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Abstract

An increasing number of public datasets have shown a
marked impact on automated organ segmentation and tu-
mor detection. However, due to the small size and partially
labeled problem of each dataset, as well as a limited inves-
tigation of diverse types of tumors, the resulting models are
often limited to segmenting specific organs/tumors and ig-
nore the semantics of anatomical structures, nor can they be
extended to novel domains. To address these issues, we pro-
pose the CLIP-Driven Universal Model, which incorporates
text embedding learned from Contrastive Language-Image
Pre-training (CLIP) to segmentation models. This CLIP-
based label encoding captures anatomical relationships,
enabling the model to learn a structured feature embedding
and segment 25 organs and 6 types of tumors. The proposed
model is developed from an assembly of 14 datasets, using
a total of 3,410 CT scans for training and then evaluated
on 6,162 external CT scans from 3 additional datasets. We
rank first on the Medical Segmentation Decathlon (MSD)
public leaderboard and achieve state-of-the-art results on
Beyond The Cranial Vault (BTCV). Additionally, the Uni-
versal Model is computationally more efficient (6× faster)
compared with dataset-specific models, generalized better
to CT scans from varying sites, and shows stronger transfer
learning performance on novel tasks.

1. Introduction
Enormous advances in medical imaging benefit from the

ever-growing number of annotated datasets [43, 1, 42, 31,
76]. Although a total of around 5,000 annotated abdom-
inal CT scans are publicly available, it is still commonly
perceived that medical imaging datasets are too small to de-
velop robust AI models [94, 72, 54, 66, 95, 13]. One reason
for this impression is the high cost of detailed per-voxel seg-
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Figure 1. Cosine similarity between CLIP embeddings. The
CLIP embedding reveals the intrinsic semantics of the anatomical
structures by mapping similar concepts close to each other in the
embedding space. For example, “Liver” has a large similarity with
“Liver Tumor” and “Hepatic Vessel” (the hepatic vessel returns
low-oxygen blood from the liver to the heart, which has a high
anatomical relationship with the liver).

mentation annotations, which can take nearly one hour per
organ for an expert annotator. Since each institute has time,
monetary, and clinical constraints, the number of CT scans
in each dataset is limited, and the types of annotated organs
vary significantly from institute to institute. Moreover, only
a small proportion (hundreds) of public CT scans contain
tumor annotation performed by experts [3, 24, 1].

The partially labeled problem [32, 88, 37] can impose
significant limitations on the performance of models trained
on existing public datasets, ultimately hindering their effec-
tiveness for multi-organ segmentation and tumor detection.
However, despite this challenge, the potential of AI models
in these areas remains promising and largely unexplored.
This has motivated us to exploit the public datasets with par-
tial labels, and demonstrate the clinical impact of AI frame-
work, including model expansibility (i.e., adaptable to var-
ious network backbone), generalizability (i.e., robust to CT
scans from various hospitals) [43] and transferability (i.e.,
generic image representation that is transferable to multiple
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downstream tasks) [97]. Specifically, we have assembled 14
publicly available datasets, including 3,410 CT scans with
25 partially annotated organs and 6 tumors.

Formidable challenges exist in assembling partially an-
notated datasets. First, label inconsistency, in five aspects.
(i) Index inconsistency. The same organ can be labeled as
different indexes. For example, the stomach is labeled ‘7’
in BTCV, but ‘5’ in WORD. (ii) Name inconsistency. Nam-
ing can be confusing if multiple labels refer to the same
anatomical structure. For example, “postcava” in AMOS22
and “inferior vena cava” in BTCV. (iii) Background incon-
sistency. For example, when combining Pancreas-CT and
MSD-Spleen, the pancreas is marked as the background in
MSD-Spleen, but it should have been marked as the fore-
ground. (iv) Organ overlapping. There is overlap between
various organs. For example, “Hepatic Vessel” is part of
the “Liver” and “Kidney Tumor” is a sub-volume of the
“Kidney”. (v) Data overlapping. Some CT scans are over-
lapped among public datasets, but with different annota-
tions. For example, KiTS is part of AbdomenCT-1K, and
kidney tumor is annotated in KiTS rather than AbdomenCT-
1K. Second, label orthogonality. Most segmentation meth-
ods, trained with one-hot labels [88], ignore the seman-
tic relationship between classes. Given one-hot labels of
liver [1,0,0], liver tumor [0,1,0], and pancreas [0,0,1], there
is no semantic difference between liver↔liver tumor and
liver↔pancreas. A possible solution is few-hot labels [62],
with which, the liver, liver tumor, and pancreas can be en-
coded as [1,0,0], [1,1,0], and [0,0,1]. Although few-hot la-
bels could indicate that liver tumors are part of the liver, the
relationship between organs remains orthogonal.

To address above mentioned challenged, CLIP-driven
Universal Model incorporates text embedding and adopts
masked back-propagation mechanism with binary segmen-
tation mask. Specifically, we maintain a revised label taxon-
omy derived from a collection of public datasets and gener-
ate a binary segmentation mask for each class during image
pre-processing. For architecture design, we draw inspira-
tion from Guo et al. [19] and replaced one- or few-hot labels
with the text embedding generated by the pre-trained text
encoder from CLIP1. Figure 1 illustrates how CLIP embed-
ding presents the relationship between organs and tumors.
This CLIP-based label encoding enhances the anatomical
structure of universal model feature embedding, which is
visualized in Figure 6. At last, we only compute loss for the
classes with available labels.

In summary, this work proposes a CLIP-Driven Univer-
sal Model that allows superior segmentation of 25 organs
and detection of 6 tumors with state-of-the-art performance.
The Universal Model can be generalized to CT scans from

1CLIP (Contrastive Language–Image Pre-training) was pre-trained on
400 million image-text pairs (some are medical images and text [6]), ex-
ploiting the semantic relationship between images and language.

different institutes. Experimental results have demonstrated
six advantages of the CLIP-Driven Universal Model:

1. High abdominal organ segmentation performance. We
rank first in the MSD and BTCV challenges, leading
to substantial performance improvement. Moreover,
six organs can be annotated by Universal Model with
a similar intra-observer variability to humans.

2. Predicting fewer false positives than existing models
while maintaining high sensitivity for tumor detection.

3. Computationally more efficient than dataset-specific
models, accelerating the testing speed by factor of six.

4. The Universal Model framework can be expanded to
various backbones such as CNNs and Transformers.

5. The performance of organ segmentation and tumor de-
tection can be generalized to CT scans from a variety
of hospitals without additional tuning and adaptation.

6. An effective Foundation Model for numerous down-
stream tasks, showing a strong transferability on tasks
across multiple diseases, organs, and datasets.

2. Related Work

Partial label problem. Publicly available datasets for ab-
dominal imaging focus on different organs and tumors [35,
43, 42, 31], e.g., AbdomenCT-1K dataset for 4 organ seg-
mentation [43], WORD dataset for 16 organ segmenta-
tion [42] and TotalSegmentor dataset for 104 anatomical
structure segmentation [76]. The partial label problem oc-
curs when training AI models on a combination of these
datasets due to their inconsistent label taxonomy. To ex-
ploit the partial labels, several approaches have been in-
vestigated [93, 18, 88, 89], aiming for a single model that
can perform organ segmentation [39, 12] and tumor detec-
tion [2, 100, 80, 40, 48, 78, 45]. These studies have the
following limitations. (1) Due to the small scale of the
dataset assembly2, the potential of assembling datasets was
not convincing. Their performance was similar to dataset-
specific models and was not evaluated on the official bench-
mark. (2) Due to the one-hot labels, the semantic relation-
ship between organs and tumors was discarded. Table 1
reveals that the introduction of CLIP embedding is a salient
factor to our proposed framework.
Organ segmentation and tumor detection. Deep learning-
based methods have been widely applied to organ seg-
mentation and tumor detection. U-Net [59] and its vari-
ants [96, 38, 51, 29] are one of the main streams and achieve

2Zhou et al. [93] assembled 150 CT scans from 4 datasets; Fang et
al. [18] assembled 548 CT scans from 4 datasets; Zhang et al. [88] assem-
bled 1,155 CT scans from 7 datasets.
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Figure 2. Overview. We have developed a Universal Model from an assembly of 14 public datasets of 3,410 CT scans. In total, 25 organs
and 6 types of tumors are partially labeled (detailed in Appendix Table 7). To deal with partial labels, Universal Model consists of a text
branch and a vision branch (§3.2). The of�cial test set of MSD and BTCV are used to benchmark the performance of organ segmentation
(§4.1) and tumor detection (§4.2). 3D-IRCADb, TotalSegmentator and a large-scale private dataset, consisting of 5,038 CT scans with 21
annotated organs, are used for independent, external validation of model generalizability and transferability (§5).

some promising results. Recently, transformer based mod-
els [8, 91, 22, 68, 7] are emerged, which can capture the
global relationship between whole volume. These works
are often specialized for single organ [59, 96, 29, 38] or
single task, i.e., organ segmentation [91, 22, 68, 7] or tu-
mor detection [8, 79, 81]. Different from these work, Uni-
versal Model tackles both tasks within a single framework,
using the introduced CLIP embedding to capture the se-
mantic relationship between organs and tumors. Moreover,
we demonstrate our work on publically available datasets,
which is bene�cial to reproducibility.

CLIP in medical imaging. With the widespread success
of large models in the �eld of language processing and un-
derstanding [15, 4, 64, 41], large-scale pre-trained vision-
language models (VLM),e.g., Conneauet al. [14], have re-
cently been applied to multiple vision tasks [57, 74, 6, 53],
but rarely to the medical domain [16, 75]. Qinet al. [55]
suggested that VLM could be used for detection task in the
medical domain with carefully designed medical prompts.
Grounded in this �ndings, we are among the �rst to intro-
duce CLIP embedding to voxel-level semantic understand-
ing medical tasks, i.e., segmentation, in which we under-
line the importance of the semantic relationship between
anatomical structures.

Medical universal models.The �eld of medical image anal-
ysis has undergone a signi�cant shift from training individ-
ual models for speci�c datasets towards developing a single
(universal/foundation) model that can effectively handle di-
verse datasets, organs, tumors, tasks, and modalities. After
we �rst presented CLIP-Driven Universal Model in arXiv
and released the code, the �eld has witnessed numerous piv-

otal contributions [85, 47, 70, 28, 84, 5], with many more
endeavors underway to our knowledge [56, 90]. Thereby,
we are dedicated to reviewing the exceptional studies in the
�eld by actively maintaining a GitHub page.

3. Methodology

3.1. Background

Problem de�nition. Let M and N be the total number
of datasets to combine and data points in the combina-
tion of the datasets, respectively. Given a datasetD =
f (X 1; Y1); (X 2; Y2); :::; (X N ; YN )g, there are a total of
K unique classes. For8n 2 [1; N ], if the presence of
8k 2 [1; K ] classes inX i is annotated inYi , D is a fully
labeleddataset; otherwise,D is apartially labeleddataset.

Previous solutions.Two groups of solutions were proposed
to address the partial label problem. Given a data point
X n ; n 2 [1; N ], the objective is to train a modelF (�) us-
ing the assembly datasetDA = fD 1; D2; :::; DM g, and the
model can predict allK classes, if presented inX n .

• Solution #1[18, 62, 79, 62, 93, 11, 27, 68] aims to
solveF � (X n ) = P k

n ; n 2 [1; N ]; k 2 [1; K ], where
the predictionPn is one-hot encoding with lengthk.

• Solution #2[88, 32, 99] aims to solveF � (X n ; w k ) =
Pn ; n 2 [1; N ]; k 2 [1; K ], wherew k is an one-hot
vector to indicate which class to be predicted.

According to Zhanget al. [88], both solutions have sim-
ilar segmentation performance, but #2 is computationally
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Table 1.Label Encoding Ablation. All three prompts can elicit
knowledge from CLIP, achieving signi�cant improvement over the
conventional one-hot labels (DoDNet [88]) and BioBERT [83].
The average DSC score over validation part of Assembling
Datasets is reported; per-class DSC found in Appendix Table 14.

Embedding prompt DSC
One-hot [88] - 70.42
BioBERT [83] A computerized tomography of a [CLS]. 71.55
CLIP V1 A photo of a [CLS]. 73.49
CLIP V2 There is [CLS] in this computerized tomography. 75.66
CLIP V3 A computerized tomography of a [CLS]. 76.11

more ef�cient. However, both solutions rely on one-hot la-
bels, sharing two limitations. First, they ignore the seman-
tic and anatomical relationship between organs and tumors.
Second, they are inappropriate for segmenting various sub-
types of tumors. To address these limitations, we modify
w k in Solution #2 to CLIP embedding and introduce in-
depth in the following sections.

3.2. CLIPDriven Universal Model

The overall framework of CLIP-Driven Universal Model
(see Figure 2) has a text branch and a vision branch. The
text branch �rst generates the CLIP embedding for each or-
gan and tumor using an appropriate medical prompting (Ta-
ble 1), and then the vision branch takes both CT scans and
CLIP embedding to predict the segmentation mask3.

Text branch. Let w k be the CLIP embedding of thek-th
class, produced by the pre-trained text encoder in CLIP and
a medical prompt (e.g., “a computerized tomography of a
[CLS]”, where [CLS] is a concrete class name). We �rst
concatenate the CLIP embedding (w k ) and the global im-
age feature (f ) and then input it to a multi-layer percep-
tron (MLP), namelytext-based controller[69], to generate
parameters (� k ), i.e., � k = MLP(w k � f ), where� is
the concatenation. Although CLIP embedding signi�cantly
outperforms one-hot labels [88], we mark that the choice
of medical prompt template is critical. Table 1 presents the
effectiveness of three prompt templates. Moreover, the in-
troduction of CLIP embedding addresses the label orthogo-
nality problem by exploiting semantic relationships among
organs and tumors (illustrated in Figure 1).

Vision branch. We pre-process CT scans using isotropic
spacing and uniformed intensity scale to reduce the do-
main gap among various datasets4. The standardized and

3Our framework design is conceptually similar toSegment Anything
Model (SAM)[34], which is a concurrent study of ours in computer vision.
By leveraging CLIP embedding as a prompt within our Universal Model,
we are able to generate highly accurate masks for organs and tumors of
interest, as opposed to producing masks for arbitrary objects.

4A standardized and normalized CT pre-processing is important when
combining multiple datasets. Substantial differences in CT scans can occur
in image quality and technical display, originating from different acquisi-
tion parameters, reconstruction kernels, contrast enhancements, intensity
variation, and so on [52, 82, 20].

normalized CT scans are then processed by the vision en-
coder. LetF be the image features extracted by the vi-
sion encoder. To processF , we use three sequential con-
volutional layers with1 � 1 � 1 kernels, namelytext-
driven segmentor. The �rst two layers have 8 channels,
and the last one has 1 channel, corresponding to the class
of [CLS]k . The prediction for the class [CLS]k is com-
puted asPk = Sigmoid((( F � � k1 ) � � k2 ) � � k3 ), where
� k = f � k1 ; � k2 ; � k3 g are computed in the text branch, and
� represents the convolution. For each class [CLS]k , we
generate the predictionPk 2 R1� D � W � H representing the
foreground of each class inone vs. allmanner (i.e., Sigmoid
instead of Softmax).

Masked back-propagation.To address the label inconsis-
tency problem, we proposed the masked back-propagation
technique. The BCE loss function is utilized for supervi-
sion. We masked the loss terms of these classes that are not
contained inY and only back-propagate the accurate super-
vision to update the whole framework. The masked back-
propagation addresses the label inconsistency in the partial
label problem. Speci�cally, partially labeled datasets anno-
tate some other organs as background, leading to the dis-
ability of existing training schemes (Solution #1).

4. Experiments & Results

Datasets and evaluation.14 public datasets of 3,410 CT
scans in total are assembled for training. Other two pub-
lic and one private datasets are used for testing. Dataset
details and pre-processing are in Appendix §B. Dice Simi-
larity Coef�cient (DSC) and Normalized Surface Distance
(NSD) are evaluated for organ/tumor segmentation; Sensi-
tivity and Speci�city are for tumor detection.

Implementation details.The Universal Model is trained us-
ing the AdamW optimizer with a warm-up cosine scheduler
of 50 epochs. The segmentation experiments use batch-size
of 6 per GPU with a patch size of96 � 96 � 96. Default
initial learning rate of4e� 4, momentum of 0.9 and decay
of 1e� 5 on multi-GPU (4) with DDP. The framework is im-
plemented in MONAI 0.9.05. The �ve-fold cross validation
strategy is performed. We select the best model in each
fold by evaluating the validation best metrics. Models are
trained on eight NVIDIA RTX A5000 cards.

4.1. Organ Segmentation on MSD and BTCV

We offer the top #1 solution in both Medical Segmen-
tation Decathlon (MSD)6 and Beyond The Cranial Vault
(BTCV), surpassing the runners-up by a considerable mar-
gin. It's noted that universal model provides six CT tasks
solution and the results of other four MRI tasks are pre-
dicted by nnUnet [29]. Table 2 and Figure 3 present de-

5https://monai.io/
6decathlon-10.grand-challenge.org/evaluation/challenge/leaderboard/
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Table 2.Leaderboard performance on MSD.The results are evaluated in the server on the MSD competition test dataset. All Dice and
NSD metrics are obtained from the MSD public leaderboard. The results of MRI-related tasks were generated by Swin UNETR [68].

Task03 Liver Task07 Pancreas
Method Dice1 Dice2 Avg. NSD1 NSD2 Avg. Dice1 Dice2 Avg. NSD1 NSD2 Avg.
Kim et al. [33] 94.25 72.96 83.61 96.76 88.58 92.67 80.61 51.75 66.18 95.83 73.09 84.46
Trans VW [21] 95.18 76.90 86.04 97.86 92.03 94.95 81.42 51.08 66.25 96.07 70.13 83.10
C2FNAS[86] 94.98 72.89 83.94 98.38 89.15 93.77 80.76 54.41 67.59 96.16 75.58 85.87
Models Gen. [97] 95.72 77.50 86.61 98.48 91.92 95.20 81.36 50.36 65.86 96.16 70.02 83.09
nnUNet [29] 95.75 75.97 85.86 98.55 90.65 94.60 81.64 52.78 67.21 96.14 71.47 83.81
DiNTS [23] 95.35 74.62 84.99 98.69 91.02 94.86 81.02 55.35 68.19 96.26 75.90 86.08
Swin UNETR [68] 95.35 75.68 85.52 98.34 91.59 94.97 81.85 58.21 70.71 96.57 79.10 87.84
Universal Model 95.42 79.35 87.39 98.18 93.42 95.80 82.84 62.33 72.59 96.65 82.86 89.76

Task08 Hepatic Vessel Task06 Lung Task09 Spleen Task10 Colon
Method Dice1 Dice2 Avg. NSD1 NSD2 Avg. Dice1 NSD1 Dice1 NSD1 Dice1 NSD1
Kim et al. [33] 62.34 68.63 65.49 83.22 78.43 80.83 63.10 62.51 91.92 94.83 49.32 62.21
Trans VW [21] 65.80 71.44 68.62 84.01 80.15 82.08 74.54 76.22 97.35 99.87 51.47 60.53
C2FNAS[86] 64.30 71.00 67.65 83.78 80.66 82.22 70.44 72.22 96.28 97.66 58.90 72.56
Models Gen. [97] 65.80 71.44 68.62 84.01 80.15 82.08 74.54 76.22 97.35 99.87 51.47 60.53
nnUNet [29] 66.46 71.78 69.12 84.43 80.72 82.58 73.97 76.02 97.43 99.89 58.33 68.43
DiNTS [23] 64.50 71.76 68.13 83.98 81.03 82.51 74.75 77.02 96.98 99.83 59.21 70.34
Swin UNETR [68] 65.69 72.20 68.95 84.83 81.62 83.23 76.60 77.40 96.99 99.84 59.45 70.89
Universal Model 67.15 75.86 71.51 84.84 85.23 85.04 80.01 81.25 97.27 99.87 63.14 75.15

Figure 3. Benchmark on MSD validation dataset.We compare Universal Model with Swin UNETR [68] (previously ranked �rst on the
MSD leaderboard) on 5-fold cross-validation of the MSD dataset. Universal Model achieves overall better segmentation performance and
offerssubstantialimprovement in the tasks of segmenting liver tumors (+14%), pancreatic tumors (+8%), and colon tumors (+11%).

Figure 4. Intra-observer variability. We obtain similar perfor-
mance between pseudo labels generated by the Universal Model
(AI) and annotations performed by two human experts (Dr1,2) on
6 organs. Spleen (Spl), liver (Liv), kidneys (Kid), stomach (Sto),
gallbladder (Gall), and pancreas (Pan) can be annotated by AI with
a similar intra-observer variability to humans. Examples of pseudo
labels and human annotations are provided in Appendix Figure 9.

tailed comparison on the of�cial test set and 5-hold cross
validation on MSD, respectively. Table 3 compares Univer-
sal Model with other methods in the validation set of BTCV,
offering at least 3.5% improvements over the second best.

Manual annotations have inter-rater and intra-rater vari-
ance [30], particularly in segmentation tasks, because some
of the organs' boundaries are blurry and ambiguous. We
assess the quality of pseudo labels predicted by Universal
Model and manual annotation performed by human experts.
17 CT scans in BTCV have been annotated by two indepen-

dent groups of radiologists from different institutes (not test
server labels). As a result, each CT scan is associated with
AI prediction, and two human annotations (Dr1 and Dr2).
Figure 4 presents their mutual DSC scores,i.e., AI$ Dr1,
AI$ Dr2, and Dr1$ Dr2. We �nd the DSC between AI
and humans is slightly larger than the DSC between humans
in segmenting 6 types of organs (i.e., spleen, liver, kidney,
stomach, and pancreas). With this high-quality AI predic-
tion, we assemble a large dataset of 3,410 CT scans from a
diverse set of hospitals (Figure 2 and generate pseudo labels
for 25 organs and 6 tumors7. Pseudo-label re�nement has
been performed for a few CT scans where AI's prediction
is uncertain. This fully annotated dataset will be released
(examples in Appendix Figure 14). Now that these 6 organs
can be segmented by AI with a similar variance to human
experts, we encourage the research community to concen-
trate on creating annotations for harder organs and tumors.

4.2. Tumor Detection on Five Datasets

Figure 3 demonstrates that Universal Model surpasses
Swin UNETR by a large margin in segmenting liver, pan-

7The quality of 19 other organs and 6 tumors has not been compared
with human annotations because there is no publicly available CT scans
that have been annotated by multiple independent groups on these objects.
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