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Abstract

Regression-based methods for 3D human pose estima-
tion directly predict the 3D pose parameters from a 2D im-
age using deep networks. While achieving state-of-the-art
performance on standard benchmarks, their performance
degrades under occlusion. In contrast, optimization-based
methods fit a parametric body model to 2D features in an
iterative manner. The localized reconstruction loss can
potentially make them robust to occlusion, but they suffer
from the 2D-3D ambiguity. Motivated by the recent suc-
cess of generative models in rigid object pose estimation,
we propose 3D-aware Neural Body Fitting (3DNBF) - an
approximate analysis-by-synthesis approach to 3D human
pose estimation with SOTA performance and occlusion ro-
bustness. In particular, we propose a generative model
of deep features based on a volumetric human represen-
tation with Gaussian ellipsoidal kernels emitting 3D pose-
dependent feature vectors. The neural features are trained
with contrastive learning to become 3D-aware and hence
to overcome the 2D-3D ambiguity. Experiments show that
3DNBF outperforms other approaches on both occluded
and standard benchmarks. Code is available at https:
//github.com/edz-o/3DNBF

1. Introduction

Monocular 3D human pose estimation (HPE) is a long-
standing problem of computer vision. Regression-based
methods [12, 24, 49, 53, 69, 71] directly regress the 3D pose
parameters of a human body model, such as SMPL [40],
and learn to overcome the inherent 2D-3D ambiguity of the
prediction task from the training data. However, the perfor-
mance of regression-based methods degrades when humans
are partially occluded, as demonstrated by related work [26]
and in our experiments (Figure 1 (c)). Optimization-based
methods [4,27,51,77,79] fit a parametric body model to 2D
representations, such as keypoint detections [24,28] or seg-

∗Indicates equal contribution.
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Figure 1: 3D human pose estimation under occlusion. Per-
formance of regression-based methods [22] degrades un-
der occlusion (c). Traditional optimization-based methods
can be robust occlusion, but they suffer from the 2D-3D
ambiguity in monocular 3D HPE (d). Our generative ap-
proach resolves the 2D-3D ambiguity through analysis-by-
synthesis in a 3D-aware feature space (e).

mentation maps [49, 53, 81], in an iterative manner. They
are relatively robust to occlusion but perform worse than
regression-based methods in 3D HPE particularly because
they suffer from the 2D-3D ambiguity (Figure 1(d)), even
when regularized with strong 3D priors [51], because the
manually designed 2D features lack 3D information.

Recently, generative models have been shown to be suc-
cessful with improved robustness to occlusion in object
recognition [31] and rigid object pose estimation [73] for
certain object categories. The idea is to formulate vision
tasks as inverse graphics or analysis-by-synthesis [25, 80]
- searching for the parameters in a generative model (e.g.
computer graphics models) that best explain the observed
image while an outlier process can be introduced to ex-
plain occluded regions. However, performing analysis-by-
synthesis in RGB pixel space is challenging due to the lack
of both good generative models and efficient algorithms to
inverse them. Instead, they perform approximate analysis-
by-synthesis in deep feature space. However, the generative
models used are 2D-based or simple cuboid-like 3D struc-
tures with features invariant to the 3D viewpoint, making
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them less suitable for 3D HPE.
In this work, we propose a 3D-aware Neural Body

Fitting (3DNBF) framework that enables feature-level
analysis-by-synthesis for 3D HPE, which is highly robust
to occlusion (Figure 1(e)). Specifically, we propose a novel
generative model of deep network features for human body,
named Neural Body Volumes (NBV). NBV is an explicit
volume-based parametric body representation consisting of
a set of Gaussian ellipsoidal kernels that emit feature vec-
tors. Compared with the popular mesh representation, our
volume representation is analytically differentiable, pro-
vides smooth gradients, i.e. is efficient to optimize, and
rigorously handles self-occlusion [56]. We employ a fac-
torized likelihood model for feature maps which is further
made robust to partial occlusion by incorporating robust
loss functions [18]. To overcome the 2D-3D ambiguity, we
impose a distribution on the kernel features conditioned on
pose parameters making them pose-dependent.

Unlike optimization-based methods that manually de-
sign the feature representation which may lose information,
we learn the features from data. In particular, we introduce
a contrastive learning framework [2,13,76] to learn features
that are invariant to instance-specific details (such as color
of the clothes), meanwhile encouraging them to capture lo-
cal 3D pose information of the human body parts, i.e. being
3D-aware. The generative model is learned with the fea-
ture extractor network iteratively. For more efficient infer-
ence, we attach a regression head to the feature extractor to
predict the pose and shape parameters from the feature di-
rectly. During inference, we initialize NBV with the predic-
tion from our regressor head and optimize the human pose
by maximizing the likelihood of the target feature map un-
der the generative model using gradient-based optimization.
We find this combined approach can resolve common errors
of regression-based methods, such as when the pose of par-
tially occluded parts is not estimated correctly (Figure 1).

We evaluate 3DNBF on three existing 3D HPE datasets:
3DPW [72], 3DPW-Occ [82] and 3DOH50K [82], and pro-
pose a more challenging adversarial evaluation protocol
3DPW-AdvOcc for occlusion robustness. Our experimen-
tal results show that 3DNBF outperforms state-of-the-art
(SOTA) regression-based methods as well as optimization-
based approaches by a large margin under occlusion while
maintaining SOTA performance on non-occluded data. In
summary, our main contributions are:

1. We propose 3DNBF - an approximate analysis-by-
synthesis approach for 3D HPE at feature level with
a volume-based neural generative model NBV for hu-
man body with pose-dependent kernel features.

2. We introduce a contrastive learning framework to train
NBV with a feature extractor such that the feature ac-
tivations capture the local 3D-pose information of the

body parts, to resolve the 2D-3D ambiguity.

3. We demonstrate on four datasets that 3DNBF outper-
forms SOTA regression-based and optimization-based
methods, particularly when under occlusion.

2. Related Work
Monocular 3D Human Pose Estimation. Existing ap-
proaches can be categorized into regression-based and
optimization-based methods. Regression-based meth-
ods [12, 24, 49, 53, 69, 71] directly estimate 3D human pose
from RGB image using a deep network. Different 3D hu-
man pose representations are adopted such as 3D joint lo-
cations [41,59], 3D heatmaps [52,68,83] and parameters of
a parametric human body [24, 28, 53]. Optimization-based
methods [4, 27, 51, 77, 79] involve parametric human mod-
els like SMPL [1, 40, 51], and produce both the 3D human
pose and human shape. The representative method is SM-
PLify [4], which fits the SMPL model to 2D keypoint detec-
tions with strong priors. Exploiting more information into
the fitting procedure has been investigated, including sil-
houettes [33], multi-view [17], more expressive shape mod-
els [23]. [77] propose to fit 3D part affinity maps to over-
come 2D-3D ambiguity. This requires the network to learn
accurate part orientation which is difficult and shown to be
less robust to occlusion. Hybrid methods [9, 66] perform
iterative optimization using regressed descent directions.
Robustness to Occlusion. Regression-based methods are
sensitive to occlusions as studied by Kocabas et al. [26],
who propose part segmentation guided attention mecha-
nism to handle occlusion. Data augmentation is another
common way to enhance occlusion robustness, for exam-
ple by cropping [3, 22, 58], or by putting patches into the
image [11, 63]. Even with data augmentation, we show that
they are still sensitive to occlusion by applying a more so-
phisticated sliding-window attack. Explicit occlusion han-
dling in regression-based methods infers occluded joints us-
ing representation redundancy [42, 43] which is partially
successful or exploits visibility information in the train-
ing [7, 38, 74, 82]. However, the occlusion information ex-
cept self-occlusion is often unavailable in the wild and ex-
pensive to annotate which limits the applicability of such
methods. To model pose ambiguities for truncated human
images, [3, 29, 64] predict multiple possible poses that have
correct 2D projections. Another direction to handle occlu-
sion leverages motion in sequences [6,16]. Generative mod-
els are shown to be robust to occlusion [44, 73] for parsing
rigid objects and we further demonstrate it for articulated
objects.
Human body representations. Parametric mesh mod-
els [4, 27, 51, 77, 79] are most popular models for human
pose/shape estimation, which generate intermediate repre-
sentations like 2D keypoints, sihouette and part segmen-
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tations. However, these representations lose the local in-
formation, e.g. shading, useful for inferring 3D from 2D.
Recently, implicit volume representation has become in-
creasingly popular [21, 37, 48, 50, 54, 62, 67, 75, 78] as they
can achieve highly realistic human reconstruction. How-
ever, they are not suitable for our purpose as training these
models often requires multi-view or videos and takes an ex-
tended time for a single person. We propose a body repre-
sentation that combines a volumetric 3D Gaussian represen-
tation [56, 57] which gives more stable gradients compared
to mesh-based differentiable rendering. Compared to pop-
ular implicit volume representations, our volume represen-
tation is explicit with fewer parameters to learn which leads
to efficient inference.
Generative Models of Neural Textures. Prior works have
shown the potential of combining 3D representations with
neural texture maps, with an application to image synthesis
of static scenes through neural rendering [46, 47, 70]. As
inverting a generative model of RGB pixel values is chal-
lenging, a recent line of work introduced a neural analysis-
by-synthesis approach to perform visual recognition tasks
such as image classification [30–32] and 3D pose estima-
tion [73] with a largely enhanced robustness to partial oc-
clusion when compared to standard deep network based ap-
proaches. However, these prior works explicitly assume
rigid objects and use simple 2D-based or cuboid-like gen-
erative models. [45] learns a continuous feature embedding
function for each vertex on 3D human body mesh. How-
ever, this representation is invariant to 3D pose and there-
fore loses the useful information for estimation 3D from
2D. Our work generalizes the neural analysis-by-synthesis
approach to 3D HPE, addressing the challenge of 2D-3D
ambiguities and modeling articulated human bodies.

3. 3D-Aware Neural Body Fitting

In the following, we first explain a conceptual formu-
lation of analysis-by-synthesis for 3D human pose estima-
tion (Section 3.1) and propose our feature-level analysis-
by-synthesis formulation in Section 3.2. Then we introduce
the proposed generative Neural Body Volume model (Sec-
tion 3.3), including the 3D-aware pose-dependent features
(Section 3.4). Finally, we describe the training and infer-
ence process for the generative model in Section 3.5, 3.6.

3.1. HPE via Analysis-by-Synthesis

Given an input image I ∈ RH×W×3, we aim to estimate
the 3D human pose parameters θ. Using Bayes rule we for-
mulate the pose estimation task as a probabilistic inference
problem given the observed image I:

θ∗ = argmax
θ

p(θ|I) = argmax
θ

p(I|θ)p(θ), (1)

where p(θ) is a prior distribution learned from data [4, 51],
and p(I|θ) is the likelihood. p(I|θ) is typically defined us-
ing a generative forward model (involving 3D CAD models
and a graphics engine) , and the analysis-by-synthesis pro-
cess is hence defined as finding the parameters θ∗ that can
best explain the input image. However, it is very challeng-
ing to reconstruct human images accurately which requires
either multi-view images or video input [21, 37, 54, 67, 75].

Instead of performing analysis-by-synthesis in RGB
space, we aim to reconstruct the human appearance at the
feature-level of a neural network. Fig. 2 is an overview of
our method. The feature representations will be learned to
become invariant to image variations that is not relevant for
the HPE task, such as clothing color or style, and hence
will enable us to perform HPE accurately from a single im-
age. In the following, we will first introduce the concept of
feature-level analysis-by-synthesis and subsequently intro-
duce a generative model of humans on the feature level.

3.2. Feature-Level Analysis-by-Synthesis
We denote a feature representation of an input image

as ζ(I) = F ∈ RH×W×D which is the output of a
deep convolutional neural network ζ. fi ∈ RD is a fea-
ture vector in F at pixel i on the feature map. We de-
fine a generative model of humans on the feature-level as
G(θ) = Φ̂ ∈ RH×W×D, which produces a feature map Φ̂
given the pose θ. We can now define the likelihood function
of our Bayesian model (Eq. 1). To enable efficient learning
and inference, we adopt a factorized likelihood model:

p(F |G(θ),B) =
∏

i∈FG

p(fi|ϕ̂i)
∏

i′∈BG

p(fi′ |B), (2)

where the foreground FG is the set of all pixel locations
on the feature map F that are covered by the human. The
background BG contains those pixels respectively that are
not covered. The foreground likelihood p(fi|ϕ̂i) is defined
as a Gaussian distribution N (ϕ̂i, σ

2
i I) with the mean vec-

tor ϕ̂i at location i, and a standard deviation σi. Back-
ground features are modeled using a simple background
model p(fi′ |B) that is defined by a Gaussian distribution
N (b, σ2I), where the parameters are B = {b, σ} learned
from the background features in the training images.
Occlusion robustness. Following related work on
occlusion-robust analysis-by-synthesis [10], we define a ro-
bust likelihood as:

p(F |G(θ),B,Z) =
∏

i∈FG

p(fi|ϕ̂i, zi)
∏

i′∈BG

p(fi′ |B) (3)

p(fi|ϕ̂i, zi) =
[
p(fi|ϕ̂i)

]zi
[p(fi|B)](1−zi) ,

where zi ∈ {0, 1} is a binary variable and we set its prior
probabilities to be p(zi=1) = p(zi=0) = 0.5. The variable
zi allows the background model to explain those pixels in
FG that cannot be explained well by the foreground model,
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presumably due to partial occlusion. To reduce clutter in
the remaining paper we will omit the occlusion variable in
the coming equations, but note that we are using a robust
likelihood during inference.

In the following section, we describe our feature-level
generative model for human pose estimation.

3.3. Neural Body Volumes
At the core of our framework is the Neural Body Vol-

umes (NBV) representation, a model that enables the ren-
dering of human bodies on the feature-level (illustrated in
Figure 2(b)). Traditional human body models are mostly
mesh-based, e.g. SMPL [40]. However, while meshes are
useful representations for forward-rendering applications in
computer graphics, they are sub-optimal for differentiable
inverse rendering, since the mesh rendering process is in-
herently difficult to differentiate w.r.t. the model parame-
ters [39]. Prior art [56] showed that volume rendering has a
smoother and analytical gradient, and leads to a more effi-
cient optimization, and better handling self-occlusion com-
pared to meshes. Inspired by these results, we propose
Neural Body Volumes (NBV), a volume-based representa-
tion of human bodies for rendering human bodies on the
feature-level. In NBV, a human body is represented by a
three-dimensional volume that consists of K Gaussian ker-
nels placed on the body surface. The density at spatial lo-
cation X ∈ R3 is ρk(X) = N (Mk,Σk). Mk(θ,β) ∈ R3

and Σk(θ,β) ∈ R3×3 are the mean vector and covariance
matrix conditioned on human pose and shape, parameter-
ized by θ and β respectively, controlling the center and
shape of the Gaussian kernel which we describe in detail
in the following paragraph. The volume density is defined
as ρ(X) =

∑K
k=1 ρk(X). Each Gaussian kernel is associ-

ated with a feature vector ϕk ∈ RD which can be rendered
to image space using volume rendering:

ϕ̂(rΠ) =

∫ tf

tn

T (t)

K∑
k=1

ρk(rΠ(t))ϕkdt, (4)

where T (t) = exp

(
−
∫ t

tn

ρ(rΠ(s))ds

)
,

that computes the aggregated feature along the ray rΠ(t)
t ∈ [tn, tf ] from the camera center through a pixel on the
image plane where Π denotes the camera parameters. The
Gaussian kernel representation enables calculation of the
analytic form of the integral ϕ̂(r) =

∑K
k=1 αk(rΠ, ρ)ϕk

which we provide in the supplementary material. Here, the
number of Gaussian kernels K and the associated features
Φ = {ϕk} are global parameters shared across all human in-
stances. While for each input image, we optimize the pose θ
and shape β to transform the location Mk(θ,β) and shape
Σk(θ,β) of the Gaussian ellipsoids. Our model can fit ar-
bitrary shapes with a sufficient number of kernels.
Conditioning on pose and shape. Given a set of body
joints J ∈ RN×3, the pose is defined as their correspond-
ing rotation matrices Ω ∈ RN×3×3 relative to the tem-

plate joints J̄ in a skeleton tree. We model body articu-
lation using linear blend skinning (LBS) [34] which trans-
forms the center of the Gaussian kernels with transforma-
tion linearly blending the accumulated rigid transformations
G(J ,Ω) ∈ RN×4×4 of the N body joints (including the
root transformation). And we model body shape variations
by displacing the kernels with linear combinations of a set
of L basis shape displacements S ∈ RL×K×3:

Mk =

N∑
i=1

wk,iGi[M̄k +

L∑
l=1

βlSlk|1], (5)

where M̄k denotes the kernel position in rest pose, and∑N
i=1 wk,i = 1 and

∑L
l=1 βl = 1 are pose and shape blend

weights. [·|1] denotes the homogeneous coordinates. For
the spatial covariance, we also perform transformation and
blending according to the rotation of the joints:

Σ−1
k =

N∑
i=1

wk,iR
T
i Σ̄

−1
k Ri, Ri =

∏
j∈A(i)

Ωi, (6)

where Σ̄k is the covariance matrix in rest pose, and A(i) is
the ordered set ancestors of joint i. This takes into account
that the orientation of the Gaussian ellipsoid should rotate
with the pose.

The template joints location J̄ can also deform accord-
ing to shape. Specifically, we regress the template joint lo-
cations from the locations of the deformed Gaussian kernels
J̄ = g(M̄ +

∑L
l=1 βlSl). The common choice for such re-

gressor g : RK×3 → RN×3 is a linear function [40, 51].
In summary, the proposed Neural Body Volume repre-

sentation enables us to render human bodies on the feature-
level using volume rendering process such that for each
pixel in the feature map there will be a feature vector ϕ̂ cor-
responding to the contribution from all Gaussian kernels.

3.4. A Generative Model of 3D-Aware Features

Related work on feature-level inverse rendering for
rigid pose estimation [20, 73] trains the feature extractor
ζ such that the features become invariant to changes in
the 3D pose. However, for human pose estimation, it is
fundamentally important for the feature representation
to be 3D-aware, in order to resolve the inherent 2D-3D
ambiguity (as shown in Fig. 1). To resolve this problem, we
aim to learn pose-dependent feature representations that is
able to better resolve the 2D-3D ambiguity of human poses.

3D pose-dependent features for NBV. To overcome the
2D-3D ambiguity, we make the generative model 3D-aware.
In particular, we impose a distribution on the kernel features
Φ conditioned on the human pose and shape as shown in
Fig. 2(c). Therefore, the rendered kernel features explicitly
carry 3D pose information. Specifically, we define a set of
body limbs {(Ji,Jj)|(i, j) ∈ L} each defined as an ordered
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Figure 2: Overview of our system. (a) We perform feature-level analysis-by-synthesis for 3D human pose estimation
by fitting a 3D-aware generative model of deep feature (NBV) to the feature map F extracted by a U-Net. (b) NBV is
defined as a volume representation of human body ρ, driven by pose and shape parameters {θ,β}, which consists of a set
of Gaussian kernels each emitting a pose-dependent feature ϕ. Volume rendering is used to render NBV to a feature map
Φ̂. The foreground feature likelihood is defined as a Gaussian distribution centered at the rendered feature vector while
the background feature likelihood is modeled by a background model. Pose estimation is done by optimizing the negative
log-likelihood (NLL) loss of F w.r.t. {θ,β} and camera Π. (c) the distribution of the kernel feature is conditioned on the
orientation of the limb that the kernel belongs to.

tuple connecting two body joints. The orientation of a limb
is defined as l = (Jj − Ji)/∥Jj − Ji∥. We first learn to
assign each Gaussian kernel in NBV to one limb according
to the pose blend weights. Then we associate each kernel
with multiple features {ϕo} that correspond to a set of pre-
defined limb orientations {l̂o ∈ R3}Oo=1, ∥l̂o∥ = 1. The
distribution for the feature vector of the Gaussian kernel k
is then defined as:

p(ϕk = ϕko|lk(θ,β)) =
p(lk|l̂o)∑O
o=1 p(lk|l̂o)

, (7)

where lk(θ,β) ∈ R3 is the orientation of the limb that
Gaussian kernel k belongs to. p(lk|l̂o) is the von Mises-
Fisher distribution vMF(lk|l̂o, κo). In the simple case of
only one kernel k, the likelihood of feature at foreground
pixel i becomes a Gaussian Mixture Model (GMM):

p(fi|ϕ̂i) =

O∑
o=1

p(ϕk = ϕko|lk)N (ϕ̂ko, σ
2
ioI), (8)

where ϕ̂ko is the feature rendered from ϕko. Intuitively,
the rendered feature has different distributions under dif-
ferent 3D limb orientations. Therefore, we can unambigu-
ously infer the 3D pose from the observed features. Dur-
ing inference, we use the expectation of the kernel feature
E(ϕk|θ,β) for volume rendering for differentiability.

3.5. Training

Given a set of images {In}Nn=1, with ground truth 3D
keypoints {Ĵn}Nn=1 and shape {Vn}Nn=1, we need to learn
a set of parameters in NBV: the template Gaussian ker-
nels and the associated features {M̄ , Σ̄,Φ}, the template
joints J̄ , the blend weights W , the basis shape displace-
ments S and the joint regressor g. We also need to train
the UNet feature extractor ζ. We train our model in sepa-
rate steps by first learning the pose/shape-related parameters
{M̄ , Σ̄, J̄ ,W ,S, g} then the kernel features Φ and ζ.
Learning pose and shape parameters in NBV. Start-
ing from a downsampled version of a template body mesh
model created by artists, we initialize the kernel centers M̄
with the locations of the vertices and compute the spatial
covariance matrices Σ̄ based on the distance of the ver-
tices to their neighbors with the desired amount of over-
lap. Following [40], a manual segmentation of the tem-
plate mesh is leveraged to obtain the initial template joints
J̄ , the linear joint regressor g, and the blend weights W .
Then we train all pose-related parameters {M̄ , J̄ ,W , g}
together with instance-specific pose θ by minimizing the
reconstruction error between the Gaussian kernels and the
ground truth shape V . After that, the ground truth shapes
are transformed back to the rest pose and the shape basis
S is obtained by running PCA on these pose-normalized
shapes. We refer the readers to [40] for details as we share
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a similar training process for this part. Another regressor ĝ
is trained to regress the ground truth keypoints from kernel
centers M . In practice, we can directly convert a trained
SMPL model [40] to NBV by placing the Gaussian kernels
at the vertices on the SMPL mesh.

After training the pose/shape-related parameters, we reg-
ister our NBV to the train set to obtain the ground truth
shape and pose for each training sample {θn}, {βn}. Then,
we learn the NBV kernel features and a UNet feature ex-
tractor ζ jointly in an iterative manner.
MLE learning of NBV kernel features. If ζ is trained,
we can learn the kernel features Φ through maximum like-
lihood estimation (MLE) by minimizing the following neg-
ative log-likelihood of the feature representations over the
whole training set,

LNLL(F̂ ,Φ) = −
∑
i∈FG

log p(f̂i|ϕ̂i), (9)

where for training efficiency, we use an approximate solu-

tion to avoid matrix inversion ϕko =
∑

i∈K γikof̂i∑
i∈K γiko

, where
K is the set of pixels in the training data that the kernel
feature ϕko contributes to, and γiko is the contribution of
ϕko to pixel i which is obtained from the volume rendering
process. Similarly, the parameters of the background distri-
bution are learned using MLE on the features that are not
covered by the projected NBV model in the training data.
To reduce the computational cost, we follow [73] and em-
ploy a momentum strategy [14] to update Φ in a moving
average manner.
3D-aware contrastive learning of the UNet feature ex-
tractor. Given the generative model, we can train the UNet
feature extractor with the NLL loss as defined in Equation 9
w.r.t. the network parameters. In addition, we want the ex-
tracted feature map to have the property that the rendered
feature from NBV in the ground truth pose has the largest
probability. To this end, we incorporate a set of contrastive
losses:

LFG(F ,FG) = −
∑
i∈FG

∑
i′∈FG\{i}

∥fi − fi′∥2 (10)

L3D(F ) = −
∑
k

∑
o

∑
o′∈O\{o}

∑
i∈Kko

∑
j∈Kko′

∥fiko − fjko′∥2

(11)

LBG(F ,FG,BG) = −
∑
i∈FG

∑
j∈BG

∥fi − fj∥2 (12)

where LFG encourages features of different pixels to be dis-
tinct from each other. L3D encourages features of the same
kernel in different 3D poses to be distinct from each other,
i.e. to become 3D-aware. LBG encourages features on the
human to be distinct from those in the background. We op-
timize those losses jointly Lcontrast = LFG + L3D + LBG in
a contrastive learning framework. Therefore, the total loss
for training ζ is Ltrain = LNLL + Lcontrast.

Bottom-up initialization with regression heads. For effi-
cient inference, it is a common practice in generative mod-
eling to initialize with regression-based methods. In our
model, we add a regression head to the UNet feature extrac-
tor to predict the pose and shape parameters {θ,β} from the
observed feature map. The regression head and the UNet
are learned jointly.

3.6. Inference

We estimate the 3D human pose θ, shape parameters
β, and the camera parameters Π using the analysis-by-
synthesis formulation in Equation 1. This boils down to
minimizing an NLL loss plus a regularization term from the
pose prior p(θ) w.r.t {θ,β,Π}. The initialization comes
from the regression head. Our proposed generative model
is fully differentiable and therefore can be optimized using
gradient-based methods.

3.7. Implementation Details

We convert the neutral SMPL model to NBV using the
method described in Sec. 3.5, keeping 858 kernels. We use
a U-Net [60] style network as the feature extractor which
consists of a ResNet-50 [15] backbone and 3 upsampling
blocks. The regression head follows the design of [26]. The
input image is a 320×320 crop centered around the human.
The feature map has a 4× downsampled resolution and the
feature dimension is 64 which balances performance and
computation cost as shown in ablation in Sec. 4.3. The
Adam optimizer with a learning rate of 5× 10−5 and batch
size of 64 is used for training the feature extractor and the
regression head. Standard data augmentation techniques are
used including random flipping, scaling, and rotation. For
the 3D pose-dependent features, we consider the limb ori-
entation projected to the yz-plane and split the unit circle
evenly. We set O=4 for all kernels which already gives good
enough results as shown in the ablation study in Sec. 4.3.
We consider 9 limbs including the left/right upper/lower
arm/leg and the torso. The torso includes the head and its
orientation is defined as the direction from the mid-hip joint
to the neck joint. For inference, we also use Adam as the
optimizer with a learning rate of 0.02 and run a maximum
of 80 steps. We use VPoser [51] as our 3D pose prior. We
check the negative log-likelihood LNLL of the initial pose
and its 180◦-rotated version around y-axis and use the bet-
ter one to initialize our model. Inference speed is ∼ 1.7fps
with a batch size of 32 on 4 NVIDIA Titan Xp GPUs.

4. Experiments

In this section, we demonstrate the effectiveness and ro-
bustness of 3DNBF by comparing it with SOTA HPE. In ad-
dition to existing benchmarks, we propose a more challeng-
ing adversarial evaluation for occlusion robustness. Finally,
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we conduct ablation studies to verify the design choices and
effectiveness of different components.

4.1. Training Setup and Datasets

Training. Follow the common setting, we train NBV
on Human3.6M [19], MPI-INF-3DHP [41], and
COCO [36] datasets. We use ground truth SMPL fittings
for Human3.6M and MPI-INF-3DHP [24, 28] and the
pseudo-ground truth fittings from EFT [22] for COCO fol-
lowing [26]. The selection of subjects for training strictly
follows previous work [22,26,28]. We first train the feature
extractor on COCO for 175K iterations, then fine-tune on
all data for another 175K iterations. During fine-tuning,
the sampling ratio in each batch is 50% Human3.6M,
20% MPI-INF-3DHP and 30% COCO. Note that for all
baseline methods, we use the official model trained with
the same data as ours for fairness.

Occlusion Robustness Evaluation. We conduct eval-
uations on two datasets to measure the robustness and
generalization of our method: an in-the-wild dataset
3DPW-Occ [82] which is a subset of the original
3DPW [72] dataset and an artificial indoor occlusion dataset
3DOH50K [82]. In particular, we directly test all models
on these datasets without any training on them. For
3DPW and 3DPW-Occ, we sample the videos every 30
frames. We report mean per joint position error (MPJPE)
and Procrustes-aligned mean per joint position error
(PA-MPJPE) in mm as the main evaluation metrics. We
also report the 2D Percentage of Correct Keypoints with
head length threshold (PCKh) to measure how well the
prediction aligns with the 2D image.

Adversarial occlusion robustness evaluation. Inspired by
the occlusion analysis in [26], we design an adversarial pro-
tocol 3DPW-AdvOcc to further evaluate the occlusion ro-
bustness of SOTA methods. Specifically, we slide an oc-
clusion patch over the input image to find the worst predic-
tion. This is done by comparing the relative performance
degradation on the visible joints. We argue that evaluat-
ing the performance on occluded joints is sometimes am-
biguous since the location of occluded joints is not always
predictable even for human. Therefore, for a more stable
and meaningful evaluation, the joints outside the bounding
box or occluded by the patch are excluded from evaluation.
Instead of using a gray occlusion patch, we use textured
patches generated by randomly cropping texture maps from
the Describable Textures Dataset (DTD) [8], which is more
challenging. Two different square patch sizes are used: 40
and 80 relative to a 224 × 224 image, denoted as Occ@40
and Occ@80 respectively, and the stride is set to 10.

4.2. Performance Evaluation

Baselines. To demonstrate the superior performance and
occlusion robustness of 3DNBF, we compare our model
with four SOTA regression-based methods: SPIN [28],
HMR-EFT [22], Mesh Graphormer [35] and PARE [26]
where PARE is designed to be robust to occlusions with
part attention and trained with synthetic occlusion augmen-
tation. For fair comparisons, we adopt the models with
the same ResNet-50 backbone for all methods. We also
compare 3DNBF with SOTA optimization-base methods
that also improve occlusion robustness: SMPLify [4], 3D
POF [77] and EFT [22].
Comparison to SOTA. As shown in Table 1, we first eval-
uate on the standard 3DPW test set and 3DNBF achieves
SOTA performance. On occlusion datasets 3DPW-Occ and
3DOH50K, our improvement becomes more significant. We
then evaluate the occlusion robustness on 3DPW-AdvOcc
where we find all regression-based methods suffer from oc-
clusion with the MPJPE increasing up to 225% and the PA-
MPJPE increasing up to 127% even for the best-performing
method. The transformer-based model [35] suffers the most
from occlusion which we speculate to be due to overfitting.
In contrast, 3DNBF is much more robust to occlusion im-
proving over the SOTAs by a wide margin. Note that our
predictions align better with the image as shown in PCKh.
Comparison to other optimization-based methods. We
compare 3DNBF with three optimization-based methods on
3DPW and 3DPW-AdvOcc. We choose HMR-EFT as ini-
tial regressor to use the official EFT implementation. All
methods use the same 2D keypoints detected by Open-
Pose [5]. As shown in Table 2, we achieve the best per-
formance on both non-occluded and occluded settings. Al-
though SMPLify improves 2D PCKh, it does not quite im-
prove on the 3D metrics. This is due to SMPLify only fit-
ting SMPL parameters to 2D keypoints without capturing
any 3D information from the image, thus suffering from the
2D-3D ambiguity. EFT fine-tunes the regression network
using a 2D keypoint reprojection loss. It achieves better
performance than SMPLify because the regression network
itself can implicitly encode 3D information in the input im-
age and serve as a conditional 3D pose prior. However, EFT
does not improve on non-occluded cases.
Qualitative results. We qualitatively demonstrate the im-
proved occlusion robustness of 3DNBF compared to the
SOTA regression-based method PARE in Fig. 3 and show
more comparisons in the supplementary material. Notice
that PARE makes unaligned predictions for visible joints.

4.3. Ablation Studies

In this section, we provide ablation of different compo-
nents in 3DNBF including the NBV, the design of pose-
dependent features, and the 3D-aware contrastive loss. All
experiments are on 3DPW-AdvOcc@80.
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Method
3DPW [72] 3DPW-Occ [82] 3DPW-AdvOcc@40 3DPW-AdvOcc@80 3DOH50K [82]

MPJPE↓ P-MPJPE↓ PCKh↑ MPJPE↓ P-MPJPE↓ PCKh↑ MPJPE↓ P-MPJPE↓ PCKh↑ MPJPE↓ P-MPJPE↓ PCKh↑ MPJPE↓ P-MPJPE↓ PCKh↑

SPIN [28] 96.6 58.3 91.7 97.5 60.8 85.9 203.5 97.0 63.6 338.8 111.7 34.1 101.3 67.9 83.3
HMR-EFT [22] 89.5 53.4 93.1 95.8 57.1 87.2 146.7 73.2 77.8 202.8 83.7 63.7 97.4 65.8 84.4
MGraphr [35] 80.4 53.4 88.7 116.8 75.7 66.6 158.8 93.2 70.8 261.5 121.0 48.8 127.4 76.0 79.8
PARE [26] 81.4 50.9 92.5 86.8 58.8 86.2 126.5 72.5 82.3 210.9 97.4 61.9 100.7 65.1 84.2
3DNBF 79.8 49.3 95.7 77.2 51.2 93.1 105.1 60.5 92.0 140.7 71.8 85.0 86.7 57.5 88.6

Table 1: Evaluation on 3DPW, 3DPW-Occ, 3DPW-AdvOcc, and 3DOH50K. The number 40 and 80 after 3DPW-AdvOcc
denote the occluder size. Note the performance improvement of 3DNBF increases as occlusion becomes more severe. (P-
MPJPE: PA-MPJPE; MGraphr: Mesh Graphormer.)

Method
3DPW [72] 3DPW-AdvOcc@40 3DPW-AdvOcc@80

MPJPE↓ PA-MPJPE↓ PCKh↑ MPJPE↓ PA-MPJPE↓ PCKh↑ MPJPE↓ PA-MPJPE↓ PCKh↑

HMR-EFT [22] 89.5 53.4 93.1 146.7 73.2 77.8 202.8 83.7 63.7

+ SMPLify [4] 106.2 64.8 91.2 133.4 75.8 85.6 192.2 89.3 73.4
+ 3DPOF [77] 97.6 60.8 90.6 125.1 69.6 84.0 175.0 78.8 73.0
+ EFT [22] 92.8 55.9 93.0 114.1 64.6 88.7 158.2 75.2 78.5
+ 3DNBF 88.8 53.3 93.6 109.4 62.2 90.9 150.2 72.0 85.3

Table 2: Comparison to optimization-base methods. HMR-EFT is used for initialization.

Im
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e
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R
E
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N
B
F

3DPW 3DPW-Occ 3DPW-AdvOcc@40 3DPW-AdvOcc@80 3DOH50K

Figure 3: Qualitative results on evaluated datasets.

MPJPE↓ P-MPJPE↓ PCKh↑

3DNBF 140.7 71.8 85.0

Init. only 171.4 80.5 75.8
w/o NBV 146.6 72.6 83.1
w/o contrast 167.4 80.4 79.4

(a) Ablations for 3DNBF.

O MPJPE↓ P-MPJPE↓ PCKh↑

1 189.6 84.8 69.2
4 140.7 71.8 85.0
8 161.2 77.8 81.0

(b) # of pose-dependent fea-
tures. O=1 means using
pose-independent feature.

Table 3: Ablation studies. All experiments are performed
on 3DPW-AdvOcc@80. (P-MPJPE: PA-MPJPE.)

NBV vs. Mesh. To demonstrate the advantage of NBV over
mesh representation, we replace it with a mesh-based neural
representation using SMPL while keeping everything else

the same. We use the differentiable rendering implemen-
tation from PyTorch3D [55]. As shown in Table 3a, this
model achieves worse results than using NBV.
The pose-dependent kernel features. The 3D-aware
pose-dependent kernel feature is key to the success of
3DNBF. Here we validate its effectiveness by comparing
it with pose-independent feature (O=1). As shown in Ta-
ble 3b, much better performance is achieved with O>1. Us-
ing 4 features for each kernel achieves the best performance
while further increasing the number of features may make
the learning harder as it introduced more parameters.
Importance of contrastive training. We ablate this by
training our model without contrastive learning, i.e. train-
ing the feature extractor with regression loss only. The per-
formance degrades a lot as shown in Table 3a. The intuition
is that our model requires the features to be Gaussian dis-
tributed and contrastive learning encourages this.
Regression head performance. Although we do not
expect the regression head to be robust to occlusion, it
achieves higher occlusion robustness compared to other
regression-based methods as shown in Table 3a and Table 1.

5. Conclusion

In this work, we introduce 3D Neural Body Fitting
(3DNBF) - an approximate analysis-by-synthesis approach
to 3D HPE that is accurate and highly robust to occlusion.
To this end, NBV is proposed which is an explicit volume-
based generative model of pose-dependent features for hu-
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man body. We propose a contrastive learning framework for
training a feature extractor that captures the 3D pose infor-
mation of the body parts thus overcoming the 2D-3D am-
biguity in monocular 3D HPE. Experiments on challenging
benchmark datasets demonstrate that 3DNBF outperforms
SOTA regression-based methods as well as optimization-
based methods. While focusing on occlusion robustness in
this paper, we expect our model to be robust to other chal-
lenging adversarial examinations [61, 65].
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der, Adam Kortylewski, Andreas Morel-Forster, Clemens
Blumer, and Thomas Vetter. Occlusion-aware 3d morphable
models and an illumination prior for face image analysis.
International Journal of Computer Vision, 126(12):1269–
1287, 2018. 3

[11] Georgios Georgakis, Ren Li, Srikrishna Karanam, Terrence
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