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Exploiting Structural Consistency of Chest
Anatomy for Unsupervised Anomaly Detection

in Radiography Images
Tiange Xiang*, Yixiao Zhang*, Yongyi Lu, Alan Yuille, Senior Member, IEEE, Chaoyi Zhang,

Weidong Cai, Member, IEEE, Zongwei Zhou, Member, IEEE

Abstract—Radiography imaging protocols focus on particular body regions, therefore producing images of great similarity and yielding
recurrent anatomical structures across patients. Exploiting this structured information could potentially ease the detection of anomalies
from radiography images. To this end, we propose a Simple Space-Aware Memory Matrix for In-painting and Detecting anomalies from
radiography images (abbreviated as SimSID). We formulate anomaly detection as an image reconstruction task, consisting of a
space-aware memory matrix and an in-painting block in the feature space. During the training, SimSID can taxonomize the ingrained
anatomical structures into recurrent visual patterns, and in the inference, it can identify anomalies (unseen/modified visual patterns)
from the test image. Our SimSID surpasses the state of the arts in unsupervised anomaly detection by +8.0%, +5.0%, and +9.9% AUC
scores on ZhangLab, COVIDx, and CheXpert benchmark datasets, respectively. Code: https://github.com/MrGiovanni/SimSID

Index Terms—Unsupervised Anomaly Detection, Radiography Image Analysis, Image In-Painting.

✦

1 INTRODUCTION

Vision tasks in photographic and radiographic images differ
significantly. In photographic object identification, the ob-
ject’s location within the image is typically less important—
a cat remains a cat regardless of its position within the
image. Conversely, in radiography, the relative location
and orientation of anatomical structures are crucial for
both identifying normal anatomy and recognizing patholo-
gies [1]–[5]. Due to standardized imaging protocols in ra-
diography, images exhibit a high degree of similarity across
patients, equipment manufacturers, and institutions (see
examples in Figure 1). Consistent and recurrent anatomy
can facilitate the analysis of numerous critical problems
and should be considered a significant advantage of radio-
graphy imaging. For example, several investigations have
demonstrated the value of harnessing this prior knowledge
to enhance Deep Nets’ performance, such as adding location
features, modifying objective functions, and constraining
coordinates relative to landmarks in images [6]–[12]. This
paper focuses on unsupervised anomaly detection, seeking
to answer the critical question: Can we exploit consistent
anatomical patterns and their spatial information to strengthen
Deep Nets in detecting anomalies from radiography images with-
out manual annotation?

Unsupervised anomaly detection only uses healthy im-
ages for model training and requires no other annotations
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Fig. 1. Anomaly detection in radiography images can be both easier
and harder than photographic images. It is easier because radiography
images are spatially structured due to consistent imaging protocols. It
is harder because anomalies are subtle and require medical expertise
to annotate. We contribute a novel anomaly detection method (SimSID)
that directly exploits the structured information in radiography images.

such as disease diagnosis or localization [13]. As many as
80% of clinical errors occur when the radiologist misses the
abnormality in the first place [14]. The clinical impact of
anomaly detection is to reduce that 80% by clearly pointing
out to radiologists that there exists a suspicious lesion and
then having them look at the scan in depth. We formulate
the task of anomaly detection as an in-painting task to
exploit the anatomical consistency in appearance, position,
and layout in the chest region. Specifically, we propose a
Simple Space-Aware Memory Matrix for In-painting and
Detecting anomalies from radiography images (abbreviated
as SimSID). In the training phase, our model can dynamically
maintain a visual pattern dictionary by taxonomizing the
recurrent anatomical structure based on its spatial locations.
Due to the consistency in anatomy, the same body region
across normal images is expected to express similar visual

https://github.com/MrGiovanni/SimSID
mailto:zzhou82@jh.edu
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patterns, which makes the total number of unique patterns
manageable. In the inference, since anomaly patterns are not
present in the learned dictionary, the reconstructed image is
expected to be unrealistic. As a result, the model can identify
the anomaly by assessing the quality of the in-painting task.
The success of anomaly detection has two basic assump-
tions [15]: first, anomalies only occur very rarely in the
training data (or a small proportion in an image); second,
anomalies differ from the normal patterns significantly. Con-
sequently, the learned dictionary will reflect the general dis-
tribution of anatomical patterns in normal human anatomy.
Notably, our SimSID is robust to a level of abnormal im-
ages in the training set by automatically omitting minority
anatomical patterns (evidenced in Figure 9). This should be
considered a significant advantage because it can largely
relax the requirement of disease-free images for training
existing unsupervised anomaly detection methods [13].

We have conducted extensive experiments on three large-
scale radiography imaging datasets. Our SimSID is signif-
icantly superior to 21 predominant methods in unsuper-
vised anomaly detection by at least 8.0% on the ZhangLab
dataset, yielding an AUC of 91.1%; 5.0% AUC gain on the
COVIDx dataset, with an AUC of 83.5%; additionally, we
have demonstrated a 9.9% improvement over the state of
the arts on the Stanford CheXpert dataset, with an AUC of
79.7%. The quantitative results and qualitative visualization
show the superiority of SimSID over the state of the arts.

2 RELATED WORK

2.1 Anomaly Detection in Natural Imaging

Anomaly detection is the task of identifying rare events that
deviate from the distribution of normal data [16]. Early at-
tempts include one-class SVM [17], dictionary learning [18],
and sparse coding [19]. Due to the lack of sufficient sam-
ples of anomalies, later works typically formulate anomaly
detection as an unsupervised learning problem [20]–[29].
These can be roughly categorized into reconstruction-based
and density-based methods. Reconstruction-based methods
train a model (e.g., Auto-Encoder) to recover the original
inputs [30]–[35]. The anomalies are identified by subtracting
the reconstructed image from the input image. Density-
based methods predict anomalies by estimating the normal
data distribution (e.g., via VAEs [36] or GANs [37], [38]).
However, their learned distribution for normal images can-
not explain possible abnormalities. In this paper, we address
these limitations by maintaining a visual pattern dictionary
which is extracted from homogeneous medical images.

Several other previous works investigated the use of
image in-painting for anomaly detection, i.e., parts of the
input image are masked out and the model is trained to
recover the missing parts in a self-supervised way [39]–
[43]. There are also plenty of works on detecting anomalies
in video sequences [44]–[47]. Recently, Bergmann et al. [48]
and Salehi et al. [49] proposed student-teacher networks
similar to ours, whereas our method utilizes such a struc-
ture to distillate input-aware features only, and the teacher
network is completely disabled during inference.

2.2 Anomaly Detection in Medical Imaging

Anomaly detection in the medical domain is usually ap-
proached at per pathology-basis [50]–[54]. There are super-
vised anomaly detection methods to identify specific types
of abnormalities, such as vascular lesions [55], malignant
melanoma [56], brain tumors [57], [58], and pulmonary
nodules/embolism [59], [60]. Recent unsupervised anomaly
detection methods have been proposed to detect anoma-
lies in general [13], [61]–[64]. With the help of GANs,
anomaly detection can be achieved with weak annotation. In
AnoGAN [65], the discriminator was heavily over-fitted to
the normal image distribution to detect the anomaly. Subse-
quently, f-AnoGAN [38] was proposed to improve compu-
tational efficiency. Naval et al. [66] designed an autoencoder
network to fit the distribution of normal images. The spatial
coordinates and anomaly probabilities are mapped over a
proxy for different tissue types. Han et al. [67] proposed
a two-step GAN-based framework for detecting anomalies
in MRI slices as well. However, their method relies on a
voxel-wise representation for the 3D MRI sequences, which
is impossible in our task. Most recently, a hybrid framework
SALAD [68] was proposed that combines GAN with self-
supervised techniques. Normal images are first augmented
to carry the forged anomaly through pixel corruption and
pixel shuffling. The fake abnormal images, along with the
original normal ones, are fed to the GAN for learning more
robust feature representations. However, these approaches
demand strong prior knowledge and assumptions about the
anomaly type to make the augmentation effective.

Incorporating memory modules into neural networks
has been demonstrated to be effective for many tasks [69]–
[73]. Adopting a Memory Matrix for unsupervised anomaly
detection was first proposed in MemAE [74]. In addition to
auto-encoding (AE), Gong et al. injected an extra Memory
Matrix between the encoder and the decoder to capture nor-
mal feature patterns during training. The matrix is jointly
optimized along with the AE and hence learns an essential
basis to be able to assemble normal patterns. Based on this
paradigm, Park et al. [75] introduced a non-learnable mem-
ory module that can be updated with inputs. Considering
the extra memory usage in existing methods, Lv et al. [76]
proposed a dynamic prototype unit that encodes normal dy-
namics on the fly, while consuming little additional memory.

With the recent progress in diffusion models [77]–[80],
it is also feasible to achieve anomaly detection by gener-
ating normal image samples. One of the earliest attempts
that followed this paradigm for medical anomaly detection
was proposed by Wolleb et al. [81]. SynDiff [82], as one of
the following-up methods, extended the generation quality
further by incorporating adversarial projections during the
inverse diffusion process.

Differing from photographic images, radiography imag-
ing protocols produce images with consistent anatomical
patterns, and meanwhile, the anomalies in radiography
images can be subtle in appearance and hard to interpret
(Figure 1). Unlike most existing works, we present a novel
method that explicitly harnesses the radiography images’
properties, therefore dramatically improving the perfor-
mance in anomaly detection from radiography images.
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Fig. 2. SimSID overview. We divide an input image into N×N non-overlapping patches and feed them into the encoder for feature extraction. Two
generators will be trained to reconstruct the original image. Along with the reconstruction, a dictionary of anatomical patterns will be created and
updated dynamically via a novel space-aware memory matrix (§3.2); The teacher generator directly uses the features extracted by the encoder; the
student generator uses the features augmented by a new feature in-painting block (§3.3). The teacher and student generators are coupled through
a knowledge distillation paradigm. We employ a discriminator to assess whether the image reconstructed by the student generator is real or fake.
Once trained, the discriminator can be used to detect anomalies in test images (§3.4).

2.3 Our Previous Work
We first presented Space-aware Memory Queues for In-
painting and Detecting anomalies from radiography images
(SQUID) published in CVPR-2023 [83]. This paper is a
significant extension with the following four improvements.

1) We have introduced new notations, formulas, and
diagrams, as well as detailed methodology descrip-
tions along with their learning objectives, for a
succinct framework overview.

2) We have significantly simplified the framework by
removing the Memory Queue and masked shortcut
while achieving higher performance and easing the
training than SQUID [83].

3) We have examined SimSID with 21 existing unsu-
pervised (and also one weakly-supervised) anomaly
detection methods on three radiography imaging
tasks, showing that SimSID surpasses all these
methods by a large margin, as well as SQUID [83].

4) We have investigated the robustness of our SimSID
to the normal/abnormal ratio in the training set,
relaxing the requirement of the disease-free training
set of existing anomaly detection approaches.

3 SIMSID
3.1 Overview
Feature extraction: We divide the input image into N × N
non-overlapping patches, then use a CNN encoder to extract
features for each patch. The extracted features will be used
for image reconstruction. Practically, the encoder can be any
backbone architectures, and for simplicity, we adopt basic
Convolutions and Pooling layers in the experiments.

Feature in-painting: A dictionary of normal anatomical
patterns will be created and updated dynamically through a
Memory Matrix (§3.2). The extracted patch features will be
substituted by the most close items in the matrix. Then, the

substituted features of each image patch would be masked
out, a transformer block (§3.3) is used to predict the masked
feature based on the surrounding patch features.

Image reconstruction: We introduce teacher and student
generators to reconstruct the original image. Specifically,
the teacher generator reconstructs the image using the fea-
tures extracted by the encoder directly (essentially an auto-
encoder [84]). The student generator, on the other hand,
reconstructs the image using the features augmented by our
in-painting block. The teacher and student generators are
coupled through knowledge distillation [85] at all the up-
sampling levels. The objective of the student generator is to
reconstruct a normal image from the augmented features;
the reconstructed image will then be used for anomaly
discrimination (§3.4); while the teacher generator1 serves as
a regularizer to prevent the student generator from collaps-
ing2 (constantly generating the same normal image).

Anomaly discrimination: Following the adversarial learn-
ing [38], [65], we employ a discriminator to assess whether
the generated image is real or fake. Both teacher and stu-
dent generators will receive the gradient derived from the
discriminator. The two generators and the discriminator are
competing against each other in a way that, together, they
converge to an equilibrium. Once trained, the discriminator
can be used to detect anomalies in test images (§3.4).

3.2 Developing Space-aware and Hierarchical Memory

Motivation: The Memory Matrix was initially introduced by
Gong et al. [74] and has since been widely adopted in unsu-
pervised anomaly detection [46], [87]–[90]. To forge a “nor-
mal” appearance, the features are augmented by weighted

1. We disabled the backpropagation between the teacher generator
and encoder by stop-gradient [86] and showed its benefit in Table 2.

2. Alternative strategies to avoid collapse include early stopping,
elastic regularization, or Gaussian prior [7], [39].
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Fig. 3. Space-aware memory. For unique encoding of location informa-
tion, we restrict each patch to be only able to access a set of specific
tokens in the memory.

averaging the similar patterns in Memory Matrix. This
augmentation is, however, applied to the features extracted
from the whole image, discarding the location and spa-
tial information embedded in images. Therefore, Memory
Matrix in its current form cannot perceive the anatomical
consistency that radiography images can offer.

Space-aware memory: To harness the spatial information,
we pass the divided patches into the model rather than
the entire image. These patches are associated with unique
location information of the original image. We seek to
build the relationship between the patch location and mem-
ory region. The memory matrix M is divided into blocks
{Mi,j ∈ RN×C}, each associated with a patch at location
(i, j), where N and C denote the number and the dimension
of items, respectively. Let zi,j ∈ RC denote the feature of
patch (i, j), we obtain the augmented feature ẑ as follows:

ẑi,j =
N∑

k=1

G(sk)Mk
i,j , (1)

where sk is the similarity score computed by dot product
between the patch feature zi,j and the k-th memory item
Mk

i,j . G(·) is the Gumbel-softmax operation, which shrinks
the number of activated memory items3. With the division
of image patches together with memory blocks, a patch
derived from a particular location can only search for similar
items within a specific block in the Memory Matrix (illus-
trated in Figure 3). We refer to this new searching strategy
as “space-aware memory”. This strategy can also accelerate
the searching speed compared with [74] as it no longer has
to go through the entire Memory Matrix to assemble similar
features. Results in Table 2 highlight the significance of
space-aware memory (AUC improved from 77.6% to 91.1%).

Hierarchical memory: The use of one memory matrix at the
deepest layer in the encoder is insufficient to reconstruct
high-quality image with details. To capture anatomical pat-
terns at different scales, we placed a space-aware memory
matrix at several levels of the generator to create a hierarchy
of scales. Studies in [74] discovered that too many memories
can lead to excessive information filtering and degrade the
model’s capacity to retain the most representative normal
patterns instead of all needed ones. This problem is solved

3. Controlling the number of activated memory items has proven to
be advantageous for anomaly detection [91]. However, setting a hard
shrinkage threshold as in [74] fails to adapt to cases where abnormal
signals are sufficient to reconstruct a normal image. Inspired by [92],
we present a Gumbel Shrinkage schema: only activating the top-k most
similar memory items during the forward pass and distributing the
gradient to all patterns during back-propagation. Gumbel Shrinkage
improves AUC from 86.2% to 91.1% (see Table 2).
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Fig. 4. SimSID architecture. Our SimSID consists of an encoder, a
student generator, a teacher generator, and a discriminator. All of the
network architectures are built with plain convolution, batch normal-
ization, and ReLU activation layers. Given an input image, we first
divide it into non-overlapping patches. The encoder then extracts the
patch features. The student and teacher generators were constructed
identically. The only difference is that additional Memory Matrices are
placed in the student generator. The discriminator was constructed in a
more lightweight style. Note that the images are discriminated at their
full resolution rather than in patches.

by adding skip connections between the encoder and the
generator4. In each generator layer, the feature map is up-
sampled and concatenated with low-level features carried
by the skip connection, then filtered by the following space-
aware Memory Matrix. We empirically found that a total of
three Memory Matrices (one in the feature in-painting block
and two in the generator) are sufficient. This design is also
proved to be effective by [46] in flow-guided video anomaly
detection. Results in Table 2 highlight the significance of hi-
erarchical memory and skip connection, achieving an AUC
improvement of 8.2% and 11.6%.

3.3 In-painting Features by Learned Memory Matrix
Motivation: Image in-painting [93] was initially proposed
to recover corrupted regions in the image based on the
available neighboring context. The recovered regions, how-
ever, have been seen to associate with boundary artifacts,
distorted and blurry predictions, particularly when using
methods based on Deep Nets [41], [94]. These undesired
artifacts are responsible for numerous false positives when
formulating anomaly detection as an image in-painting
task [31], [33]. It is because the subtraction between input
and output will reveal artifacts generated by Deep Nets
instead of true anomalies. To alleviate this issue, we propose
the in-painting task at the feature level rather than the image
pixel level. Latent features are invariant to subtle noise,
rotation, and translation in the pixel level and therefore
are expected to be more suitable for anomaly detection.
The model predicts central features based on neighboring
features. This in-painting step is repeated for all of the patch
neighborhoods through sliding-window with stride of 1.
Similar to the sliding-window as in convolutions, the whole
process is fully parallelizable and computed efficiently.

In-painting block: We integrate our Memory Matrix with
a novel in-painting block to perform an in-painting task at

4. It is worth noting that the outermost skip connection should not
be added (shown in Figure 4). It is because a memory matrix must be
followed by skip connections; otherwise, the reconstruction might be
fulfilled by the highest-level encoding-decoding information, making
all other lower-level encoding, decoding and memory blocks not work.
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Fig. 5. Two-step workflow of the in-painting block. (a) Each non-
overlapping patch feature z is queried to an unique region in Memory
Matrix, the most similar items are assembled to ẑ. (b) Each center patch
feature z and its eight neighbors ẑ are used as query and key/value
respectively to a Transformer layer for in-painting. During training, the
Memory Matrix is updated through optimization via backpropagation.

the feature level. The w × h non-overlapping patch features
z{(1,1),··· ,(w,h)} are augmented to the most similar “normal”
patterns ẑ{(1,1),··· ,(w,h)} in Memory Matrix (Figure 5a). Since
ẑ is assembled by patterns from previously seen images,
it is not subject to the current input image. To recap char-
acteristics of the current image, naturally, we aggregate
both patch features z and augmented features ẑ using a
Transformer block [95]. For each patch zi,j , its spatially
adjacent eight “normal” patches ẑ{(i−1,j−1),··· ,(i+1,j+1)} are
used as conditions to refine zi,j (Figure 5b). The query
token is flattened z(i,j) ∈ R1×∗ and key/value tokens are
ẑ{(i−1,j−1),··· ,(i+1,j+1)} ∈ R8×∗. At the start and the end of
our in-painting block, we apply an extra pair of point-wise
convolutions (1 × 1 convolutional kernel) to reduce feature
dimensions and accelerate the training process.

3.4 Anomaly Discrimination
Our in-painting block focuses on augmenting any patch
feature (either normal or abnormal) into the normal feature
pattern. The student generator will then reconstruct a “nor-
mal” image based on the augmented features. The teacher
generator is used to preserve the normal image intact and
prevent the student generator from collapsing. Once trained,
the semantic (rather than pixel-level) difference between the
input and the reconstructed image is expected to be small
if normal; the semantic difference will be big if there are
anomalies. We therefore delegate the optimized discrimi-
nator network for alerting anomalies perceptually. Unlike
common approaches that use pixel-level comparisons to
alert anomaly [68], we are trying to utilize a discriminator to
assess the generation of ’normal samples’. This allows Sim-
SID to be more robust to pixel-level noise and variations. For
better clarification, we notate the encoder, teacher generator,
student generator, and discriminator as E, Gt, Gs, and D.
An anomaly score (A) can be computed through:

A = ϕ(
D(Gs(E(I)))− µ

σ
), (2)

where ϕ(·) is the Sigmoid function, µ and σ are the mean
and standard deviation of anomaly scores calculated on all
training samples.

3.5 Loss Function
Our SimSID is optimized by five loss functions. The mean
square error (MSE) between input and reconstructed images

is used for both teacher and student generators. Concretely,
for the teacher and student generators, we have:

Lt = ||I−Gt(E(I))||2, Ls = ||I−Gs(E(I))||2, (3)

where I denotes the input image. Following the knowledge
distillation paradigm, we apply a distance constraint be-
tween the teacher and student generators at all levels:

Ldist =
l∑

i=1

(zit − zis)
2, (4)

where l is the level of features used for knowledge distil-
lation, zt and zs are the intermediate features in the teacher
and student generators, respectively. In addition, we employ
an adversarial loss (similar to DCGAN [96]) to improve the
quality of the image generated by the student generator.
Specifically, the following equation is minimized:

Lgen = log(1−D(Gs(E(I)))). (5)

The discriminator seeks to maximize the probability for real
images and the inverted probability for fake images:

Ldis = log(D(I)) + log(1−D(Gs(E(I)))). (6)

In summary, our SimSID is trained to minimize the gen-
erative loss terms (λtLt +λsLs +λdistLdist +λgenLgen) and to
maximize the discriminative loss term (λdisLdis).

4 EXPERIMENTS

4.1 Public Chest Radiography Benchmarks

ZhangLab Chest X-ray [109]: This dataset contains healthy
and pneumonia images, officially split into training and test
sets. The training set consists of 1,349 normal and 3,883 ab-
normal images; the test set has 234 normal and 390 abnormal
images. We randomly separate 200 images (100 normal and
100 abnormal) from the training set as the validation set for
early-stopping. Since the images are of varying sizes, we
resized all the images to 128× 128. We used this dataset for
ablation studies as well.

Stanford CheXpert [110]: We conducted evaluations on
the front-view PA images in the CheXpert dataset, which
account for a total of 12 different anomalies. In all front-
view PA scans, there are 5,249 normal and 23,671 abnormal
images for training; 250 normal and 250 abnormal images
(with at least 10 images per disease type) from the training
set for testing; 14 normal and 19 abnormal images for early-
stopping (val set based on the official split). All images are
resized to 128× 128 as inputs.

COVIDx [111]: The original dataset contains a train and a
test set. The train set has 29,187 chest radiographs, of which
8,085 are normal, 5,555 are non-covid pneumonia and 15,547
are COVID-19 positive. The test set has 400 chest X-rays, of
which 100 are normal, 100 are non-covid pneumonia and
the rest 200 are COVID-19 positive. We randomly separate
400 images (200 normal, 100 non-covid pneumonia and
100 COVID-19 pneumonia) from the training set as the
validation set. COVIDx v9 was used in our experiments.

https://github.com/lindawangg/COVID-Net/blob/master/labels/train_COVIDx9A.txt
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TABLE 1
Benchmark results on the official test sets of the three datasets. Apart from those performances directly taken from other literature, we present the

mean and standard deviation (mean±s.d.) across three different trials for all models. For every dataset, the AUC improvement between our
SimSID and the best alternative baseline method is significant at p = 0.05 level, performed by an independent two sample t-test.

Dataset: ZhangLab Ref & Year AUC (%) Acc (%) F1 (%)
Auto-encoder† - 59.9 63.4 77.2
VAE† [36] Arxiv’13 61.8 64.0 77.4
Ganomaly† [37] ACCV’18 78.0 70.0 79.0
f-AnoGAN† [38] MIA’19 75.5 74.0 81.0
MemAE [74] ICCV’19 77.8±1.4 56.5±1.1 82.6±0.9
Fixed-Point GAN‡ [31] ICCV’19 83.1 78.0 84.3
MNAD [75] CVPR’20 77.3±0.9 73.6±0.7 79.3±1.1
SALAD† [68] TMI’21 82.7±0.8 75.9±0.9 82.1±0.3
CutPaste [97] CVPR’21 73.6±3.9 64.0±6.5 72.3±8.9
PANDA [39] CVPR’21 65.7±1.3 65.4±1.9 66.3±1.2
M-KD [49] CVPR’21 74.1±2.6 69.1±0.2 62.3±8.4
IF 2D [66] MICCAI’21 81.0±2.8 76.4±0.2 82.2±2.7
PaDiM [98] ICPR’21 71.4±3.4 72.9±2.4 80.7±1.2
IGD [99] AAAI’22 73.4±1.9 74.0±2.2 80.9±1.3
SQUID [83] Ours (CVPR’23) 87.6±1.5 80.3±1.3 84.7±0.8
SimSID Ours 91.1±0.9 85.0±1.0 88.0±1.1

†The results are taken from Zhao et al. [68]; ‡Fixed-Point GAN is considered as a baseline of weakly supervised learning (requiring image-level labels)

Dataset: COVIDx Ref & Year AUC (%) Acc (%) F1 (%)
DAE∗ [100] ICANN’11 55.7
ALAD† [101] ICDM’18 58.0
Ganomaly† [37] ACCV’18 58.4
OCGAN∗ [102] CVPR’18 61.2
f-AnoGAN‡ [38] MIA’19 66.9
MemAE [74] ICCV’19 71.8±3.6 77.1±2.1 86.4±0.8
ADGAN∗ [103] ISBI’19 65.9
CCD+IGD∗ [104] MICCAI’21 74.6
PaDim∗ [98] ICPR’21 61.4
PatchCore† [105] Arxiv’21 52.0
CutPaste [97] CVPR’21 78.5±2.3 83.1±0.4 89.5±0.2
PANDA [39] CVPR’21 72.3±1.0 76.9±0.8 86.4±0.4
M-KD [49] CVPR’21 71.7±1.1 69.7±4.5 55.6±2.5
MS-SSIM∗ [99] AAAI’22 63.4
IGD∗ [99] AAAI’22 69.9
SQUID [83] Ours (CVPR’23) 74.7±0.9 76.8±0.1 86.0±0.2
SimSID Ours 83.5±0.6 82.6±0.6 88.8±0.1

∗The results are taken from Tian et al. [106]; †The results are taken from Rahman Siddiquee et al. [107]; ‡The results are taken from Tian et al. [108]

Dataset: CheXpert Ref & Year AUC (%) Acc (%) F1 (%)
Ganomaly [37] ACCV’18 68.9±1.4 65.7±0.2 65.1±1.9
f-AnoGAN [38] MIA’19 65.8±3.3 63.7±1.8 59.4±3.8
MemAE [74] ICCV’19 54.3±4.0 55.6±1.4 53.3±7.0
CutPaste [97] CVPR’21 65.5±2.2 62.7±2.0 60.3±4.6
PANDA [39] CVPR’21 68.6±0.9 66.4±2.8 65.3±1.5
M-KD [49] CVPR’21 69.8±1.6 66.0±2.5 63.6±5.7
SQUID [83] Ours (CVPR’23) 78.1±5.1 71.9±3.8 75.9±5.7
SimSID Ours 79.7±2.2 72.9±1.9 71.9±2.3

4.2 Baselines, Metrics, and Implementation

We considered a total of 21 major baselines for direct com-
parison (elaborated in Table 1): for example, Auto-encoder,
VAE [36]—the classic UAD methods; Ganomaly [37], f-
AnoGAN [38], IF [66], SALAD [68]—the current state of the
arts for medical imaging; and MemAE [74], CutPaste [97],
M-KD [49], PANDA [39], PaDiM [98], IGD [112]—the most
recent UAD methods. We evaluated performance using
standard metrics: receiver operating characteristic (ROC)
curve, precision-recall (PR) curves, area under the ROC
curve (AUC), accuracy (Acc) and F1-score (F1). All results
were based on at least three independent runs.

We utilized common data augmentation strategies such
as random translation within the range [−0.05,+0.05] in
four directions and a random scaling within the range of

[0.95, 1.05]. The Adam optimizer was used with a batch size
of 16 and a weight decay of 1e-5. The learning rate was
initially set to 1e-4 for both the generator and the discrimi-
nator and then decayed to 2e-5 in 200 epochs following the
cosine annealing scheduler. The discriminator was trained
at every iteration, while the generator was trained every
two iterations. We set the loss weights as λt = 0.01, λs = 10,
λdist = 0.001, λgen = 0.005, and λdis = 0.005. We divided
the input images in 4×4 non-overlapping patches generator.
The architectures of our generators and discriminator are
detailed in Figure 4.
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(a)	ZhangLab	Chest	X-ray (b)	COVIDx (c)	Stanford	Chexpert

Fig. 6. ROC curves and PR space comparison on the ZhangLab Chest X-ray, COVIDx and Stanford CheXpert datasets. ROC = receiver operating
characteristic; PR = precision-recall.
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Fig. 7. [Better viewed on-line, in color, and zoomed in for details] Reconstruction results of SimSID on the ZhangLab dataset. The corresponding
Grad-CAM heatmaps, along with anomaly scores, are shown. The anomaly score denotes the probability of the image containing abnormal.

5 RESULTS

5.1 Benchmarking SimSID on Three Public Datasets

Our SimSID was mainly evaluated on three large-scale
benchmarks: ZhangLab Chest X-ray, COVIDx and Stanford
CheXpert for comparing with a wide range of state-of-the-
art methods. According to Table 1, our SimSID achieves the
most promising result in terms of most metrics on these
datasets. Specifically, SimSID outperforms the second best
runner-up counterpart SALAD [68] by 8.4% in AUC, 9.1%
in Accuracy, and 5.9% in F1 on the ZhangLab dataset. In
particular, our SimSID trained in an unsupervised man-

ner surpasses Fixed-Point GAN [31]—a weakly supervised
anomaly detection method—by 8% in AUC. Additionally,
CutPaste [97] and M-KD [49] were previous state of the
arts on COVIDx and CheXpert datasets, respectively. Our
SimSID not only achieves 5.0% and 9.9% improvements,
but also significantly exceeds its previous version (SQUID).
The ROC curve and PR curve are presented in Figure 6,
demonstrating that our method yields the best trade-off
between sensitivity and specificity. Overall, the significant
improvements observed with SimSID proved the effective-
ness of our proposed designs and techniques in this work.

In Figure 7, we visualize the reconstructions of Sim-
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TABLE 2
Component studies indicate that the overall performance benefits from
all the components in SimSID. The ablation study is conducted on the

Zhanglab dataset.

Method AUC(%) Acc(%) F1(%)
w/o Space-aware Memory 77.6±0.5 75.5±0.5 82.5±0.6
w/o Skip Connection 79.5±1.6 73.0±1.4 78.8±0.5
w/o In-painting Block 80.9±2.1 75.8±1.5 81.6±1.3
w/o Hierarchical Memory 82.9±1.2 77.4±1.1 81.2±0.5
w/o Knowledge Distillation 85.4±0.8 79.5±0.7 83.5±0.8
w/o Stop Gradient 85.0±4.3 77.6±2.8 79.8±1.6
w/o Gumbel Shrinkage 86.2±3.3 80.5±3.2 85.4±2.1
w/ Memory Queue instead 86.7±2.1 80.6±1.7 84.2±1.3
Convolution Layers 86.3±3.4 80.8±3.0 85.4±2.2
Pixel-level In-painting 79.1±0.4 74.4±1.6 81.3±0.9
SQUID [83] 87.6±1.5 80.3±1.3 84.7±0.8
Full SimSID 91.1±0.9 85.0±1.0 88.0±1.1

SID on exemplary normal and abnormal images in the
ZhangLab dataset. For normal cases, SimSID can easily find
a similar match in the memory and hence achieves the
reconstruction smoothly. For abnormal cases, the contra-
diction will arise by imposing forged normal patterns into
the abnormal features. In this way, the generated images
will vary significantly from the input, which will then
be captured by the discriminator. We plot the heatmap
of the discriminator (using Grad-CAM [113]) to indicate
the regions that are poorly reconstructed. As a result, the
reconstructed healthy images yield much lower anomaly
scores than the diseased ones, validating the effectiveness
of SimSID.

We also benchmarked the running speed of models to
compare the efficiency of SQUID and the proposed SimSID.
It is observed that one step training of SimSID is 17.2s
faster than SQUID (11.0s v.s. 28.2s) and one step inference of
SimSID is 0.5s faster than SQUID (9.0s v.s. 9.5s).
Limitation: We found SimSID in its current form, is not able
to localize anomalies at the pixel level precisely. It is under-
standable because, unlike [49], [114]–[117], our SimSID is
an unsupervised method, requiring zero manual annotation
for normal/abnormal images. More investigation on pixel-
level localization (or even segmentation) and multi-scale
detections could be meaningful in the future.

5.2 Ablating Key Properties in SimSID

Component study: We first examine the impact of compo-
nents in SimSID by taking each one of them out of the entire
framework. Table 2 shows that each component accounts for
at least 5% performance gains. The space-aware memory
(+13.5%) and in-painting block (+10.2%) are among the
most significant contributors, which underline our motiva-
tion and justification of the method development (§3.2 and
§3.3). Moreover, the knowledge distillation from teacher to
student generators strikes an important balance: the student
generator reconstructs faithful “normal” images from sim-
ilar anatomical patterns in the dictionary while preserving
the unique characteristics of each input image (regularized
by the teacher generator). Besides, we must acknowledge
that the training tricks (e.g., hard shrinkage [92], stop gradi-
ent [86]) are necessary for the remarkable performance.

We further ablate the feature in-painting design in our
model by comparing to other reasonable module designs:

Fig. 8. SimSID is robust to hyper-parameter modifications to some
extent. The best result is obtained by dividing 4 × 4 patches, setting
100 patterns per memory region, and activating the top 5 patterns
through Gumbel Shrinkage. The hyper-parameters were determined on
the validation set of ZhangLab and were applied to all three datasets.

In our proposed in-painting block, a transformer layer
is used to aggregate the patch features and the Memory
Matrix augmented “normal” features. However, one may
wonder if a simple convolution layer can also suffice. We
conducted experiments by replacing the transformer layer
with a convolution layer while preserving other structures.
The result is presented in the 8th line of Table 2, where
with convolution layer the AUC decreased by 4.8%. Another
comparable design is pixel-level in-painting. As discussed
in §3.3, raw images usually contain larger noise and artifacts
than features, so we proposed to achieve the in-painting at
the feature level rather than at the pixel level [33], [93], [118],
[119]. To validate our claim, we have conducted experiments
on carrying out the in-painting at the pixel level. Instead
of using a transformer layer to in-paint the extracted patch
features, we randomly zeroed out parts of the input patches
with 25% probability and let SimSID in-paint the distorted
input images. All other settings and objective functions
remain unchanged. The result is shown in the 10th row of
Table 2, and feature-level in-painting surpasses pixel-level
in-painting by 12.0% in AUC. As shown from the table, we
validate that the new space-aware memory matrix, the in-
painting block, the hierarchical memory design and skip
connections are among the most important contributions
to performance. Based on the proposed block, all other
components can be combined in a more effective way than
SQUID. We attribute the improvements to better feature
representation. With the memory design in this paper, the
memory matrix is learned together with other model com-
ponents, and learns a condensed feature representation for
the whole training set. While with the original memory
queue design in SQUID, the limited-size queue is only able
to record a fraction of features in the training set, and these
features are biased toward specific samples. Therefore, the
improvement over SQUID comes from the memory features
that better encode feature patterns in the training set.

Hyper-parameter robustness: The number of patch divi-
sions, the topk value in Gumbel Shrinkage, and the number
of memory patterns within a specific region of Memory Ma-
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(a) ZhangLab

(b) COVIDx

(c) CheXpert

Fig. 9. Ablation study of mixing normal and abnormal samples in the
training set. SimSID is robust to mixed training with different normal /
abnormal ratios on the ZhangLab, COVIDx and CheXpert datasets.

trix are three important hyper-parameters of SimSID. Here,
we conducted exhausted experiments on these parameters
in Figure 8. Trials were first made on the number of patches
from 1×1 to 8×8. When dividing input images into a single
patch, space-aware settings are not triggered, hence yielding
the worst performance. Although the spatial structures are
relatively stable in most chest X-rays, certain deviations
can still be observed. Therefore, with small patches, object
parts in one patch can easily appear in adjacent patches
and be misdetected as anomalies. Note that the best setting
of patch number differs from SQUID, which attributes to
the modification of the in-painting block. We found that
Memory Matrix is less robust to spatial difference than
Memory Queue. When segmenting an input image into non-
overlapping patches, more patch segments lead to a smaller
size for each patch, and, eventually, less inconsistency per
patch. Therefore, the modified memory matrix in the in-
painting block of SimSID benefits from more patches. The
number of topk activations in Gumbel softmax also impacts
the performances. By assembling the top-5 most similar
patterns through Gumbel softmax, SimSID is able to achieve
the best result. When replacing input features with the top-
1 most similar pattern, SimSID suffers from a performance
drop by -18.5% AUC. According to the AUC vs. number
of patterns in each Memory Matrix region, we found that
a small number of items is sufficient to support normal
pattern querying in local regions and the best result is
achieved by using merely 100 items per region. Degraded
performance is observed at a greater number of items per
region (>500).

5.3 Robustness to Abnormal Data in the Training Set

Strictly speaking, existing unsupervised anomaly detection
methods (e.g., [13], [106]) are not unsupervised because

they require a training set to be all “normal”. To form
this normal training set, image-level annotation as weak
supervision is an implicit requirement. To the best of our
knowledge, there is no work investigating the robustness
of such “unsupervised” anomaly detection methods to
the normal/abnormal ratio in real-world datasets. With
disease-free sample ratio in the training set ranging from
100% to 50%, we have compared the robustness of SimSID
with four competitive baselines (SQUID [83], CutPaste [97],
PANDA [39] and M-KD [49]) that originally relies on a pure
normal training set.

Figure 9 remarks that our proposed method is robust to
the abnormal/normal training ratio up to 50% and remains
AUC above 0.8 on the ZhangLab dataset by automatically
omitting minority anatomical patterns. On the Stanford
CheXpert and the COVIDx datasets, SimSID still achieves
better or comparable AUC to abnormal training samples
than the baseline models. We ask: When the training set does
not contain exclusively normal images, how does SimSID dis-
criminate between abnormal and normal patches? As described
in §3, we divide an image into small patches and the model
predicts every patch feature based on its eight surrounding
patches. If a neighbor patch is abnormal, the other neighbors
will contribute more to the in-painting process. Besides,
abnormalities are often small, so the abnormal patches only
account for a small proportion of an image, not to mention
within the entire dataset. Since most cropped patches are
normal, the abnormal patches would not have a serious
effect, as evidenced by our robust detection results up to
a 50% normal ratio. In contrast, CutPaste drops significantly
as the percentage of disease-free images decreases; PANDA
and M-KD can maintain their performance due to the use
of pre-trained features. Interestingly, M-KD with mixed
data even outperforms its vanilla training setting, although
with considerable fluctuations. SQUID, on the other hand,
benefits from the neighborhood in-painting design, but is
still consistently worse than SimSID.

6 CONCLUSION

We present SimSID for unsupervised anomaly detection
from radiography images. The assumption behind our de-
sign is that radiography imaging protocols focus on partic-
ular body regions, therefore producing images of great sim-
ilarity and yielding recurrent anatomical structures across
patients. SimSID exploits the structural consistency of chest
anatomy with the help of space-aware memory matrix and
feature in-painting. Qualitatively, we show that SimSID can
taxonomize the ingrained anatomical structures into recur-
rent patterns; and in the inference, SimSID can identify
anomalies (unseen/modified patterns) in the image. Quan-
titatively, SimSID surpasses the state of the arts in unsuper-
vised anomaly detection by +8.0%, +5.0%, and +9.9% AUC
scores on ZhangLab, COVIDx, and CheXpert benchmark
datasets, respectively.
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