that a construction that uses
random oracles is secure

• We then implement the construction using
cryptographic hash functions and hope that
the hash functions are a good approximation

Why Does This Make
Sense?

• We want to accomplish some real world
goal

• Some construction is going to be used no
matter what

• If we can’t prove anything about any of the
efficient constructions without random
oracles, we might as well use one that we
can prove secure under the R.O. assumption

Proof of Security

• Similar game to before:

• Adversary given access to encryption and
decryption oracles

• Also given access to the random oracles
G and H

• Given the encryption of either m0 or m1,

has to decide which it is

Break OAEP, you’ve
broken the OWTP

• Use the adversary that breaks OAEP to
break the underlying one-way trapdoor
permutation

• If the adversary can win at the m0 or m1

game, we can invert f (i.e. given a y, come up
with x s.t. f(x) = y)

Adversary B(f, y)
// Wants to find x s.t. f(x) = y
Run A

When A asks for G(x):
 See if G[x] exists, if so return it
 Generate G[x] at random, return it
When A asks for H(x):
 See if H[x] exists, if so return it
 Generate H[x] at random, return it

...

Adversary B(f, y)
// Wants to find x s.t. f(x) = y
Run A

When A asks for G(x):
 See if G[x] exists, if so return it
 Generate G[x] at random, return it
When A asks for H(x):
 See if H[x] exists, if so return it
 Generate H[x] at random, return it

...

Just a table

m 000000000 010110101

⊕

⊕

s t

When A asks for E(m):

return f(s || t)

G[]

H[]

m 000000000 010110101

⊕

⊕

When A asks for D(c):

G[]

H[]

m 000000000 010110101

⊕

⊕

When A asks for D(c):

G[]

H[]

m 000000000 010110101

⊕

⊕

When A asks for D(c):

G[]

H[]

aG[a]

b H[b]

m 000000000 010110101

⊕

⊕

s = b t = a ⊕H[b]

When A asks for D(c):

G[]

H[]

aG[a]

b H[b]

m 000000000 010110101

⊕

⊕

s = b t = a ⊕H[b]

When A asks for D(c):

G[]

H[]

aG[a]

b H[b]

G[a] ⊕ b a

m 000000000 010110101

⊕

⊕

s = b t = a ⊕H[b]

When A asks for D(c):

G[]

H[]

For index a of G[]
 For index b of H[]
 if f(b || a⊕H[b]) = c
 if G[a]⊕b has Zeros

 return G[a]⊕b
return ⊥

aG[a]

b H[b]

G[a] ⊕ b a

A gives us m0 and m1

No matter what, we say that

the encryption is y

(remember that y is the thing

we’re trying to invert)

What if y isn’t the encryption of

either m0 or m1?

000000000
Random bitsmb Zeros

⊕

⊕

s t

There will be
some Random

Bits and answers
to G and H s.t.

y = f(s || t)

G[]

H[]

000000000
Random bitsmb Zeros

⊕

⊕

s t

The only way A
can win is if it
has asked for
G[r] and H[s]

We just look at
our tables

G[]

H[]

r

y = f(x) = f(s || t)

The Result

• If someone can mount a chosen ciphertext
attack on OAEP, they can invert the
underlying trapdoor permutation in the
random oracle world

Not So Fast...

• There’s a subtle flaw in the proof

• It took 7 years for someone to find

• OAEP was already being used

• We’ll look at what happened

