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Abstract

Although large multimodal models (LMMs) have demon-
strated remarkable capabilities in visual scene interpreta-
tion and reasoning, their capacity for complex and precise
3-dimensional spatial reasoning remains uncertain. Exist-
ing benchmarks focus predominantly on 2D spatial under-
standing and lack a framework to comprehensively evaluate
6D spatial reasoning across varying complexities. To ad-
dress this limitation, we present Spatial457, a scalable and
unbiased synthetic dataset designed with 4 key capability
for spatial reasoning: multi-object recognition, 2D loca-
tion, 3D location, and 3D orientation. We develop a cas-
cading evaluation structure, constructing 7 question types
across 5 difficulty levels that range from basic single object
recognition to our new proposed complex 6D spatial rea-
soning tasks. We evaluated various large multimodal mod-
els (LMMs) on Spatial457, observing a general decline in
performance as task complexity increases, particularly in
3D reasoning and 6D spatial tasks. To quantify these chal-
lenges, we introduce the Relative Performance Dropping
Rate (RPDR), highlighting key weaknesses in 3D reasoning
capabilities. Leveraging the unbiased attribute design of
our dataset, we also uncover prediction biases across differ-
ent attributes, with similar patterns observed in real-world
image settings.1 The code and data is released in https:
//github.com/XingruiWang/Spatial457.

1. Introduction
In recent years, large multimodal models (LMMs) have
demonstrated remarkable reasoning capabilities, enabling
them to interpret visual scenes from images and articulate
their understanding through natural language [1, 3, 11, 26,
27, 38, 39, 48]. These advancements have been evaluated
using a variety of benchmarks that primarily emphasize
semantic features—such as object categories and appear-

1Distribution Statement A: Approved for public release: distribution is
unlimited.
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ances, spatial relationships within the 2D image plane [15,
17, 18] (e.g. left-right positioning from the camera view),
and limited 2.5D features such as camera depth [40]. Tasks
like object detection [13, 22], image captioning [21, 42, 47]
and visual question answering[18, 50, 51] have significantly
benefited from these evaluations, driving LMMs to new
heights in visual understanding.

However, a critical gap remains in assessing the ability of
LMMs to comprehend and reason about the full six degrees
of freedom (6D) of objects in spatial environments, which
includes both 3D positions and orientations [43, 46, 53].
Despite its significance in many real-world applications,
such as robotics [2], autonomous navigation [14], and aug-
mented reality [5], there are no available benchmarks for
LMMs that evaluate 6D spatial reasoning capabilities.

Building a scalable diagnostic dataset for 6D vision tasks
poses considerable challenges due to the extensive annota-
tions required across vast image collections. One strategy
is to develop 6D vision question-answering benchmarks on
top of existing image datasets [4, 6, 7, 36]. However, real-
world image collections often exhibit significant biases in
3D locations and poses, influenced by camera perspective
limitations and the prevalence of common object orienta-
tions in everyday scenes. For instance, statistics from the
SUN-RGBD [36] and nuScenes [7] datasets reveal that over
70% of objects cluster into a single predominant direction
(see Fig. 2), limiting the diversity required for comprehen-
sive 6D reasoning evaluation.

To overcome these challenges, we introduce an unbiased
and scalable synthetic dataset rendered in a realistic style,
specifically designed to diagnose the 6D spatial reasoning
abilities of LMMs. To comprehensively evaluate diverse
aspects of 6D spatial reasoning, we focus on four core capa-
bilities: multi-object recognition, 2D locations, 3D loca-
tions, and 3D orientation. Multi-object recognition serves
as the foundation of scene understanding, while 2D loca-
tion represents the simplest way to depict the spatial rela-
tionship between objects within the image plane [18, 19].
The 3D location factor extends understanding into three-
dimensional space, capturing the depth and distance of ob-
jects, which is essential for tasks such as reasoning about
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Figure 1. Overview of the Spatial457 benchmark. We define four core capabilities for spatial reasoning. By incorporating these capabilities
step-by-step, the benchmark assesses models across five progressive difficulty levels and seven question types, ranging from single-object
recognition to advanced 6D spatial relationships and collision prediction. Our evaluation demonstrates a significant performance drop
for more advanced questions and highlights the gap between state-of-the-art (SoTA) models and human performance in complex spatial
reasoning VQA tasks.

(a) SUN-RGBD (b) nuScenes (c) Ours

Figure 2. The distribution of 3D poses in representative 6D
datasets (a&b) highlights an imbalance in object orientations.
This inspired us to develop a balanced benchmark encompassing
all degrees of 3D orientation.

occlusions [9, 10, 44]. The 3D orientation introduces object
rotation [44, 46], enabling models to reason about precise
3D poses of objects within a scene.

By progressively incorporating the four core capabilities,
we establish five levels of difficulty, resulting in seven dis-
tinct question types. These questions span a spectrum of
spatial reasoning complexity, ranging from basic semantic
identification and 2D spatial relationships to advanced 3D
positional understanding and orientation-based queries, cul-
minating in comprehensive 6D spatial reasoning tasks.

Our evaluation measures performance across varied
question types and examines how it is affected by differ-
ent combinations of the four capabilities. This tiered de-
sign provides comprehensive benchmarks for spatial rea-
soning capabilities, highlighting each model’s strengths and
areas of vulnerability. To the best of our knowledge, this
work presents the first comprehensive benchmark designed

to evaluate the 6D spatial reasoning capabilities of vision-
language models.

Additionally, our dataset’s unbiased attribute design al-
lows us to analyze potential biases in model predictions. By
systematically exploring model performance under differ-
ent attributes, we identify tendencies or limitations that may
affect real-world applications. Altogether, our benchmark
not only provides a foundational tool for evaluating LMMs
but also serves as a guide for developing future benchmarks
that support models with advanced 6D spatial reasoning.

Our main contributions are threefold:

1. An unbiased and scalable synthetic dataset: We
present a realistic, unbiased synthetic dataset designed
to assess 6D spatial reasoning in LMMs. We define
four core capabilities and propose five difficulty levels
for spatial reasoning VQA with seven question types.

2. Comprehensive benchmarking of 6D capabilities: We
benchmark various LMMs across all difficulty levels.
The performance variations across settings reveal poten-
tial limitations or strengths, providing valuable insights
into which components should be prioritized to improve
the spatial reasoning of LMMs.

3. Bias analysis in model predictions: Leveraging the un-
biased nature of our dataset, we conduct an in-depth bias
analysis to explore how LMM predictions may be unbal-
anced across different attributes, especially 3D-related
ones. This reveals potential weaknesses in model pre-
dictions, offering insights into limitations that may also



appear in real-world scenarios.

2. Related Work
2.1. Synthetic Datasets in VQA
The use of synthetic data in visual question answering
(VQA) has gained traction as a means to circumvent the
limitations and biases inherent in real-world datasets. Syn-
thetic environments [16, 30, 34] allow for controlled ma-
nipulation of scene elements, enabling researchers to probe
specific reasoning abilities in VQA models without the con-
founding factors often present in natural imagery. Previous
works [19, 24, 25] have utilized synthetic environments to
evaluate multimodal models across a range of visual rea-
soning tasks, typically focusing on 2D spatial relationships
and object features. For instance, CLEVR [19], a synthetic
dataset widely used in the VQA community, evaluates com-
positional reasoning by introducing artificially generated
scenes with diverse object arrangements. Super-CLEVR-
3D [45] represents a significant step forward in evaluat-
ing 3D locations, it lacks an assessment of 6D spatial re-
lationships that consider both 3D location and 3D orienta-
tion. Our work extends this tradition by creating a synthetic
dataset tailored for 6D spatial reasoning, filling a gap in cur-
rent synthetic datasets that do not address the complete spa-
tial understanding of objects in 3D space.
2.2. LMM Benchmarks
Existing benchmarks [15, 18, 35, 51] for large multimodal
models (LMMs) predominantly assess their performance on
tasks involving 2D visual question answering and multi-
modal reasoning. For instance, datasets like VQAv2 [15]
and GQA [18] focus on answering questions based on visual
content However, these benchmarks leave a gap in evaluat-
ing models’ capabilities in spatial contexts. Recent bench-
marks, such as CV-Bench [40], assess spatial understand-
ing, including depth ordering for 2.5D evaluation. More
recent work [9, 10, 32] introduces questions regarding ei-
ther aspect of 3D locations or rotations. Our proposed
benchmark goes beyond traditional 2D, 2.5D, and 3D loca-
tion or rotation assessments by introducing tasks that chal-
lenge LMMs to understand 3D positions and orientations
together. We also evaluate models in a cascading man-
ner across five difficulty levels and summarize their per-
formance in four reasoning abilities, along with their out-
put biases, providing a deeper analysis of the weaknesses in
spatial reasoning within multimodal AI.

3. Spatial457: Comprehensive Spatial Reason-
ing Benchmark

To comprehensively evaluate the spatial reasoning capabil-
ities of vision-language models, we introduce a synthetic
dataset named Spatial457. We define four core capabili-
ties for comprehensive spatial reasoning (Sec. 3.1) and gen-
erate scenes with full 6D annotations (Sec. 3.2). The full

combination of these capabilities form the new 6D spatial
relationship VQA tasks (Sec. 3.3).

To thoroughly assess model capabilities, we define five
levels of difficulty in vision question answering (VQA)
tasks, converting seven question subsets that range from
single-object recognition to the newly proposed 6D spatial
reasoning tasks (Sec. 3.4). This structured progression in
question difficulty is achieved by sequentially introducing
new spatial reasoning capabilities, as illustrated in Fig. 1.

3.1. Four Capabilities for Spatial Reasoning
We define 4 capabilities for comprehensive spatial under-
standing in a 3D scene: multiple objects, 2D locations, 3D
locations, and 3D orientations.

(1) Multiple objects. Objects are fundamental to defin-
ing scene structure [52]. Large vision-language mod-
els show strong results in aligning semantic features with
text [23, 31], handling multiple objects from scene becomes
the first toward scene understanding. Models must recog-
nize individual attributes and interpret relationships among
them. Our dataset evaluates multi-object reasoning, such as
comparison and counting. For example, in Fig. 1, the image
shows two cyan objects, requiring the model to verify color
similatiry and count cyan objects accurately.

(2) 2D locations. 2D spatial relationships are essential
in prior image-based VQA tasks [18, 19]. In traditional
multimodal models [20, 28, 49], these relationships can
be learned through object detection training [8, 33], How-
ever, in large-scale vision-language models, explicit loca-
tion information is often absent from the latent representa-
tions. Following Li et al. [24], we examine four spatial rela-
tionships (left, right, front, back) between objects
from 2D camera views as the first taks of spatial reasoning.
Questions use these relations to filter targets, such as “What
is the shape of the object to the left of the chopper?” (see
Fig. 1).

(3) 3D locations. Beyond 2D relationships, 3D loca-
tions can incorporate depth, capturing spatial relationships
that 2D alone cannot represent. This is crucial for tasks in-
volving occlusions and complex spatial arrangements. Our
dataset assesses the 3D location understanding abilities of
model through questions about occlusions query as in [45].
For example, as shown in Fig. 1, questions may ask about
an object’s position relative to others in 3D space or whether
one object is occluded, challenging models to judge dis-
tances and spatial positions accurately.

(4) 3D orientations. The 3D orientation of objects in-
troduces an additional layer of complexity by incorporat-
ing rotational attributes. In current computer vision tasks,
3D orientation is often derived by pose estimation meth-
ods. However, large-scale vision-language models gener-
ally lack explicit 3D orientation information in their latent
representations, potentially making it challenging to accu-



rately infer the object’s orientations. In our dataset, we eval-
uate models’ abilities to understand 3D orientations by fo-
cusing on object poses, including their facing direction and
alignments with others. For example, as depicted in Fig. 1,
the model may be asked to identify whether a cyan object is
facing left, oriented parallel to a brown object, or positioned
in a specific spatial relationship — i.e. left, right, front, or
behind— from the perspective of the objects themselves.

3.2. Scene Rendering
We build upon the generation pipeline from prior VQA
datasets [19, 24] and uniformly select 21 object models
across 5 categories to construct the dataset as Li et al. [24].
To improve the realism of our rendered dataset, we use real
image style environment maps and refined object textures.
For benchmarking new 6D spatial understanding ability, we
add new 6D spatial relationship annotations among objects.

Background. To create realistic scene backgrounds,
we use HDRI images2 with environment maps and natu-
ral lightings. We selected 224 different outdoor scenes with
normal brightness levels without high light contrast by their
metadata to maintain visual consistency across images.

Objects. We reconstruct 3D mesh models [24] with re-
alistic textures, introducing more variation and realistic ap-
pearances for objects. Similar to Li et al. [24], each object
in our dataset is defined by distinct attributes and precise
spatial locations. The original attributes include shape,
color, and size. For benchmarking 6D spatial reason-
ing, each object also includes a vector specifying its 2D lo-
cation (x, y), 3D world coordinates (X, Y, Z), and
pose direction derived from its 3D orientation [45].

Relationships. As shown in Fig. 3 (a.1 to a.3), we de-
fine three types of spatial relationships: 1. 2D Spatial Re-
lationships: These describe the relative positioning of ob-
jects within the 2D camera view, using terms such as left,
right, front, and behind. 2. 6D Spatial Relation-
ships: Extending spatial descriptions into 3D space, these
relationships incorporate both the 3D position and orien-
tation of objects to define relative positions from a tar-
get object’s perspective, including left, right, front,
and behind. 3. Collision Relationships: This relation-
ship describes potential collisions if the target object moves
forward or backward. Collision prediction involves as-
sessing the orientation and 3D location of target objects rel-
ative to others to determine possible collisions.

3.3. New Questions for 6D Spatial Reasoning
Based on the four capabilities defined in Sec. 3.1, we con-
struct new question types for 6D spatial reasoning and col-
lision prediction. These questions require an understand-
ing of both 3D location and 3D orientation across multiple
objects to generate accurate answers. This level of com-
plexity represents the L5 difficulty level shown in Fig. 1.

2https://polyhaven.com/hdris
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Figure 3. (a.1-3) Example of the 2D spatial, 3D spatial and colli-
sion with images and questions. (b.1-2) shows the new operation
programs we generated for the new 6D spatial reasoning questions.

The 6D spatial relationship questions challenge the
model to understand the spatial relationship involving both
3D position and orientation from a target object’s perspec-
tive (shown in Fig. 3 (a.2)). Compared with prior VQA
benchmarks focusing on 2D [19, 24], we introduce new
3D spatial reasoning operations, 3D Relate(·), to de-
termine relative positions like left, right, front, and
behind within a 3D coordinate space (see Fig. 3 (b.1)).
For example, a question might ask, “How many objects are
to the right of the red wagon?” requiring the model to fil-
ter and count objects based on their orientation and relative
3D position, which would yield different answers compared
to similar 2D left and right questions (Fig. 3 (a.1)). This
task is particularly challenging as it requires models to in-
tegrate 3D spatial relationships while managing occlusions
and depth perception—capabilities not typically covered in
simpler 2D spatial tasks.

The collision prediction questions, as shown in Fig. 3
(a.3), extend 6D spatial reasoning by introducing motion-
based inference. These questions assess the model’s ability
to anticipate future states and potential interactions (colli-
sions) based on accurate estimation of 3D location and di-
rection, denoted as forward or backward. For instance,
a question might ask, “Will the red wagon collide with a yel-
low bus if it moves forward?”. This requires the model to
consider the orientation and direction of movement relative
to surrounding objects to predict possible outcomes. Such
tasks test the model’s advanced spatial reasoning about 3D
orientation and position, and its capacity to predict accurate
trajectories and directions within the future scene.

3.4. Questions under Other 4 Difficulty Levels
The L5 questions above represent the most challenging
cases for 6D spatial reasoning, testing all four capabilities

https://polyhaven.com/hdris


in Sec. 3.1. However, the purpose of this benchmark is
to comprehensively diagnose each factor in spatial reason-
ing. Thus, we design a structured roadmap to evaluate the
model’s performance across different levels of spatial rea-
soning, assessing its capabilities in each specific factor.

By composing the four factors of comprehensive spatial
reasoning, we define an additional four levels of question
difficulty based on the generated scenes, encompassing a
total of seven tasks in our benchmark. As the complexity
of spatial reasoning increases with the introduction of addi-
tional factors, we organize these questions into a structured
roadmap, as illustrated in Fig. 1. Although many questions
are reimplementations from previous benchmarks [24, 45]
on our new images, we aim to integrate these into a uni-
fied benchmark to provide deeper insights into the model’s
spatial reasoning capabilities. The composition of the four
capabilities at each level, along with comparisons to previ-
ous VQA benchmarks, is shown in Tab. 1.

Level 1 - single object questions [19, 24]. We begin
with the questions with single objects. These questions are
generated using a filtered set of templates from Li et al.
[24]. We select five templates involving only one object
in the question, such as “What color is the double bus?”
in Fig. 1. This question type provides a base score for
the tested vision-language model. The comparison with L1
helps to determine whether the decrease of performance are
due to challange of spatial reasoning or object recognition.

Level 2 - multiple objects questions [19, 24]. Level
2 questions extend Level 1 by involving multiple objects.
These questions involves understand the relationship be-
tween objects and counting. For example, “Is there another
object of the same color as the double bus?” as shown in
Fig. 1, where the question templates follows Li et al. [24].
We evaluate the model’s capacity for reasoning in scenes
with multiple entities as a critical step toward understand-
ing spatial relationships in next levels.

Level 3 - 2D spatial questions [19, 24]. Level 3 ques-
tions further introduce 2D spatial relationships among mul-
tiple objects, requiring the model to understand the position
of objects and their relationships from the 2D camera’s per-
spective. For example, “What shape is the object to the left
of the chopper?” as depicted in Fig. 1. The 2D relationship
is the first step of spatial reasoning.

Level 4 - 3D pose questions [45]. Level 4 questions
extend 3D orientation reasoning beyond the 2D spatial rela-
tionships in Level 3. Beyond appearance attributes (shape,
color, size) or 2D locations, these questions require un-
derstanding 3D orientation, including the rotation angle or
facing direction of an object from the camera’s perspective.
For example, “What shape is the object that is parallel to the
brown object?” as shown in Fig. 1. 3D pose questions test
the model’s ability to interpret scenes with 3D awareness,
involving rotation and alignment with other objects.

Level 4 - occlusion questions [45]. In addition to
3D orientation, incorporating 3D location presents another
challenge beyond the Level 3 questions on 2D spatial re-
lationships. A unique aspect of 3D spatial reasoning from
images is occlusion. The occlusion questions in Level 4
require the model to comprehend depth perception and the
relative positions of objects in 3D space, determining which
object is closer to the camera within overlapping areas.
For example, an occlusion question might ask, “Is the red
wagon occluded by the yellow bus?” as shown in Fig. 1.
This level evaluates the model’s ability to reason about oc-
clusions and depth perception, which are essential for un-
derstanding complex spatial relationships in 3D scenes.
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VQA Benchmarks

L1 spatial-agnostic bench (e.g., TextVQA [35])

L2 ✓ CLEVR-Math [25], CLEVR-Count [19]

L3 ✓ ✓ VQA [15], GQA [18], CLEVR [19], Super-CLEVR [24]

L4 (a) ✓ ✓ ✓ CV-Bench (DepthOrder) [40], Super-CLEVR-3D [45]

L4 (b) ✓ ✓ ✓ Super-CLEVR-3D [45]

L5 ✓ ✓ ✓ ✓ Spatial457

Table 1. Comparison of VQA Benchmarks by Factors and Ques-
tion Levels. Compared with existing VQA benchmarks, Spa-
tial457 includes all four spatial reasoning factors, providing a com-
prehensive evaluation of 6D spatial understanding.

3.5. Evaluation Protocols
To better evaluate the model’s spatial reasoning capabilities,
we propose a structured evaluation protocol that measures
the relative capability of models on each factor for spatial
reasoning. We define this evaluation metric as the Rela-
tive Performance Dropping Rate (RPDR), which assesses
the decline in performance after introducing a new factor in
the questions. Based on the roadmap in Fig. 1, the RPDR
for each factor is defined as follows:

RPDRMulti-Obj. = AccLevel 1 ⇒ AccLevel 2

RPDR2D Loc. = AccLevel 2 ⇒ AccLevel 3

RPDR3D Loc. = Avg
(

AccLevel 3 ⇒ AccLevel 4 (Occ.),
AccLevel 4 (3D Pose) ⇒ AccLevel 5 (6D)

)
RPDR3D Ori. = Avg

(
AccLevel 3 ⇒ AccLevel 4 (3D Pose),
AccLevel 4 (Occ.) ⇒ AccLevel 5 (Col.)

)
where AccLevel denotes the model’s accuracy on the corre-

sponding questions and (AccQ1 ⇒ AccQ2) =
AccQ2
AccQ1

denotes
the relative performance dropping rate from Q1 to Q2. The
results of RPDR will be discussed in Sec. 4.3.

4. Experiments
4.1. Experimental Setup
We generate 1,000 images to test the performance of large
vision-language models. For the seven types of questions,
we generate 670 single-object questions (L1-Single), 4,995



Difficulty Level Level 1 Level 2 Level 3 Level 4 Level 5

Questions type Single Object Multi-Obj. 2D Spatial Occlusion 3D Pose Collisions 6D Spatial

Random 33.05 32.77 33.47 22.04 18.99 21.02 19.41

GPT-4o [29] 74.46 62.88 56.14 48.40 42.41 38.41 37.01
GeminiPro 1.5 [37] 73.26 62.54 54.49 47.65 43.67 41.19 39.36
Claude 3.5 Sonnet [3] 68.24 57.40 54.19 30.84 38.40 35.34 33.48

Qwen2-VL-7B-Inst. [39] 71.96 61.44 55.34 27.87 34.29 36.58 33.75
InternVL2-8B [38] 58.11 58.76 57.40 33.25 32.32 34.30 34.30
LLaVA-v1.5-7B [26] 44.87 44.72 42.20 24.34 24.55 23.63 23.86
LLaVA-NeXT-vicuna-7B [27] 50.72 49.47 46.01 29.68 29.35 31.95 31.95
LLaVA-NeXT-llama3-8B [41] 52.15 49.73 45.92 30.31 29.77 32.12 32.12

PO3D-VQA [45] 86.46 82.55 80.64 70.49 81.40 68.12 71.06
Human 89.97 86.83 84.95 82.76 84.95 81.82 79.94

Table 2. Performance comparison across all 7 question types under 5 difficulty levels. As task complexity increases from single-object
questions to 6D spatial relationships, performance generally decreases in most cases, highlighting the challenges in handling multi-object
interactions, 3D orientations, and predictive spatial reasoning. The highest score among all models for each question type is marked in
red , and the second-highest scores are underlined. The best performance among open-source models is marked in blue . PO3D-VQA is

the state-of-the-art (SOTA) 3D-aware neural symbolic reasoning model as proposed in [45], and is listed as the potential upper bound of
evaluated methods. The comparison with human performance also shows an increasing gap for LLMs as task difficulty increases.

multiple-object questions (L2-Multi-obj.), 4,995 2D spa-
tial relationship questions (L3-2D-Spatial), 3,534 occlusion
questions (L4-Occlusion), 4,555 3D pose questions (L4-3D-
Pose), 3,166 collision questions (L5-Collision), and 1,837
6D spatial relationship questions (L5-6D-Spatial)

We evaluate two series of large vision-language mod-
els on Spatial457: (1) API-based large language models,
including GPT-4o [29], Gemini-1.5-Pro [37], and Claude-
3.5-Sonnet [3]; and (2) open-source large vision-language
models, including Qwen2-VL-7B-Instruct [39], InternVL2-
8B [38], llava-v1.5-7b [26], llava-next-vicuna-7b [27], and
llava-next-llama3-8b [41]. The evaluation follows the for-
mat of Vlmevalkit [12]. The details of the model implemen-
tation including prompts are listed in Appendix.

4.2. Evaluation Results
In Tab. 2, we present the performance of various large
vision-language models across different levels of difficulty
on Spatial457. The levels range from basic single-object
tasks to complex 6D spatial reasoning, with increasing dif-
ficulty as more factors are introduced. We compare both
API-based models (e.g., GPT-4o, GeminiPro1.5, Claude3-
5V) and open-source models (e.g., Qwen2-VL-7B-Instruct,
InternVL2-8B, LLaVA series) to assess their spatial reason-
ing capabilities.

Comparison across difficulty levels. We evaluate
model performance across different levels of difficulty in
Spatial457, ranging from basic single-object tasks to com-
plex 6D spatial reasoning. As shown in Tab. 2, perfor-
mance generally decreases as the complexity of spatial rela-
tionships increases, highlighting the challenges models face

when handling multi-object interactions, 3D orientations,
and predictive spatial reasoning tasks.

Comparison between API models and open-source
models. From Tab. 2, we observe that API models generally
outperform open-source models across all difficulty levels.
In 2D spatial relationship questions, InternVL2-8B achieves
slightly higher results than the API models, while GPT-4o
is only 1% lower. Qwen2-VL-7B-Instruct achieves compa-
rable results, especially in simpler tasks like single-object
and multiple-object reasoning. This analysis highlights the
strengths of API models in complex spatial reasoning tasks.

Comparison among API models. API-based mod-
els, i.e. GPT-4o, GeminiPro1.5, and Claude3-5V, demon-
strate strengths across all difficulty levels. For instance,
GPT-4o excels in 2D and 3D spatial tasks, while Gemi-
niPro1.5 shows robust performance in collision prediction
tasks. This comparison provides insights into the unique
capabilities and limitations of each API model in handling
spatial reasoning across different levels of complexity.

4.3. RPDR Analysis for 4 Capabilities
As outlined in Sec. 3.5, we use the Relative Performance
Dropping Rate (RPDR) to analyze model performance
across the four core factors of Spatial457: multi-object rea-
soning, 2D location understanding, 3D location comprehen-
sion, and 3D orientation interpretation. The RPDR analy-
sis provides a structured approach to quantify the decline
in accuracy with the introduction of each new factor, as
detailed in Tab. 3. Our findings reveal that all models ex-
hibit weaknesses in 3D reasoning. Specifically, GPT-4o and
GeminiPro-1.5 perform the worst in 3D orientation tasks,



while the other two struggle most with 3D location.

Model Multi. 2D Loc. 3D Ori. 3D Loc.

GPT-4o [29] 84.45 89.27 77.46 86.74
GeminiPro 1.5 [37] 85.37 87.13 83.28 88.79
Claude 3.5 S. [3] 84.12 94.41 85.43 72.05
Qwen2-VL-7B [39] 85.39 90.06 80.99 74.40

Table 3. RPDR (%) analysis on the four spatial reasoning capa-
bilities, where higher values indicate better performance. For each
row, we highlight the lowest RPDR score among all factors.

4.4. Bias Analysis
In this section, we analyze prediction biases in large lan-
guage models (LLMs) regarding their understanding of key
attributes, specifically shape, color, size, and pose. Leverag-
ing the unbiased generation of dataset images and questions
in Spatial457, we examine how these models may demon-
strate attribute-specific biases in their predictions.

We first compute the confusion matrices and distribution
statistics for both ground truth and model predictions across
each attribute (shape, color, size, and pose). For example,
the confusion matrix plots for color and pose attributes of
GPT-4o and GeminiPro1.5, together with the distribution
of prediction and ground truth label are shown in Fig. 4.
We find both GPT-4o and GeminiPro1.5 exhibit bias in both
color and pose predictions. These results highlight areas for
improvement to reduce bias and enhance predictive reliabil-
ity across models.

To quantify prediction variability, we calculate the Coef-
ficient of Variation (CV) for each attribute as follows:

CV =
Std(p1, . . . , pk)

Mean(p1, . . . , pk)
, (1)

where Std(·) and Mean(·) are the standard deviation and
mean of the probability distribution pi for each attribute la-
bel i (e.g., left,” ”right” for pose).

Tab. 4 shows the CV values for shape, color, size, and
pose attributes across different models. Lower CV values
indicate more consistent predictions with less bias, which
reveals significant biases in model predictions across at-
tributes. Higher CV values, especially in color and pose,
indicate consistency challenges.
4.5. Comparison to the 3D Symbolic Model
As neural symbolic models achieve state-of-the-art (SOTA)
performance on many prior synthetic datasets, we im-
plement the 3D-aware neural symbolic model PO3D-
VQA [45] on our new image domain and all levels of ques-
tions. We train PO3D-VQA on a separate set of 20,000 im-
ages and questions and report its performance on the same
test dataset in Tab. 2. A direct comparison between the 3D
neural symbolic model and large language models is not en-
tirely fair, as each module of the neural symbolic model (6D
pose estimation, attribute classification, and language rea-
soning) is trained independently as a sub-task. However, we

Figure 4. The distribution of color and pose attributes in the
L4-3D-Pose task for GPT-4o and Gemini-Pro1.5. Although the
ground truth labels are well balanced, the predicted colors and
poses for both models are imbalanced, with “yellow” being the
most frequent color and “front” the most frequent pose.

Models Avg. ↓ Shape Color Size Pose

GPT4o [29] 0.485 0.623 0.521 0.043 0.752
GeminiPro1.5 [37] 0.498 0.567 0.366 0.297 0.760
Claude3.5V-S [3] 0.720 0.777 0.465 0.574 1.063
Qwen2-VL-7B [39] 0.545 0.868 0.558 0.067 0.688

Human 0.093 0.110 0.082 0.055 0.126

Table 4. Coefficient of Variation (CV) for predictions on each at-
tribute in the L4-3D-Pose task. We evaluate three API models and
one open-source model, calculating the CV across four attributes
(shape, color, size, 3D pose) based on the distribution of predicted
labels. Lower CV values indicate less bias. The first column shows
the average CV across attributes, and GPT4-o has the lowest bias.

include this model to illustrate the upper bound that a data-
driven machine learning model can achieve on our dataset.

4.6. Qualitative Results
Fig. 5 presents an example of GPT-4o’s performance across
various spatial reasoning tasks on the same image. GPT-4o
correctly answers multi-object, 2D spatial, and occlusion
tasks but fails on 3D pose and 6D spatial questions, indicat-
ing challenges in 3D orientation understanding in this case.
As we prompt the models to output the answer as well as the
reasoning steps, the models correctly detect the existence
of objects (e.g. in Fig. 5 the yellow minivan in L4-Pose or
the fighter plane and road bike in L5 questions, but has the
wrong understand to the orientations or 3D locations.



L3: 2D spatial

L4: 3D pose L5: 6D spatial

Q: There is a tiny thing on the 
left side of the small fighter 
plane; what number of yellow 
cars are to the right of it? (A: 1)
GPT-4o: 1

Q: What is the shape of the 
yellow object that faces the 
opposite direction as the green 
road bike? (A: Fighter plane)
GPT-4o: Minivan

Q: There is a green object that 
is on the right hand side of the 
fighter plane; what is its 
shape? (A: Double bus) 
GPT-4o: Road bike.

Q: What is the shape of the 
thing that is occluded by the 
double bus?  (A: Minivan)
GPT-4o: Minivan

L4: Occlusion
Q: What is the size of the 
other object that is the same 
shape as the cyan object? 
(A: Small)
GPT4-o: Small.

L2: Multi-Objects

Reason: … The cyan object is a small 
dirtbike. The other object … is the 
small yellow dirtbike

Reason: First, identify the small fighter 
is yellow and …, identify the tiny object 
to the left …, count the number of 
yellow cars to the right of this tiny 
object is 1. 

Reason: The image contains a green 
double bus in the center, which is 
occluding a yellow minivan.

Reason: In the image, there are … a 
green bike. The yellow object facing the 
opposite direction … is the small 
minivan. 

Reason: The green object on the right 
side of the fighter plane is a road bike. 
The green double bus is also present in 
the image. Comparing their locations, 
the road bike is on the right. 

Figure 5. Example of GPT-4o across different spatial reasoning
tasks on the same image with the ground truth answer marked
in blue. GPT-4o answers multi-object, 2D spatial, and occlusion
tasks correctly (in the green block) but fails on 3D pose and 6D
spatial questions (the red block).

5. Extension to Real Dataset
We extend the setting of 3D questions to real-world image
data. Due to limitations in fully annotated attributes such as
category, color, 3D orientation, position, and occlusion, we
focus on questions from the L4-Pose category. Using the
scene structure from SUN-RGBD [36], we construct a new
subset, L4-Pose-Real, which involves only the category and
pose attributes. To reduce ambiguity in object localization,
we add a red bounding box around target objects, ensuring
clarity in identifying categories within the scene.

We provide the question along with the image as input
to the LLM. In this example in Fig. 6, GPT-4o provides the
correct answer, while Gemini-Pro 1.5 is incorrect. How-
ever, the reasoning process reveals that both models rely on
common sense knowledge or 2D visibility cues to interpret
the 3D orientation.

Extra instruction: Please choice an 
option from right, left, front, back. 
Front means the object is facing the 
camera, back means …

Question: Which direction 
the chairs in the red 
bounding box are facing to? 

Reasons
The image shows a counter with 
chairs placed in front of it. The 
counter is facing away from the 
camera, as the chairs are 
positioned to be used by people 
sitting and facing the counter.

The counter with stools is facing 
the front, as it is directly visible 
in the image and the stools are 
arranged for seating facing 
towards the camera.

Input Answer

Back

Front

(a
) G

PT
-4

o
(b

) G
em
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 1
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Figure 6. Example of real-world 3D pose reasoning tasks L4-
Pose-Real. Here we shows the reasoning and answers provided
by LLMs where GPT-4o is correct and Gemini-Pro 1.5 is wrong.
But the reasoning process reveals these two LLMs are both rea-
soning 3D orientation from the command sense or 2D visibility.

As shown in Tab. 5, Gemini Pro 1.5 achieves the high-
est accuracy (40.50%) in L4-Pose-Real, and the gap be-
tween the three API-based models and the open-source

model Qwen2-VL-7B-Instruct (26.50%) is larger. How-
ever, all these models perform significantly lower than
humans, which have accuracy 92.64%. We further ana-
lyze the bias of predictions in this real-world question set.
Among the models, Claude3-5V Sonnet exhibits the lowest
CV (0.374), indicating relatively stable predictions, while
Qwen2-VL-7B-Instruct has the highest CV (0.934). The
distribution of ground truth and predicted pose and the con-
fusion matrix are shown in Fig. 7.

Models Accuracy (%) ↑ CV ↓

GPT-4o [29] 38.75 0.690
GeminiPro1-5 [37] 40.50 0.762
Claude3-5V Sonnet [3] 38.75 0.374
Qwen2-VL-7B-Instruct [39] 26.50 0.934

Human 92.64 0.197

Table 5. Accuracy and Coefficient of Variation (CV) for L4-Pose-
Real task: Comparison of accuracy and CV for GPT-4o, Gemi-
niPro1.5, Claude3-5V, and Qwen2-VL-7B-Instruct on real-world
3D pose tasks. Human performance is included as a reference.
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Figure 7. Distribution of 3D poses for in L4-Pose-Real task.

6. Conclusion
In this work, we introduce Spatial457, a scalable and un-
biased benchmark designed to comprehensively assess 6D
spatial reasoning capabilities in LMMs. Spatial457 extends
traditional 2D and 3D VQA benchmarks by incorporating
complex 6D spatial reasoning tasks, structured across five
levels of difficulty. Through evaluations, we observe that
current LMMs demonstrate strong performance in basic ob-
ject recognition and 2D spatial relationships, but struggle
significantly with 3D spatial understanding and collision
prediction tasks. Additionally, our analysis of prediction
biases uncovers attribute-specific inconsistencies that could
affect model reliability in real-world applications. Limita-
tions. To real images settings, current evaluation limites
to L3 pose questions. We are actively working on building
the additional required annotations for these real images to
expand the domain of the proposed benchmark.
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Spatial457: A Diagnostic Benchmark for 6D Spatial Reasoning
of Large Multimodal Models

Supplementary Material

A. New programs for 6D spatial reasoning

As introduced in Sec. 3.3, we create two types of new ques-
tions: 6D spatial reasoning and collision prediction.

The 6D spatial reasoning questions introduce the new
program 3D Relate , an extension of Relate from
Johnson et al. [19]. It takes two arguments: a direction
(left, right, front, or behind) and an object ID
specifying the target. Unlike Relate , which operates in
a 2D plane from the camera’s view, 3D Relate works
in 3D space from the object’s perspective, as described in
Sec. 3.3.

For collision prediction, we introduce the new pro-
gram Relate Collision . This operation expands on
the spatial reasoning of 3D Relate by incorporating
motion-based inference. It assesses whether the movement
of a target object, specified with directions like forward
or backward, will result in a collision with other objects in
the scene. This program enables models to predict interac-
tions and anticipate future states based on both 3D location
and orientation, pushing the boundaries of spatial reasoning
to include dynamic scenarios.

B. Examples of Benchmarks

In this section, we present additional examples from the
Spatial457 benchmark. Each example consists of an im-
age accompanied by seven questions spanning five levels of
difficulty, as shown in Fig. 8.

C. Prompts for LLM

In this section, we present the detailed prompts designed for
evaluating the Large Language Models (LLMs) on the Spa-
tial457 benchmark. Each level targets a specific skill set,
ranging from identifying single objects to reasoning about
spatial relationships and occlusions in 3D space.

The prompts are structured with clear instructions, en-
couraging the model to first describe the scene comprehen-
sively before formulating the answer. This approach en-
sures that the reasoning process is explicit and easy for in-
terpretable. The output format is standardized as a JSON
object, enabling straightforward evaluation and comparison
against expected results. Figures 9–15 provide detailed ex-
amples of the prompts used at each level:

L1-Single object: 
Q: What is the shape of the small 
brown thing? A: Sedan 

L2-Multiple object 
Q: How many things are either 
large blue double buses or tiny road 
bikes? A: 1 

L3-2D spatial: 
Q: Are there fewer bicycles right 
of the purple jet than tiny gray 
utility bikes? A: No 

L4-3D Pose
Q: What is the color of the car which faces 
to the right? A: Purple 

L5-6D spatial
Q: Is the number of small purple aeroplanes in 
front of the tiny aeroplane greater than the 
number of tiny cars behind the road bike?
A: No 

L5-Collision:
Q: There is a bus will be 
collided by the small wagon if it 
moving forward; what size is it? 
A: Small 

L4-Occlusion
Q: What is the color of the 
object that is occluded by the 
jet? A: Brown 

L1-Single object: 
Q: What is the color of the articulated 
bus ? A: Red 

L2-Multiple object 
Q: The other big object that is the 
same color as the articulated bus is 
what shape? A: SUV 
L3-2D spatial: 
Q: How many things are either 
objects that are behind the cruiser 
or big cars that are to the left of 
the green object? A: 6

L4-3D Pose
Q: Which direction the SUV is facing? 
A: Left
L5-6D spatial
Q: How many things are either large red buses 
on the right side of the cruiser or aeroplanes on 
the right side of the large double bus? 
A: 2 

L5-Collision:
Q: What is the shape of the small 
thing that the red bus will collide 
with if it moves backward? 
A: Fighter

L4-Occlusion
Q: What is the size of the red 
object that is occluded? A: Large 

L1-Single object: 
Q: What is the color of the jet? 
A: Purple 

L2-Multiple object 
Q: What number of purple objects 
are big jets or small trucks? A: 1

L3-2D spatial: 
Q: Does the big blue thing that is 
to the left of the purple aeroplane 
have the same shape as the tiny 
thing? A: No 

L4-3D Pose
Q: What is the size of the gray object that 
faces the vertical direction as the gray 
motorbike? A: Large 
L5-6D spatial
Q: Does the large aeroplane to the right side of 
the blue motorbike have the same color as the 
big aeroplane that is on the left side of the big 
gray articulated bus? A: No

L5-Collision:
Q: What is the color of the object 
the scooter will collide with if it 
moves backward? A: Blue

L4-Occlusion
Q: What is the shape of the thing 
that is occluded by the scooter? 
A: Jet 

Figure 8. Examples from the Spatial457 Benchmark. Each ex-
ample includes an image and seven questions that test the model
across five difficulty levels.



Prompts for Level 1 - Single Object questions

System:
You are an intelligent chatbot designed to answer questions based on an image. Your task is to analyze the images,
identify attributes of the objects and then determine the answer to the question.

INSTRUCTIONS:
Step 1: Identify the objects mentioned in the question, noting each object’s shape, color, size and their locations.
Objects can have a shape (e.g., ’airliner’), size (’small’ or ’large’), color (e.g., ’blue’). The possible colors are: gray,
blue, purple, brown, green, cyan, red, and yellow.
Step 2: Use the identified details to form a brief reasoning process for answering the question. Based on this reasoning,
provide your answer in one of the following formats: (1) a phrase chosen from the available options: Small, Large,
Airliner, Dirtbike, Road bike, Tandem bike, Suv, Wagon, Scooter, Mountain bike, Minivan, Sedan, School bus, Fighter,
Chopper, Double bus, Truck, Articulated bus, Cruiser, Jet, Utility bike, Regular bus, Biplane, Gray, Blue, Purple,
Brown, Green, Cyan, Red, Yellow, Left, Right, Front, Back, (2) an integer between 0-10 for questions like ’How
many’ or ’What is the number of,’ or (3) ’Yes’ or ’No’ for questions asking ’Is there.’
Output your response using this JSON format: { ’Reasoning’: ’<reasoning>’, ’Answer’: ’<answer>’}

User:
What is the shape of the big yellow thing?

GPT-4o:
{’Reasoning’: ’The image contains a green utility bike with a red seat, a small white biplane, a large yellow sedan,
and two purple tandem bikes. The large yellow object is a sedan.’, ’Answer’: ’Sedan’}

Figure 9. The prompts used for L1- Single object questions. In the instruction, we encourage the model to first describe all the objects
in the scenes and the reasoning process of answer the question. We format the reply into a dictionary format, where the answer can be
decoded and compared with the ground truth answer.

D. Extension to Real Image Setting
As described in Sec. 5, we extend the L4-Pose questions to
the real-world image dataset SUN-RGBD [36]. The scene
structure from SUN-RGBD [36] provides object categories
and 3D bounding boxes. We calculate the rotation of bound-
ing boxes along the z-axis as ground truth orientations and
construct questions using the object category and orienta-
tion, naming the set L4-Pose-Real. The question generation
template remains the same as that of the original L4-Pose
questions.

To reduce ambiguity in object localization, we add a red
bounding box around target objects in the images and refer-
ence them in the questions to ensure clarity in object iden-
tification within the scene. For example: ”Which direction
are the chairs in the red bounding box facing?”



Prompts for Level 2 - Multiple Objects questions

System:
You are an intelligent chatbot designed to answer questions based on an image. Your task is to analyze the images,
identify attributes of multiple objects and then determine the answer to the question.

INSTRUCTIONS:
Step 1: Identify the objects mentioned in the question, noting each object’s shape, color, size and their locations.
Objects can have a shape (e.g., ’airliner’), size (’small’ or ’large’), color (e.g., ’blue’). The possible colors are: gray,
blue, purple, brown, green, cyan, red, and yellow.
Step 2: Use the identified details to form a brief reasoning process for answering the question. Based on this reasoning,
provide your answer in one of the following formats: (1) a phrase chosen from the available options: Small, Large,
Airliner, Dirtbike, Road bike, Tandem bike, Suv, Wagon, Scooter, Mountain bike, Minivan, Sedan, School bus, Fighter,
Chopper, Double bus, Truck, Articulated bus, Cruiser, Jet, Utility bike, Regular bus, Biplane, Gray, Blue, Purple,
Brown, Green, Cyan, Red, Yellow, Left, Right, Front, Back, (2) an integer between 0-10 for questions like ’How
many’ or ’What is the number of,’ or (3) ’Yes’ or ’No’ for questions asking ’Is there.’
Output your response using this JSON format: ’Reasoning’: ’<reasoning>’, ’Answer’: ’<answer>’, ’Related
Objects’: [’shape’: ’<shape>’, ’size’: ’<size>’, ’color’: ’<color>’, ...]

User:
Is there any other thing that is the same color as the small utility bike?

GPT-4o:
{’Reasoning’: ’The objects in the image are: a small gray SUV, a small gray sedan, a small gray school bus, a small
red utility bike, a small red tandem bike, a small red road bike, a small red mountain bike, a small red fighter jet, and a
small purple biplane. The small utility bike is red. There are other objects that are also red: the tandem bike, the road
bike, the mountain bike, and the fighter jet.’, ’Answer’: ’Yes’}

Figure 10. The prompts used for L2- Multiple object questions. In the instruction, we encourage the model to first describe all the
objects in the scenes and the reasoning process of answer the question. We format the reply into a dictionary format, where the answer can
be decoded and compared with the ground truth answer.



Prompts for Level 3 - 2D Spatial questions

System:
You are an intelligent chatbot designed to answer questions based on an image. Your task is to analyze the images,
identify attributes of multiple objects and their spatial relationship from 2D projected camera view, and then
determine the answer to the question.

INSTRUCTIONS:
Step 1: Identify the objects mentioned in the question, noting each object’s shape, color, size and their locations.
Objects can have a shape (e.g., ’airliner’), size (’small’ or ’large’), color (e.g., ’blue’). The possible colors are: gray,
blue, purple, brown, green, cyan, red, and yellow.
Step 2: Use the identified details to form a brief reasoning process for answering the question. Based on this reasoning,
provide your answer in one of the following formats: (1) a phrase chosen from the available options: Small, Large,
Airliner, Dirtbike, Road bike, Tandem bike, Suv, Wagon, Scooter, Mountain bike, Minivan, Sedan, School bus, Fighter,
Chopper, Double bus, Truck, Articulated bus, Cruiser, Jet, Utility bike, Regular bus, Biplane, Gray, Blue, Purple,
Brown, Green, Cyan, Red, Yellow, Left, Right, Front, Back, (2) an integer between 0-10 for questions like ’How
many’ or ’What is the number of,’ or (3) ’Yes’ or ’No’ for questions asking ’Is there.’
Output your response using this JSON format: ’Reasoning’: ’<reasoning>’, ’Answer’: ’<answer>’, ’Related
Objects’: [’shape’: ’<shape>’, ’size’: ’<size>’, ’color’: ’<color>’, ...]

User:
Is there a gray mountain bike that is to the left of the gray thing that is behind the tiny chopper?

GPT-4o:
{’Reasoning’: ’In the image, there are several objects including a gray car, a red car, a white bus, a purple airplane,
and several bicycles. The gray car is located towards the left side of the image. To the right of the gray car, there is a
red car. There are no brown bicycles to the right of the red car.’, ’Answer’: ’No’}

Figure 11. The prompts used for L3- 2D Spatial questions. In the instruction, we encourage the model to first describe all the objects
in the scenes and the reasoning process of answer the question. We format the reply into a dictionary format, where the answer can be
decoded and compared with the ground truth answer.



Prompts for Level 4 - Occlusion questions

System:
You are an intelligent chatbot designed to answer questions based on an image. Your task is to analyze the images,
identify attributes of multiple objects and their occlusions relationships, and then determine the answer to the
question.

INSTRUCTIONS:
Step 1: Identify the objects mentioned in the question, noting each object’s shape, color, size and their locations.
Objects can have a shape (e.g., ’airliner’), size (’small’ or ’large’), color (e.g., ’blue’). The possible colors are: gray,
blue, purple, brown, green, cyan, red, and yellow.
Step 2: Use the identified details to form a brief reasoning process for answering the question. Based on this reasoning,
provide your answer in one of the following formats: (1) a phrase chosen from the available options: Small, Large,
Airliner, Dirtbike, Road bike, Tandem bike, Suv, Wagon, Scooter, Mountain bike, Minivan, Sedan, School bus, Fighter,
Chopper, Double bus, Truck, Articulated bus, Cruiser, Jet, Utility bike, Regular bus, Biplane, Gray, Blue, Purple,
Brown, Green, Cyan, Red, Yellow, Left, Right, Front, Back, (2) an integer between 0-10 for questions like ’How
many’ or ’What is the number of,’ or (3) ’Yes’ or ’No’ for questions asking ’Is there.’
Output your response using this JSON format: ’Reasoning’: ’<reasoning>’, ’Answer’: ’<answer>’, ’Related
Objects’: [’shape’: ’<shape>’, ’size’: ’<size>’, ’color’: ’<color>’, ...]

User:
What is the size of the object that is occluded by the truck?

GPT-4o:
{’Reasoning’: ’The image contains several objects: a gray sedan, a white school bus, a red tandem bike, a red road
bike, a red mountain bike, a purple jet, a gray wagon, and a red cruiser. The truck is occluding a small red road bike.’,
’Answer’: ’Small’}

Figure 12. The prompts used for L4- Occlusion questions. In the instruction, we encourage the model to first describe all the objects
in the scenes and the reasoning process of answer the question. We format the reply into a dictionary format, where the answer can be
decoded and compared with the ground truth answer.



Prompts for Level 4 - 3D Pose questions

System:
You are an intelligent chatbot designed to answer questions based on an image. Your task is to analyze the images,
identify attributes of multiple objects and their facing direction in 3D space from the camera view, and then
determine the answer to the question.

INSTRUCTIONS:
Step 1: Identify the objects mentioned in the question, noting each object’s shape, color, size, and direction which
facing at. Objects can have a shape (e.g., ’airliner’), size (’small’ or ’large’), color (e.g., ’blue’), and direction (’left’,
’right’, ’front’, ’back’) in camera view. The possible colors are: gray, blue, purple, brown, green, cyan, red, and
yellow.
Step 2: Use the identified details to form a brief reasoning process for answering the question. Based on this reasoning,
provide your answer in one of the following formats: (1) a phrase chosen from the available options: Small, Large,
Airliner, Dirtbike, Road bike, Tandem bike, Suv, Wagon, Scooter, Mountain bike, Minivan, Sedan, School bus, Fighter,
Chopper, Double bus, Truck, Articulated bus, Cruiser, Jet, Utility bike, Regular bus, Biplane, Gray, Blue, Purple,
Brown, Green, Cyan, Red, Yellow, Left, Right, Front, Back, (2) an integer between 0-10 for questions like ’How
many’ or ’What is the number of,’ or (3) ’Yes’ or ’No’ for questions asking ’Is there.’
Output your response using this JSON format: ’Reasoning’: ’<reasoning>’, ’Answer’: ’<answer>’, ’Related
Objects’: [’shape’: ’<shape>’, ’size’: ’<size>’, ’color’: ’<color>’, ’direction’: ’<direction>’, ...]

User:
Which direction the suv is facing?

GPT-4o:
’Reasoning’: ’The image contains several objects: a small gray SUV, a small gray wagon, a small white school bus, a
small red sedan, a small purple jet, a small red tandem bike, a small red road bike, a small red mountain bike, and a
small red utility bike. The SUV is positioned towards the left side of the image.’, ’Answer’: ’Left’

Figure 13. The prompts used for Level 4 - 3D Pose questions. In the instruction, we encourage the model to first describe all the objects
in the scenes and the reasoning process of answer the question. We format the reply into a dictionary format, where the answer can be
decoded and compared with the ground truth answer.



Prompts for Level 5 - Collision questions

System:
You are an intelligent chatbot designed to answer questions based on an image. Your task is to analyze the images,
identify attributes of multiple objects and their potential collision given the assumption of moving direction in
3D space, and then determine the answer to the question.

INSTRUCTIONS:
Step 1: Identify the objects mentioned in the question, noting each object’s shape, color, size, and direction which
facing at. Objects can have a shape (e.g., ’airliner’), size (’small’ or ’large’), color (e.g., ’blue’), and direction (’left’,
’right’, ’front’, ’back’) in camera view. The possible colors are: gray, blue, purple, brown, green, cyan, red, and
yellow.
Step 2: Use the identified details to form a brief reasoning process for answering the question. Based on this reasoning,
provide your answer in one of the following formats: (1) a phrase chosen from the available options: Small, Large,
Airliner, Dirtbike, Road bike, Tandem bike, Suv, Wagon, Scooter, Mountain bike, Minivan, Sedan, School bus, Fighter,
Chopper, Double bus, Truck, Articulated bus, Cruiser, Jet, Utility bike, Regular bus, Biplane, Gray, Blue, Purple,
Brown, Green, Cyan, Red, Yellow, Left, Right, Front, Back, (2) an integer between 0-10 for questions like ’How
many’ or ’What is the number of,’ or (3) ’Yes’ or ’No’ for questions asking ’Is there.’
Output your response using this JSON format: ’Reasoning’: ’<reasoning>’, ’Answer’: ’<answer>’, ’Related
Objects’: [’shape’: ’<shape>’, ’size’: ’<size>’, ’color’: ’<color>’, ’direction’: ’<direction>’, ...]

User:
There is a small bicycle that is behind the aeroplane; how many tiny purple fighters are on the right side of it?

GPT-4o:
{’Reasoning’: ’In the image, there is a small bicycle behind the airplane. There is one small purple fighter on the right
side of the small bicycle.’, ’Answer’: ’1’}

Figure 14. The prompts used for Level 5 - Collision questions. In the instruction, we encourage the model to first describe all the objects
in the scenes and the reasoning process of answer the question. We format the reply into a dictionary format, where the answer can be
decoded and compared with the ground truth answer.



Prompts for Level 5 - 6D Spatial questions

System:
You are an intelligent chatbot designed to answer questions based on an image. Your task is to analyze the images,
identify attributes of multiple objects and their spatial relationship from objects’ perspective in 3D space, and
then determine the answer to the question.

INSTRUCTIONS:
Step 1: Identify the objects mentioned in the question, noting each object’s shape, color, size, and direction which
facing at. Objects can have a shape (e.g., ’airliner’), size (’small’ or ’large’), color (e.g., ’blue’), and direction (’left’,
’right’, ’front’, ’back’) in camera view. The possible colors are: gray, blue, purple, brown, green, cyan, red, and
yellow.
Step 2: Use the identified details to form a brief reasoning process for answering the question. Based on this reasoning,
provide your answer in one of the following formats: (1) a phrase chosen from the available options: Small, Large,
Airliner, Dirtbike, Road bike, Tandem bike, Suv, Wagon, Scooter, Mountain bike, Minivan, Sedan, School bus, Fighter,
Chopper, Double bus, Truck, Articulated bus, Cruiser, Jet, Utility bike, Regular bus, Biplane, Gray, Blue, Purple,
Brown, Green, Cyan, Red, Yellow, Left, Right, Front, Back, (2) an integer between 0-10 for questions like ’How
many’ or ’What is the number of,’ or (3) ’Yes’ or ’No’ for questions asking ’Is there.’
Output your response using this JSON format: ’Reasoning’: ’<reasoning>’, ’Answer’: ’<answer>’, ’Related
Objects’: [’shape’: ’<shape>’, ’size’: ’<size>’, ’color’: ’<color>’, ’direction’: ’<direction>’, ...]

User:
There is a aeroplane; how many tiny brown bicycles will it collide if it moving forward?

GPT-4o:
{’Reasoning’: ’The image contains a small purple jet, a small gray sedan, a small gray wagon, a small white school
bus, a small red tandem bike, a small red road bike, a small brown road bike, a small brown mountain bike, and a
small red sedan. The small purple jet is positioned at the back of the image. If it moves forward, it will collide with
the small brown road bike and the small brown mountain bike.’, ’Answer’: ’2’}

Figure 15. The prompts used for Level 5 - 6D Spatial questions. In the instruction, we encourage the model to first describe all the
objects in the scenes and the reasoning process of answer the question. We format the reply into a dictionary format, where the answer can
be decoded and compared with the ground truth answer.
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