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ABSTRACT

The Gaussian reconstruction kernels have been proposed by Westover (1990) and
studied by the computer graphics community back in the 90s, which gives an
alternative representation of object 3D geometry from meshes and point clouds.
On the other hand, current state-of-the-art (SoTA) differentiable renderers, Liu
et al. (2019), use rasterization to collect triangles or points on each image pixel
and blend them based on the viewing distance. In this paper, we propose VoGE,
which utilizes the volumetric Gaussian reconstruction kernels as geometric prim-
itives. The VoGE rendering pipeline uses ray tracing to capture the nearest prim-
itives and blends them as mixtures based on their volume density distributions
along the rays. To efficiently render via VoGE, we propose an approximate close-
form solution for the volume density aggregation and a coarse-to-fine rendering
strategy. Finally, we provide a CUDA implementation of VoGE, which enables
real-time level rendering with a competitive rendering speed in comparison to
PyTorch3D. Quantitative and qualitative experiment results show VoGE outper-
forms SoTA counterparts when applied to various vision tasks, e.g., object pose
estimation, shape/texture fitting, and occlusion reasoning. The code is available:
https://github.com/Angtian/VoGE.

1 INTRODUCTIONS

Recently, the integration of deep learning and computer graphics has achieved significant advances
in lots of computer vision tasks, e.g., pose estimation Wang et al. (2020a), 3D reconstruction Zhang
et al. (2021), and texture estimation Bhattad et al. (2021). Although the rendering quality of has
significant improved over decades of development of computer graphics, the differentiability of the
rendering process still remains to be explored and improved. Specifically, differentiable renderers
compute the gradients w.r.t. the image formation process, and hence enable to broadcast cues from
2D images towards the parameters of computer graphics models, such as the camera parameters, and
object geometries and textures. Such an ability is also essential when combining graphics models
with deep neural networks. In this work, we focus on developing a differentiable renderer using ex-
plicit object representations, i.e.Gaussian reconstruction kernels, which can be either used separately
for image generation or for serving as 3D aware neural network layers.

The traditional rendering process typically involves a naive rasterization Kato et al. (2018), which
projects geometric primitives onto the image plane and only captures the nearest primitive for each
pixel. However, this process eliminates the cues from the occluded primitives and blocks gradients
toward them. Also the rasterization process introduces a limitation for differentiable rendering, that
rasterization assumes primitives do not overlap with each other and are ordered front to back along
the viewing direction Zwicker et al. (2001). Such assumption raise a paradox that during gradient
based optimization, the primitives are necessary to overlap with each other when they change the
order along viewing direction. Liu et al. (2019) provide a naive solution that tracks a set of nearest
primitives for each image pixel, and blending them based on the viewing distance. However, such
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Figure 1: VoGE conducts ray tracing volume densities. Given the Gaussian Ellipsoids,i.e. a set
of ellipsoidal 3D Gaussian reconstruction kernels, VoGE �rst samples raysr (t). And along each
ray, VoGE traces the density distribution of each ellipsoid� k (r (t)) respectively. Then occupancy
T(r (t)) is accumulated via density aggregation along the ray. The observation of each Gaussian
ellipsoid kernelsWk is computed via integral of reweighted per-kernel volume densityWk (r (t)) .
Finally, VoGE synthesizes the image using the computedWk on each pixel to interpolate per kernel
attributes. In practice, the density aggregation is bootstrapped via approximate close-form solutions.

approach introduces an ambiguity that, for example, there is a red object �oating in front of a large
blue object laying as background. Using the distance based blending method, the cues of the second
object will change when moving the red one from far to near, especially when the red object are near
the blue one, which will give a unrealistic purple blending color. In order to resolve the ambiguity,
we record the volume density distributions instead of simply recording the viewing distance, since
such distributions provide cues on occlusion and interaction of primitives when they overlapped.

Recently, Mildenhall et al. (2020); Schwarz et al. (2020) show the power of volume rendering with
high-quality occlusion reasoning and differentiability, which bene�ts from the usage of ray tracing
volume densities introduced by Kajiya & Von Herzen (1984). However, the rendering process in
those works relies on implicit object representations which limits the modi�ability and interpretabil-
ity. Back in the 90s, Westover (1990); Zwicker et al. (2001) develop the splatting method, which
reconstruct objects using volumetric Gaussian kernels and renders based on a simpli�cation of the
ray tracing volume densities method. Unfortunately, splatting methods were designed for graphics
rendering without considering the differentiability and approximate the ray tracing volume densi-
ties using rasterization. Inspired by both approaches, Zwicker et al. (2001); Liu et al. (2019), we
propose VoGE using 3D Gaussians kernels to represent objects, which give soften boundary of prim-
itives. Speci�cally, VoGE traces primitives along viewing rays as a density function, which gives a
probability of observation along the viewing direction for the blending process.

In VoGE rendering pipeline, the ray tracing method is designed to replace rasterization, and a better
blending function is developed based on integral of traced volume densities functions. As Figure 1
shows, VoGE uses a set of Gaussian ellipsoids to reconstruct the object in 3D space. Each Gaussian
ellipsoid is indicated with a center locationM , and a spatial variance� . During rendering, we �rst
sample viewing rays by the camera con�guration. We trace the volume density of each ellipsoid as
a function of distance along the ray respectively on each ray, and compute the occupancy along the
ray via an integral of the volume density and reweight the contribution of each ellipsoid. Finally,
we interpolate the attribute of each reconstruction kernel with the kernel-to-pixel weights into an
image. In practice, we propose an approximate close-form solution, which avoids computational
heavy operation in the density aggregation without,e.g., integral, cumulative sum. Bene�ted from
advanced differentiability, VoGE obtains both high performance and speed on various vision tasks.

In summary, the contribution of VoGE includes:

1. A ray tracing method that traces each component along viewing ray as density functions.
VoGE ray tracer is a replacement for rasterization.

2. A blending function based on integral of the density functions along viewing rays that
reasons occlusion between primitives, which provides differentiability toward both visible
and invisible primitives.

3. A differentiable CUDA implementation with real-time level rendering speed. VoGE can be
easily inserted into neural networks via our PyTorch APIs.

4. Exceptional performance on various vision tasks. Quantitative results demonstrate that
VoGE signi�cantly outperforms concurrent state-of-the-art differentiable renderer on in-
wild object pose estimation tasks.
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Table 1: Comparison with state-of-the-art differentiable renderers. Similar to NeRF but different
from previous graphics renderers, VoGE uses ray tracing to record volume densities on each ray for
each ellipsoid, and blends them with transmittance computed via volume densities.

Method Representation Primitives Visibility Algorithm Blending
Kato et al. (2018) explicit mesh rasterization none
Liu et al. (2019) explicit mesh rasterization distance
Ravi et al. (2020) explicit mesh/points rasterization distance
Yifan et al. (2019) explicit 2D Gaussian rasterization distance
Lassner & Zollhofer (2021) explicit sphere rasterization distance
VoGE (ours) explicit 3D Gaussian ray tracing transmittance
Mildenhall et al. (2020) implicit — ray tracing transmittance

2 RELATED WORKS

Volume Rendering.In the 1980s, Blinn (1982) introduces the volume density representation, which
simulates the physical process of light interacting with matter. Kajiya & Von Herzen (1984) develop
the ray tracing volume density aggregation algorithm, which renders the volume density via light
scattering equations. However, obtaining the contiguous volume density function is infeasible in
practice. Currently Mildenhall et al. (2020); Niemeyer et al. (2020); Mescheder et al. (2019); Genova
et al. (2020); Zhang et al. (2019); Vicini et al. (2022), use implicit functions,e.g., neural networks,
as object representations. Though those implicit representations give a satisfying performance, such
representations are lacking interpretability and modi�ability, which may limit their usage in analysis
tasks. In this work, we provide a solution that utilizes explicit representation while rendering with
the ray tracing volume density aggregation.

Kernel Reconstruction of 3D Volume.Westover (1990) introduces the volume reconstruction ker-
nel, which decomposes a 3D volume into a sum of homogeneous primitives. Zwicker et al. (2001)
introduces the elliptical Gaussian kernel and show such reconstruction gives satis�ed shape approx-
imation. However, both approaches conduct non-differentiable rendering and use rasterization to
approximate the ray tracing process.

Differentiable Renderer using Graphics. Graphics renderers use explicit object representations,
which represent objects as a set of geometry primitives. As Table 1 shows, concurrent differen-
tiable graphics renderers use rasterization to determine visibility of primitives. In order to compute
gradients across primitives boundaries, Loper & Black (2014); Kato et al. (2018); Liu et al. (2017)
manually create the gradients while Liu et al. (2019); Yifan et al. (2019); Li et al. (2018); Nimier-
David et al. (2019); Laine et al. (2020) use primitives with soft boundaries to allow gradients �ow.
Whereas to differentiate toward those occluded primitives, current differentiable renders, Liu et al.
(2019); Yifan et al. (2019); Lassner & Zollhofer (2021), aggregate tracked primitives via viewing
distance. However, all existing graphics renderers ignore the density distributions when conducting
aggregation, which will introduce confusion while limiting differentiability.

Renderer for Deep Neural Features.Recent works demonstrate exceptional performance for ren-
dering deep neural features. Speci�cally, for object pose estimation, Wang et al. (2020a); Iwase
et al. (2021), demonstrate rendering on deep neural features bene�ts the optimization process in
render-and-compare. Niemeyer & Geiger (2021) show rendering deep neural features also helps
image generation tasks. In our work, we show VoGE bene�ts rendering using deep neural features
via a better reconstruction of the spatial distribution of deep neural features.

3 VOLUME RENDERER FORGAUSSIAN ELLIPSOIDS

In this section, we describe VoGE rendering pipeline that renders 3D Gaussians Ellipsoids into
images under a certain camera con�guration. Section 3.1 introduces the volume rendering. Section
3.2 describes the kernel reconstruction of the 3D volume using Gaussian ellipsoids. In Section 3.3,
we propose the rendering pipeline for Gaussian ellipsoids via an approximate closed-form solution
of ray tracing volume densities. Section 3.4 discusses the integration of VoGE with deep neural
networks.
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Figure 2: Rendering with increasing numbers of Gaussian
Ellipsoids. Top: the kernel-to-pixel weight along the me-
dian row on the image, the colors demonstrate each corre-
sponded Gaussian ellipsoids. Bottom: the rendered RGB
image. Note VoGE resolves occlusion naturally in a con-
tiguous way.

Figure 3: Computing gradient of
M when rendering two ellipsoids.
The colored numbers below indi-
cate theM of each ellipsoids. The
red arrow andGx ; Gy show the
@(I � Î )2

@M red
.

3.1 VOLUME RENDERING

Different from the surface-based shape representations, in volume rendering, objects are represented
using continuous volume density functions. Speci�cally, for each point in the volume, we have a
corresponded density� (x; y; z) with emitted colorc(x; y; z) = ( r; g; b), where(x; y; z) denotes the
location of the point in the 3D space. Kajiya & Von Herzen (1984) propose using the light scattering
equation during volume density, which provides a mechanism to compute the observed colorC(r )
along a rayr (t) = ( x(t); y(t); z(t)) :

C(r ) =
Z t f

t n

T(t)� (r (t))c(r (t))dt; whereT(t) = exp
�

� �
Z t

t n

� (r (s))ds
�

(1)

where� is a coef�cient that determines the rate of absorption,tn andt f denotes the near and far
bound alone the ray,T(t) is the transmittance.

3.2 GAUSSIAN ELLIPSOID RECONSTRUCTIONKERNEL

Due to the dif�culty of obtaining contiguous function of the volume density and enormous computa-
tion cost when calculating the integral, Westover (1990) introduces kernel reconstruction to conduct
volume rendering in a computationally ef�cient way. The reconstruction decomposes the contigu-
ous volume into a set of homogeneous kernels, while each kernel can be described with a simple
density function. We use volume ellipsoidal Gaussians as the reconstruction kernels. Speci�cally,
we reconstruct the volume with a sum of ellipsoidal Gaussians:

� (X ) =
KX

k=1

1
p

2� � jj � k jj2
e� 1

2 (X � M k )T � � � 1
k � (X � M k ) (2)

whereK is the total number of Gaussian kernels,X = ( x; y; z) is an arbitrary location in the 3D
space. TheM k , a3 � 1 vector, is the center ofk-th ellipsoidal Gaussians kernel. Whereas the� k
is a3 � 3 spatial variance matrix, which controls the direction, size and shape ofk-th kernel. Also,
following Zwicker et al. (2001), we assume that the emitted color is approximately constant inside
each reconstruction kernelc(r (t)) = ck .

TheVoGE mesh convertercreates Gaussian ellipsoids from a mesh. Speci�cally, we create Gaus-
sians centered at all vertices' locations of the mesh. First, we compute a sphere-type Gaussians with
same� k on each direction, via average distancel̂ from the center vertex to its connected neighbors,
� k = l̂ 2

4�log(1 =� ) where� is a parameter controls the Gaussians size. Then, we �atten the sphere-
type Gaussians into ellipsoids with a �atten rate. Finally, for each Gaussian, we compute a rotation
matrix via the mesh surface normal direction of the corresponded mesh vertex. We dot the rotation
matrix onto the� k to make the Gaussians �atten along the surface.
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Figure 4: The forward process for VoGE rendering. The camera is described with the extrinsic
matrix E composed withR andT , as well as the intrinsic matrixI composed withF andOx ; Oy .
Given Gaussian Ellipsoids, VoGE renderer synthesizes an imageO.

3.3 RENDER GAUSSIAN ELLIPSOIDS

Figure 4 shows the rendering process for VoGE. VoGE takes inputs of a perspective camera and
Gaussian ellipsoids to render images, while computing gradient towards both camera and Gaussian
ellipsoids (shows in Figure 2 and 3).
Viewing transformation utilizes the extrinsic con�gurationE of the camera to transfer the Gaussian
ellipsoids from the object coordinate to the camera coordinate. LetM o

k denote centers of ellipsoids
in the object coordinate. Following the standard approach, we compute the centers in the camera
coordinate:

M k = R � M o
k + T (3)

whereR andT are the rotation and translation matrix included inE. Since we consider 3D Gaus-
sian Kernels are ellipsoidal, observations of the variance matrices are also changed upon camera
rotations:

� � 1
k = R T � (� o

k ) � 1 � R (4)

Perspective raysindicate the viewing direction in the camera coordinate. For each pixel, we com-
pute the viewing ray under the assumption that the camera is fully perspective:

r (t) = D � t =
� i � Oy

F
j � Ox

F 1
� T

� t (5)

wherep = ( i; j ) is the pixel location on the image,Ox ; Oy is the principal point of the camera,F is
the focal length,D is the ray direction vector.
Ray tracing observes the volume densities of each ellipsoid along the rayr respectively. Note
the observation of each ellipsoid is a 1D Gaussian function along the viewing ray (for detailed
mathematics, refer to Appendix A.1):

� m (r (s)) = exp( qm �
(s � lm )2

2 � � 2
m

) (6)

wherelm = M T
m � � � 1

m �D + D T � � � 1
m �M m

2�D T � � � 1
m �D

is the length along the ray that gives peak activation form-th

kernel. qm = � 1
2 V T

m � � � 1
m � V m ; where V m = M m � lm � D computes peak density ofm-th

kernel alone the ray. The 1D variance is computed via1
� 2

m
= D T � � � 1

m � D . Thus, when tracing
along each ray, we only need to recordlm , qm and� m for each ellipsoid respectively.
Blending via Volume Densitiescomputes the observation along the rayr . As Figure 1 shows, dif-
ferent from other generic renderers, which only consider the viewing distance for blending, VoGE
blends all observations based on the integral of volume densities along the ray. However, comput-
ing the integral using brute force is so computationally inef�cient that even infeasible for concur-
rent computation power. To resolve this, we propose an approximate closed-form solution, which
conducts the computation in both an accurate and effective way. We use the Error Functionerf
to compute the integral of Gaussian, since it can be computed via a numerical approach directly.
Speci�cally, with Equation 2 and Equation 5, we can calculate the transmittanceT(t) as (for proof
about this approximation, refer to Appendix A.2):

T(t) = exp( � �
Z t

�1
� (r (s))ds) = exp( � �

KX

m =1

eqm
erf((t � lm )=� m ) + 1

2
) (7)
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Figure 5: Comparison for rendering speeds of VoGE and PyTorch3D, reported in images per second
(higher better). We evaluate the rendering speed using cuboids with different number of primitives
(vertices, ellipsoids), which illustrated using different colors, also different image sizes and number
of primitives per pixel.

Now, to compute closed-form solution of the outer integral in Equation 1, we use theT(t); t = lk at
the peak of� (r (t)) alone the rays. Here we provide the closed-form solution forC(r ):

C(r ) =
Z 1

�1
T(t)� (r (t))c(r (t))dt =

KX

k=1

T(lk )eqk ck (8)

Note based on the assumption that distances from camera to ellipsoids are signi�cantly larger than
ellipsoid sizes, thus it is equivalent to settn = �1 andt f = 1 .
Coarse-to-�ne rendering. In order to improve the rendering ef�ciency, we implement VoGE ren-
dering with a coarse-to-�ne strategy. Speci�cally, VoGE renderer has an optional coarse rasterizing
stage that, for each ray, selects only around 10% of all ellipsoids (details in Appendix A.3). Besides,
the ray tracing volume densities also works in a coarse-to-�ne manner. VoGE blendsK

0
nearest

ellipsoids among all traced kernels that giveseqk > thr = 0 :01. Using CUDA from NVIDIA et al.
(2022), we implement VoGE with both forward and backward function. The CUDA-VoGE is packed
as an easy-to-use ”autogradable” PyTorch API.

3.4 VOGE IN NEURAL NETWORKS

VoGE can be easily embedded into neural networks by serving as neural sampler and renderer.
As a sampler, VoGE extracts attributes� k (e.g., deep neural features, textures) from images or
feature maps into kernel-correspond attributes, which is conducted via reconstructing their spatial
distribution in the screen coordinates. When serving as a renderer, VoGE converts kernel-correspond
attributes into images or feature maps. Since both sampling and rendering give the same spatial
distribution of feature/texture, it is possible for VoGE to conduct geometry-based image-to-image
transformation.

Here we discuss how VoGE samples deep neural features. Let� denotes observed features, where
� p is the value at locationp. Let A =

S K
k=1 f � k g denotes the per kernel attribute, which we want

to discover during sampling. With a given object geometry� =
S K

k=1 f M k ; � k g and viewing rays
r (p). The the observation formulated with conditional probability regarding� k :

�
0
(p) =

KX

k=1

P(� k j� ; r (p); k)� k (9)

Since� is a discrete observation of a continuous distribution� (p) on the screen, the synthesis can
only be evaluated at discrete positions,i.e.the pixel centers. As the goal is to make�

0
similar as�

on all observable locations, we resolve via an inverse reconstruction:

� k =
PX

p=1

P(� (p)j� ; r (p); p)� (p) =

P P
p=1 W p;k � � p
P P

p=1 W p;k

(10)

whereW p;k = T(lk )eqk is the kernel-to-pixel weight as described in 3.1.
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Table 2: Pose estimation results on the PASCAL3D+ and the Occluded PASCAL3D+ dataset. Oc-
clusion level L0 is the original images from PASCAL3D+, while Occlusion Level L1 to L3 are the
occluded PASCAL3D+ images with increasing occlusion ratios. NeMo is an object pose estimation
pipeline via neural feature level render-and-compare. We compare the object pose estimation per-
formance using different renderers,i.e. VoGE, Soft Rasterizer, DSS, PyTorch3D (which is used in
NeMo originally).

Evaluation Metric ACC �
6

" ACC �
18

" MedErr #
Occlusion Level L0 L1 L2 L3 L0 L1 L2 L3 L0 L1 L2 L3
Res50-General 88.1 70.4 52.8 37.844.6 25.3 14.5 6.7 11.7 17.9 30.4 46.4
Res50-Speci�c 87.6 73.2 58.4 43.143.9 28.1 18.6 9.9 11.8 17.3 26.1 44.0
StarMap 89.4 71.1 47.2 22.959.5 34.4 13.9 3.7 9.0 17.6 34.1 63.0
NeMo+SoftRas 85.3 75.2 63.0 44.359.7 46.7 32.1 16.8 9.1 14.8 24.0 39.3
NeMo+DSS 81.1 71.9 56.8 38.733.5 30.4 23.0 14.116.1 19.8 25.8 40.4
NeMo+PyTorch3D 86.1 76.0 63.9 46.861.0 46.3 32.0 17.1 8.8 13.6 20.9 36.5
NeMo+VoGE(Ours) 90.1 83.1 72.5 56.069.2 56.1 41.5 24.8 6.9 9.9 15.0 26.3

Figure 6: Qualitative object pose estimation results on PASCAL3D+ dataset. We visualize the
predicted object poses from NeMo+VoGE and standard NeMo. Speci�cally, we use a standard
mesh renderer to render the original CAD model under the predicted pose and superimpose onto the
input image.

4 EXPERIMENT

We explore several applications of VoGE. In section 4.1, we study the object pose estimation using
VoGE in a feature level render-and-compare pose estimator. In section 4.2, we explore texture ex-
traction ability of VoGE. In section 4.4, we demonstrate VoGE can optimize the shape representation
via multi-viewed images. Visualizations of VoGE rendering are included in Appendix B.
Rendering Speed.As Figure 5 shows, CUDA-VoGE provides a competitive rendering speed com-
pare to state-of-the-art differentiable generic renderer when rendering a single cuboidal object.

4.1 OBJECTPOSEESTIMATION IN WILD

We evaluate the ability of VoGE when serving as a feature sampler and renderer in an object pose
estimation pipeline, NeMo Wang et al. (2020a), an in-wild category-level object 3D pose estimator
that conducts render-and-compare on neural feature level. NeMo utilizes PyTorch3D Ravi et al.
(2020) as the feature sampler and renderer, which converts the feature maps to vertex corresponded
feature vectors and conducts the inverse process. In our NeMo+VoGE experiment, we use VoGE to
replace the PyTorch3D sampler and renderer via the approach described in Section 3.4.
Dataset. Following NeMo, we evaluate pose estimation performance on the PASCAL3D+ dataset
Xiang et al. (2014), the Occluded PASCAL3D+ dataset Wang et al. (2020b) and the ObjectNet3D
dataset Xiang et al. (2016). The PASCAL3D+ dataset contains objects in 12 man-made categories
with 11045 training images and 10812 testing images. The Occluded PASCAL3D+ contains the
occluded version of same images, which is obtained via superimposing occluder cropped from MS-
COCO dataset Lin et al. (2014). The dataset includes three levels of occlusion with increasing
occlusion rates. In the experiment on ObjectNet3D, we follow NeMo to test on 18 categories.
Evaluation Metric. We measure the pose estimation performance via accuracy of rotation er-
ror under given thresholds and median of per image rotation errors. The rotation error is de-
�ned as the difference between the predicted rotation matrix and the ground truth rotation matrix:

� ( Rpred ; Rgt ) =
klog m (R T

pred R gt )k
Fp

2
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Table 3: Pose estimation results on the ObjectNet3D dataset. Evaluated via pose estimation accuracy
for error under�6 (higher better).

ACC �
6

" bed shelf calculator cellphone computer cabinet guitar iron knife
StarMap 40.0 72.9 21.1 41.9 62.1 79.9 38.7 2.0 6.1
NeMo+PyTorch3D 56.1 53.7 57.1 28.2 78.8 83.6 38.8 32.3 9.8
NeMo+VoGE(Ours) 76.8 83.2 77.8 50.7 78.8 83.6 54.6 45.4 12.1
ACC �

6
" oven pen pot ri�e slipper stove toilet tub wheelchair

StarMap 86.9 12.4 45.1 3.0 13.3 79.7 35.6 46.4 17.7
NeMo+PyTorch3D 90.3 3.7 66.7 13.7 6.1 85.2 74.5 61.6 71.7
NeMo+VoGE(Ours) 94.9 13.5 77.8 30.8 22.2 89.8 81.9 68.9 68.4

Figure 7: Sampling texture and rerendering on novel view. The inputs include a single RGB image
and the Gaussian Ellipsoids with corresponded pose. Note the result is producedwithout any train-
ing or symmetrical information.

Baselines. We compare our VoGE for object pose estimation with other state-of-the-art differ-
entiable renderers,i.e. Soft Rasterizer, DSS, and PyTorch3D. For comparison, we use the same
training and inference pipeline, and same hyper-parameters for all 4 experiments. Our baselines
also includes Res50-General/Speci�c which converts object pose estimation into a bin classi�cation
problem, and StarMap Zhou et al. (2018) which �rst detect keypoints and conduct pose estimation
via the PnP method.
Experiment Details. Following the experiment setup in NeMo, we train the feature extractor 800
epochs with a progressive learning rate. During inference, for each image, we sample 144 starting
poses and optimizer 300 steps via an ADAM optimizer. We convert the meshes provided by NeMo
using the method described Section 3.2.
Results.Figure 6 and Table 2 show the qualitative and quantitative results of object pose estimation
on PASCAL3D+ and the Occluded PASCAL3D+ dataset. Results in Table 2 demonstrate signi�cant
performance improvement using VoGE compared to Soft RasterizerLiu et al. (2019), DSSYifan et al.
(2019) and PyTorch3DRavi et al. (2020). Moreover, both qualitative and quantitative results show
our method a signi�cant robustness under partial occlusion and out distributed cases. Also, Figure
6 demonstrates our approach can generalize to those out distributed cases,e.g., a car without front
bumper, while infeasible for baseline renderers. Table 3 shows the results on ObjectNet3D, which
demonstrates a signi�cant performance gain compared to the baseline approaches. The ablation
study is included in Appendix C.1.

4.2 TEXTURE EXTRACTION AND RERENDERING

As Figure 7 shows, we conduct the texture extraction on real images and rerender the extracted
textures under novel viewpoints. The qualitative results is produced on PASCAL3D+ dataset. The
experiment is conducted on each image independently that there is no training included. Speci�cally,
for each image, we have only three inputs,i.e. the image, the camera con�guration, the Gaussian
ellipsoids converted from the CAD models provided by the dataset. Using the method proposed in
3.4, we extract the RGB value for each kernel on the Gaussian ellipsoids using the given groundtruth
camera con�guration. Then we rerender Gaussian ellipsoids with the extracted texture under a novel
view, that we increase or decrease the azimuth of the viewpoint (horizontal rotation). The qualitative
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Figure 8: Reasoning multi-object occlusions for single view op-
timization of object location. Left: initialization and target loca-
tions. Middle: target images, note the target image generate via
each rendering method. Right: results. Videos: VoGE, SoftRas.

Figure 9: Shape �tting results
with 20 multi-viewed images
following the PyTorch3D Ravi
et al. (2020) of�cial tutorial.

results demonstrate a satisfying texture extraction ability of VoGE, even with only a single image.
Also, the details (e.g., numbers on the second car) are retained in high quality under the novel views.

4.3 OCCLUSION REASONING OFMULTIPLE OBJECTS

Figure 8 shows differentiating the occlusion reasoning process between two objects. Speci�cally, a
target image, and the colored cuboid models and initialization locations, are given to the method.
Then we render and optimize the 3D locations of both the cuboids. In this experiment, we �nd both
SoftRas and VoGE can successfully optimize the locations when the occludee (blue cuboid) is near
the occluder (red cuboid), which is 1.5 scales behind the occluder as the thickness of the occluder
is 0.6 scales. However, when the the occludee is far behind the occluder (5 scales), SoftRas fails to
produce correct gradient to optimize the locations, whereas VoGE can still successfully optimize the
locations. We think such advantage bene�ts from the better volume density blending compared to
the distance based blender used in SoftRas.

4.4 SHAPE FITTING VIA INVERSERENDERING

Figure 9 shows the qualitative results of multi-viewed shape �tting. In this experiment, we follows
the setup in�t a mesh with texture via renderingfrom PyTorch3D of�cial tutorial Ravi et al. (2022a).
First, a standard graphic renderer is used to render the cow CAD model in 20 different viewpoints
under a �xed light condition, which are used as the optimization targets. For both baseline and
ours, we give a sphere object geometry with 2562 vertices and optimize toward target images using
the same con�guration,e.g., iterations, learning rate, optimizer, loss function. During the shape
optimization process, we compute MSE loss on both silhouettes and RGB values between the syn-
thesized images and the targets. The vertices locations and colors are gradiently updated with an
ADAM optimizer Kingma & Ba (2014). We conduct the optimization for 2000 iterations, while in
each iteration, we randomly select 5 out of 20 images to conduct the optimization. In Figure 9 (e)
and (f), we use the normal consistency, edge and Laplacian loss Nealen et al. (2006) to constrain
the object geometry, while in (d) no additional loss is used. From the results, we can see that VoGE
has a competitive ability regarding shape �t via deformation. Speci�cally, VoGE gives better color
prediction and a smoother object boundary. Also, we observe the current geometry constrain losses
do not signi�cantly contribute to our �nal prediction. We argue those losses are designed for surface
triangular meshes, that not suitable for Gaussian ellipsoids. The design of geometry constraints that
are suitable for Gaussian ellipsoids is an interesting topic but beyond scope of this paper.

5 CONCLUSION

In this work, we propose VoGE, a differentiable volume renderer using Gaussian Ellipsoids. Ex-
periments on in-wild object pose estimation and neural view matching show VoGE an extraordinary
ability when applied on neural features compare to the concurrent famous differential generic ren-
derers. Texture extraction and rerendering experiment shows VoGE the ability on feature and texture
sampling, which potentially bene�ts downstream tasks. Overall, VoGE demonstrates better differ-
entiability, which bene�ts vision tasks, while retains competitive rendering speed.
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Tzu-Mao Li, Miika Aittala, Fŕedo Durand, and Jaakko Lehtinen. Differentiable monte carlo ray
tracing through edge sampling.ACM Transactions on Graphics (TOG), 37(6):1–11, 2018.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. InEuropean
conference on computer vision. Springer, 2014.

Guilin Liu, Duygu Ceylan, Ersin Yumer, Jimei Yang, and Jyh-Ming Lien. Material editing using
a physically based rendering network. InProceedings of the IEEE International Conference on
Computer Vision, 2017.

Shichen Liu, Tianye Li, Weikai Chen, and Hao Li. Soft rasterizer: A differentiable renderer for
image-based 3d reasoning. InProceedings of the IEEE/CVF International Conference on Com-
puter Vision, 2019.

Matthew M Loper and Michael J Black. Opendr: An approximate differentiable renderer. InEuro-
pean Conference on Computer Vision. Springer, 2014.

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger. Oc-
cupancy networks: Learning 3d reconstruction in function space. InProceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2019.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance �elds for view synthesis. InEuropean
conference on computer vision. Springer, 2020.

10



Published as a conference paper at ICLR 2023

Andrew Nealen, Takeo Igarashi, Olga Sorkine, and Marc Alexa. Laplacian mesh optimization. In
Proceedings of the 4th international conference on Computer graphics and interactive techniques
in Australasia and Southeast Asia, 2006.

Michael Niemeyer and Andreas Geiger. Giraffe: Representing scenes as compositional genera-
tive neural feature �elds. InProceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2021.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable volumet-
ric rendering: Learning implicit 3d representations without 3d supervision. InProceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020.

Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob. Mitsuba 2: A retargetable
forward and inverse renderer.ACM Transactions on Graphics (TOG), 38(6):1–17, 2019.
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A A DDITIONAL DETAILS OF VOGE RENDERER

In this section we provide more detailed discussion for the math of ray tracing volume densities
in VoGE (section A.1 and A.2), coarse-to-�ne rendering strategy (section A.3), and the converters
(section A.4).

A.1 RAY TRACING

In this section, we provide the detailed deduction process for Equations 6 in the main text. First,
let's recall the formula of Ray tracing volume densities Kajiya & Von Herzen (1984):

C(r ) =
Z t f

t n

T(t)� (r (t))c(r (t))dt;

whereT(t) = exp
�

� �
Z t

t n

� (r (s))ds
� (11)

whereT(t) is the occupancy function alone viewing rayr (t), as we describe in Equation 5 in main
text:

r (t) = D � t (12)

whereD is the normalized direction vector of the viewing ray.

Also, as we describe in Section 3.2, we reconstruct the volume density function� (r (t)) via the sum
of a set of ellipsoidal Gaussians:

� (X ) =
KX

k=1

1
p

2� � jj � k jj2
e� 1

2 (X � M k )T � � � 1
k � (X � M k ) (13)

whereK is the total number of Gaussian kernels,X = ( x; y; z) is an arbitrary location in the 3D
volume.M k is the center ofk-th ellipsoidal Gaussians kernel:

M k = ( � k;x ; � k;y ; � k;z ) (14)

whereas the� k is the spatial variance matrix:

� k =

"
� k;xx � k;xy � k;xz
� k;yx � k;yy � k;yz
� k;zx � k;zy � k;zz

#

(15)

Note that� k is a symmetry matrix, e.g., covariance� k;xy = � k;yx .

Occupancy Function.Based on Equation 13 and 11,T(t) can be computed via:

T(t) = exp
�

� �
Z t

t n

� (r (s))ds
�

= exp( � �
Z t

t n

KX

k=1

1
p

2� � jj � k jj2
e� 1

2 (sD � M k )T � � � 1
k � (sD � M k ) ds)

(16)

Now, let M k = lk D + V k , wherelk is a length along the viewing ray,V k = M k � lk D is the
vector from locationlk D on the ray to the vertexM k (we will discuss a solution forV k and lk
later). Equation 16 can be simpli�ed as:

T(t) = exp( � �
Z t

t n

KX

k=1

1
p

2� � jj � k jj2
e� 1

2 (s� l k )2 D T � � � 1
k �D

e� 1
2 (s� l k )( V T

k � � � 1
k �D + D T � � � 1

k �V k ) e� 1
2 V T

k � � � 1
k �V k ds)

(17)

In order to further simplifyT(t), we takeV k that makes:

V T
k � � � 1

k � D + D T � � � 1
k � V k = 0 (18)
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