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ABSTRACT

Image synthesis approaches, e.g., generative adversarial net-
works, have been popular as a form of data augmentation in
medical image analysis tasks. It is primarily beneficial to
overcome the shortage of publicly accessible data and asso-
ciated quality annotations. However, the current techniques
often lack control over the detailed contents in generated im-
ages, e.g., the type of disease patterns, the location of lesions,
and attributes of the diagnosis. In this work, we adapt the lat-
est advance in the generative model, i.e., the diffusion model,
with the added control flow using lesion-specific visual and
textual prompts for generating dermatoscopic images. We
further demonstrate the advantage of our diffusion model-
based framework over the classical generation models in both
the image quality and boosting the segmentation performance
on skin lesions. It can achieve a 9% increase in the SSIM
image quality measure and an over 5% increase in Dice coef-
ficients over the prior arts.

Index Terms— Diffusion Model, Controllable Image
Generation, Skin Lesion Segmentation.

1. INTRODUCTION

Image synthesis methods have played an important role in the
development of machine vision-based applications as a data
augmentation tool to enrich and expand the limited distribu-
tion of training data. It is especially helpful for those domains
in which sample data and quality annotation are scarce and
not cost-effective to obtain, e.g., anonymous driving and
medical imaging. Massive research has been conducted in
controlling the generated contents for the actual need in
model training, from first manipulating the noise parameters
Z [1], Conditional GAN (cGAN) [2], to supervised [3] and
unsupervised [4] image style transfer, to decoupling the style
and content parts in images [5], to latent diffusion model
via text2image [6] and most recently diffusion model based
ControlNet [7]. However, the application of such algorithms

Fig. 1. Quiz: which ones are real samples or synthesized by
the proposed work? Answers are in the experiments section.
Lesion types, attributes, and masks are used as prompts in the
training and inference.

in medical image analysis remains limited due to the special
characteristics of medical images.

In most medical diagnosis scenarios, anomaly studies
(e.g., image scans with lesions or other abnormalities) are
in the minority. Although increasing the number of anoma-
lous samples could potentially help improve the performance
of subsequent tasks like segmentation tasks, the genera-
tion of such corner cases is not well-controlled and mostly
customized at the image level, e.g., the pioneering work
in adopting GAN for data augmentation in medical image
segmentation [8], adopting cGAN for colon polyp genera-
tion [9], diversify the generated image using radiogenomic
features [10] and pseudo labels [11].

Fundamentally, the data sample of such abnormalities re-
mains low in terms of a normal clinical distribution, and it is
even hard to obtain enough data for training purposes. Then,
the scarce corner cases are often flooded with normal cases
or other cases with more common diseases in the set of gen-
erated images. There is a critical demand for generating data
with desired categories, i.e., specific disease types and disease
attributes (shape, location, appearance, severity).

Additionally, the quality and efficiency of the generation
of lesion images, as well as the transferability of the gener-



Fig. 2. Overview of our visual and textural prompted image
generation framework.

ation method, are essential to improve the performance of
subsequent tasks and to apply the method to anomaly images
of different organs in different modalities. The handcrafted
methods [12, 13, 14] are effective when applied to a specific
organ and modality, but they are not automated enough and
lack universality among various organs and modalities.

In this paper, we propose to use the diffusion models as
the backbone to generate skin lesion images. Examples are
shown in Fig. 1. The proposed framework largely leverages
the recent work of ControlNet [7] while we attempt to in-
tegrate the controllable lesion function (with desired lesion
type, attributes in text, and shapes with locations in masks
images) into the framework for both the training and infer-
ence stage. The correlation could be first learned by linking
the visual and textual prompts with the detailed image con-
tents and then prompted during the inference by focusing on
rare cases. We also proposed an automatic module to generate
lesion shapes and masks. We conducted the experiments and
the comparison study (mainly with a classic GAN method,
Pix2PixHD [15]) on a publicly accessible skin lesion dataset,
ISIC [16, 17]. The result demonstrates the superiority of the
diffusion model-based framework over the classical genera-
tion models in both the image quality and boosting the seg-
mentation performance on skin lesions. To our knowledge,
we are arguably the first to utilize the diffusion model for skin
lesion generation. A PyTorch implementation of our method
can be found later on our GitHub repository.

2. METHODS

The overall workflow of our method is illustrated in Fig. 2. In
the training stage, we utilize the skin images with lesions from
the public dataset and their corresponding visual and textual
prompts, i.e., the masks of these skin lesions, indicating the
shape and location information for the generation and the le-
sion types and associated attributes. They are the input to the

ControlNet [7] for training the lesion image generator, which
is imposed on top of the Stable Diffusion model [6]. In order
to generate the necessary amount of synthetic data to augment
the downstream lesion segmentation task, we build an au-
tomatic shape generation module, which can produce lesion
segmentation masks with a diversity of lesion sizes, shapes,
and locations. Theoretically, there is no limit to the number of
these generated masks, together with randomly picked textual
tags of lesion categories and attributes, that can maximally fa-
cilitate the training of downstream lesion segmentation tasks.

In the following, we first introduce the principle of De-
noising Diffusion Implicit Models [18] as the common diffu-
sion model backbone in §2.1. Then, we explain the diffusion
models with visual and textual prompts in §2.2. Specifically,
we introduce the process of automatically generating lesion
shapes in §2.3.

2.1. Backbone Diffusion Model

Denoising Diffusion Implicit Model (DDIM) is a recent tech-
nique for generative modeling that builds on the common
framework of Diffusion Models. DDIM leverages a de-
noising process to generate high-quality samples from the
underlying probability distribution of a dataset.

The key idea behind DDIM is to use a diffusion process
to smooth out the noise in an image or data sample, gradually
moving it toward the true data distribution. This process is
performed by iteratively applying a diffusion equation, where
the noise in the data is diffused according to a predetermined
schedule of diffusion steps. At each step, the data is corrupted
by a certain amount of noise, and the resulting noisy data is
used as input for the next step.

The diffusion equation used in DDIM can be written as:
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where x represents the data sample, t is the diffusion time,
∇2 is the Laplacian operator, β(t) is the diffusion coefficient,
and ϵ is Gaussian noise with zero mean and unit variance.

In a DDIM model, we use a denoising objective function
that encourages the model to minimize the distance between
the diffused noisy data and the original data. Specifically,
we use a maximum likelihood approach to learn the param-
eters of the diffusion process that minimize the negative log-
likelihood of the training data. The denoising objective func-
tion can be written as:
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where θ represents the parameters of the DDIM model, n is
the number of data samples, T is the number of diffusion
steps, xi,t is the data sample for the i-th training example at



time t, x̃i,t is the diffused noisy data, and σt is the diffusion
scale parameter.

2.2. Diffusion Models with Multi-modality Prompts

We aim to use diffusion models with multimodal prompts to
generate skin images with lesions and then further benefit the
downstream segmentation task. First, we train a diffusion
model with multimodal prompts for medical images based on
Stable Diffusion Models [6] with the multimodal condition,
also known as ControlNet [7]. ControlNet is designed to con-
trol the diffusion model by adding additional conditions to
facilitate what we call medical image generation through Sta-
ble Diffusion Models with multi-modality prompts. As shown
in Fig. 2, the network structure is divided into trainable and
locked sections in ControlNet. The trainable part is the con-
trollable part that is initialized with the same encoder of the
stable diffusion model and then connects the prompts and the
detailed generation output. The locked part retains the orig-
inal parameters of the trainable-diffusion model, so a small
amount of data is used to bootstrap. Therefore, we can ensure
the adapted model learns the desired controlling constraints
while retaining the generation capability of the original dif-
fusion model itself. Specifically, the parameters in the upper
and lower Encoder and Decoder blocks are locked, and the
parameters in the middle blocks are the “trainable” ones.

Then, we use the trained model to generate a large number
of skin lesion images. At this time, we incorporate the auto-
matically generated skin lesion mask module we mentioned
earlier and use the lesion masks generated by this module as
input to the trained model to generate the complete skin im-
age with a lesion. According to our subsequent experiments,
the segmentation of the model is better to a certain extent as
we add more synthetic images to the training.

2.3. Automatic Lesion Mask Generation

We experiment with two ways to generate the shape of skin
lesions, one of which is the direct transformation according
to the existing segmentation masks, and the other is auto-
matically constructing the segmentation masks. However, ac-
cording to our experimental results, we found that the latter
is more flexible and productive in terms of shape diversity
and subsequent contribution to the model effect in the seg-
mentation process. Especially, the automated process offers
an almost unlimited number of data samples. Therefore, we
will mainly focus on and discuss more of the automatic lesion
shape generation below.

Overall, we generate synthetic images of circles of dif-
ferent sizes and positions and applied some post-processing
methods to make the images more realistic. First, a blank can-
vas is created, then a random point is chosen at the center of
the canvas, and a random radius is chosen between a defined
threshold and a minimum distance from that point to the edge

of the canvas. Next, Gaussian blurring is applied to the im-
age with the inserted circle. Alternatively, the image could
be elastically deformed using the elastic deformation library.
Finally, morphological on and off operations are performed
with elliptical structure elements. The resulting image is la-
beled using the classic region-growing function to figure out
if it has only one connected component (i.e., circle). On the
other hand, transformation-based shape generation constructs
the shape directly from the original masks, where we oper-
ate resizing, rotating, and elastic transforming of the original
segmentation masks.

Fig. 3. An example of image generation based on masks, from
left to right: a skin lesion mask, a Pix2PixHD model gener-
ated image, an original image, a diffusion model generated
image

3. EXPERIMENTS

We conduct the experiments in this study to mainly two as-
pects of the proposed generation framework, i.e., the qual-
ity of generated images and how the controlled generation of
sample data (images with associated masks) could benefit the
downstream skin lesion segmentation task.

3.1. Dataset and Experiment Setup

The International Skin Imaging Collaboration (ISIC) skin
segmentation dataset [16, 17] is from the world’s largest skin
image analysis challenge, hosted by ISIC, a global partner-
ship that has organized the world’s largest public repository
of dermoscopic images of skin. Though there are many appli-
cation tasks, e.g., lesion type and attribute classification, the
goal of this work is to create a model for segmenting lesion
boundaries (same task as ISIC 2018 task 1). There were 2,594



S + S+1K S+3K S+5K SOTA S only
P2PHD 0.871 0.903 0.912 U-Net 0.861
Ours 0.912 0.913 0.914 DCSAU-Net 0.903

Table 1. Performance of model lesion segmentation with different generative models adding different amounts of generative
images marked by DSC (’S+’ and ’P2PHD’ indicates ’S+generated images’ and ’Pix2PixHD’).

Model MSE PSNR SSIM
Pix2pixHD 0.09 58.80 0.71
Ours 0.06 61.64 0.80

Table 2. Comparison of image generation between
Pix2PixHD and ours.

dermoscopic images provided with ground truth segmenta-
tion masks. We further cross-correlate the lesion images with
the diagnosis and attribute information from ISIC 2017 and
2019 to form the prompts we use for the training of Control-
Net. Sample images and associated information are shown in
the top row of Fig. 1, and images on the bottom row of Fig. 1
are generated via our framework.

We divided the dataset into two parts. Roughly half of the
data (1,594 data samples in total) is reserved for the training
of the generation model, defined as the G set. The rest (1,000
samples) is employed for the experiments of the lesion seg-
mentation task, defined as the S set. We split the 1,000 images
in S set randomly into training, validation, and testing with a
ratio of 7:1:2 for evaluating the segmentation performance.
We compute the Sørensen–Dice coefficient (DSC) for all the
segmentation results.

3.2. Implementation Details

The diffusion models with visual and text prompts are im-
plemented using Pytorch Lightning based on the codebase
provided by [7]. The Segmentation and Pix2PixHD model
experiments are carried out on NVIDIA A100 Tensor Core
GPUs. To train all models, we use a common segmentation
loss function, i.e., Dice loss, since we make it clean and target
evaluating the performance gain from additional data samples
generated from our framework. The Adam optimizer with a
learning rate of 1e-3 is set with a batch size of 256 and a total
epoch number of 350 during the training.

3.3. Results on Image Generation

Here, we utilize the testing images of the S set to evaluate
the image generation quality. After both the image generation
methods, e.g., ours and Pix2PixHD, we use the mask of the
original images in the testing of S for image generation. No
prompt is entered, i.e., remaining empty in the prompts for
our framework for a fair comparison. In this way, we can
compare the generated image with the original image to see
how the methods work in a quantitative manner.

Fig. 4. On the left are the texture details generated by the
Pix2PixHD model, and on the right are the texture details
generated by the Stable Diffusion model with linguistic and
visual prompts.

As shown in Table 3.2, ours outperforms the Pix2PixHD
method by a significant margin. In general, the lesion con-
tent and the detailed texture of our generated image are better
controlled and produced in comparison to the GAN counter-
part. We also illustrate four examples of generation results
for both methods in Fig. 3. and enlarged texture regions from
both methods are shown in Fig. 4. The diffusion model-based
image generation can achieve much better generation results
with all the details preserved, a clear difference in the degree
of texture detail generation as shown in Fig. 4.

3.4. Lesion Segmentation Results

As shown in Fig. 1, the diffusion model outperforms the
Pix2PixHD by a large margin (over 5%). We also experi-
ment with how different amounts (e.g., 1K, 3K, and 5K) of
synthetic data will affect performance. Indeed, more data
can benefit the segmentation training, with the potential to
increase the data amount.

4. CONCLUSION

In this work, we present a diffusion model-based image gen-
eration framework with detailed lesion characteristics as the
prompts for the lesion image generation task. We demonstrate
both quantitatively and qualitatively that the quality of the re-
sulting images is significantly better than the counterpart with
the GAN framework, i.e., the popular Pix2PixHD approach.
The proposed framework opens the gate of precise data sam-
ple generation for multi-tasks, e.g., the segmentation task in
this work and possible lesion diagnosis and attributes for im-
age classification.
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