SMAUG: Sparse Masked Autoencoder for Efficient Video-Language Pre-training

Yuanze Lin1 Chen Wei2 Huiyu Wang2 Alan Yuille2 Cihang Xie3
1 University of Washington 2 Johns Hopkins University 3 UC Santa Cruz

Abstract

Video-language pre-training is crucial for learning powerful multi-modal representation. However, it typically requires a massive amount of computation. In this paper, we develop SMAUG, an efficient pre-training framework for video-language models. The foundation component in SMAUG is masked autoencoders. Different from prior works which only mask textual inputs, our masking strategy considers both visual and textual modalities, providing a better cross-modal alignment and saving more pre-training costs. On top of that, we introduce a space-time token sparsification module, which leverages context information to further select only “important” spatial regions and temporal frames for pre-training. Coupling all these designs allows our method to enjoy both competitive performances on text-to-video retrieval and video question answering tasks, and much less pre-training costs by \textbf{1.9×} or more. For example, our SMAUG only needs \textbf{∼50} NVIDIA A6000 GPU hours for pre-training to attain competitive performances on these two video-language tasks across six popular benchmarks.

1. Introduction

Recently, video-language pre-training \cite{27, 29, 2, 67, 12, 38, 54} stands as the common practice to learn cross-modal representations on large-scale video-text datasets \cite{47, 6, 2}. Such pre-trained models show strong transfer performances on a range of vision and language tasks, including visual question answering \cite{62, 34}, text-to-video retrieval \cite{62, 1}, visual reasoning \cite{48} and video understanding \cite{33, 4, 58}. Nonetheless, the corresponding training cost of these advanced video-language models is enormous. For example, the training of CLIP4Clip \cite{38} needs \textbf{∼2} weeks with 8 GPUs, which therefore largely limits their explorations in a wider aspect. This invites us to ponder a thought-provoking but rarely explored question in this paper: \textit{How can we still pre-train powerful video-language models while significantly reducing their pre-training cost?}

Interestingly, we note that the recent work Masked Autoencoders (MAE) \cite{17}, which establishes an efficient self-supervised paradigm for training models at scale, potentially offering a solution to the aforementioned question. In MAE, a large amount of image patches (e.g., 75\%) are masked. The heavy encoder only executes on a small portion of the visible patches, and the lightweight decoder reconstructs the other large portion of masked patches. This mask reconstruction process is a computationally efficient instantiation of masked visual modeling (i.e., MVM), which has already been shown effective for helping video-language pre-training \cite{13, 24}. Therefore, we conjecture that resorting to such MAE fashion can substantially mitigate the computational burden and still achieve satisfactory performances for video-language pre-training models.

Another interesting observation is that, even by masking out a significant portion of image patches as in MAE, the information could still be redundant \cite{58, 11}. As argued in \cite{44, 31}, \textit{not all patches are equally important}: an im-
age could contain a significant amount of less informative visual patches (e.g., background patches), which scarcely or even negatively contribute to vision-language representation learning. What is worse, this issue could be severer in the video-language setting, as additionally, not all frames are equally important [26, 27]. For example, a video clip may contain a non-negligible portion of frames with just trivial noises (e.g., camera shake). Further eliminating these redundancies is expected to provide an extra speedup to video-language pre-training.

Based on the observations above, we present SMAUG, an efficient pre-training framework for video-language models. Our work is built upon MAE. We mask out a significant amount of space-time patches and let the autoencoder learn to reconstruct them. Next, we introduce a space-time token sparsification module to remove spatial and temporal redundancies: 1) we leverage the attention weights in the visual encoder to predict attentive or inattentive tokens to reduce spatial patches among individual frames. Attentive tokens are preserved while inattentive tokens are fused; 2) we propose a learnable Transformer-based network to pick up important video frames among the given video clip.

We evaluate SMAUG on two video-language tasks, including text-to-video retrieval and video question answering across six datasets. For text-to-video retrieval, the experiments are performed on MSRVTT [62], DiDeMo [1] and ActivityNet Captions [22]. For video question answering, MSRVTT-MC [64], MSRVTT-QA [60] and ActivityNet-QA [65] are used. SMAUG can achieve state-of-the-art or comparable performances over all six datasets. Meanwhile, the proposed method can achieve ~1.9× video-language pre-training speedup. For example, SMAUG can finish video-language pre-training only with ~50 NVIDIA A6000 GPU hours.

2. Related Work

Video-and-language pre-training. The standard pipeline of video-language pre-training (i.e., first pre-train and then fine-tune) [54, 69, 12, 38, 37, 26] aims at learning a generalizable multi-modal feature representation for a range of downstream tasks, such as text-to-video retrieval [62, 1, 22, 10], video question answering [64, 60, 65, 25, 30], video captioning [57, 62, 68, 55], etc.

UniVL [37] proposes a unified video-language pre-training model for multi-modal generation and understanding. Clip4clip [38] transfers the image-text pre-trained model (i.e., CLIP [43]) for video-retrieval task in an end-to-end manner. Singularity [26] reveals that the video-language models pre-trained with a single video frame can still attain significant performances for video-language downstream tasks. Our work is directly motivated by Singularity [26], which also pre-trains models by leveraging single-frame and multiple-frame setups.

Masked visual modeling. The main goal of masked visual modeling (MVM) is to acquire effective visual representations by the first masking and then reconstructing process. The pioneering work, denoising autoencoders (DAE) [52, 53], learns representations by reconstructing the corrupted signals. Recently, iGPT [7] regards the pixels as tokens and predicts unknown pixels. MAE [17] masks out a subset of patches and learns to predict their original pixels. Other considerations of prediction targets include features [59] and discrete visual tokens [3].

In addition to image recognition, a set of works [11, 50, 56] further extend MAE into video recognition. In this paper, we focus on exploring the potential of MAE in enabling efficient vision-language pre-training.

Efficient vision transformer. Recent works have started investigating eliminating redundant computations in (cumbersome) Vision Transformer (ViT). DynamicViT [44] designs a lightweight prediction module first to estimate the importance scores of tokens, and then utilize the scores to prune redundant tokens hierarchically. EVIT [31] proposes to reorganize tokens by the attention from the class token, i.e., they preserve informative tokens while fusing uninformative ones. Motivated by EVIT [31], we also leverage attention from the class token to reduce spatial redundancies.

Temporal redundancy. Giving not all video frames equally contribute to video recognition, many works have been proposed to reduce the temporal redundancies among videos [58, 15, 16, 20, 21, 39, 49]. AR-Net [39] selects the optimal frame resolution conditioned on inputs for efficient video recognition by a decision policy. FrameExit [16] can automatically choose the number of frames to process, according to the complexities of the given videos. This paper proposes a Transformer-based network conditioned on the given video and language features to select informative video frames for reducing temporal redundancies.

3. Method

We first introduce the pre-training model architecture in Section 3.1. Second, we elaborate on the modules to reduce spatial and temporal redundancies in Section 3.2. Third, we describe the pre-training objectives in Section 3.3. Fourth, we list the pre-training datasets in Section 3.4 and implementation details in Section 3.5.

Overview. Given a video clip \(V = [v_1, v_2, ..., v_N] \) with \(N \) video frames and a text sentence \(L \), the video-language pre-training model needs to extract the visual and textual embeddings separately and feed the embeddings into the multimodal encoder to learn cross-modal representations. A decoder can optionally process the learned cross-modal representations to generate final outputs.
3.1. Model Architecture

As illustrated in Figure 2, the proposed SMAUG consists of two major components: a) a video-language pre-training model and b) space-time redundancy sparsification modules. The video-language pre-training model mainly contains a) a masked autoencoder, b) a text encoder, and c) a multi-modal video-text encoder for cross-modal representation fusion. The space-time redundancy sparsification modules aim to further reduce spatial and temporal redundancies among the visible patches.

3.1.1 Masked Autoencoder

We introduce MAE [17] into video-language pre-training. MAE contains an encoder Q_v and a decoder D_v. We explain the involved components as follows:

Frame sampling. Following the setup of Singularity [26], we adopt both single-frame and multi-frame options for pre-training. Specifically, we randomly sample one video frame or multiple video frames from the given video clip V to pre-train the video-language models.

Patch embedding. Following ViT [8], we first patchify the sampled frames into non-overlapping patches [50, 11], which are then flattened and projected by a linear layer. The position embeddings [51] are added into the projected patches. In particular, the encoder (i.e., ViT) of MAE [17] operates independently on each frame.

Masking. We randomly mask out a subset of embedded patches for each frame and use the remaining visible ones. Note that we perform tube masking [59] for multi-frame input, i.e., the spatial locations of the masked patches are the same for all sampled frames. Although videos contain abundant space-time redundancies, masking out too many patches could lead to inaccurate alignment between visual and textual representations. In our experiments, we at most set the mask ratio to be 65%.

Feature encoding. The encoder Q_v operates only on the visible embedded patches and omits the masked ones following MAE [17]. The output of the encoder F_v is a sequence of visual embeddings. When the single-frame input is sampled for pre-training, the output F_v can be represented as:

$$ F_v = \{f_{cls}, f_1, \ldots, f_L\} $$

in which $f_i \in \mathbb{R}^d$, L is the sequence length of visible patches, and d denotes the feature dimension. f_{cls} represents the visual [CLS] token. When sampling multiple frames for pre-training, we additionally adopt a temporal encoder Q_t to perform self-attention on frame-wise features across the temporal dimension. The output F_v now is:

$$ F_v^k = \{f_{cls}^k, f_1^k, \ldots, f_L^k\}, \quad k = 1, \ldots, K, $$

and:

$$ F_v = Q_t(\text{Concat}(F_v^1, \ldots, F_v^K)), $$

where Concat represents the concatenation of the outputs of the temporal encoder.
where K is the number of sampled frames. F_v is adopted for cross-modal alignment.

Feature decoding. After that, we feed the embeddings of visible patches and the masked patches together into the decoder D_v for predicting the pixels of these masked ones. This process can be regarded as masked visual modeling (MVM), which has been adopted as one of the pre-training objectives. There exists other reconstruction targets [13] except for pixels, e.g., features, depth maps, etc. We leave them in the future.

3.1.2 Text Encoder and Multi-modal Fusion

We then describe the details of the other encoders for textual embedding extraction and cross-modal fusion.

Text encoder. Given the text sentence L, the text encoder Q_t firstly segments it into a sequence of subwords [46], and inserts the special token (e.g., [CLS] token) at the beginning of the subword sequence. This token sequence is then mapped into the text embeddings F_t, which can be represented as:

$$F_t = \{h_{cls}, h_1, \ldots, h_P\},$$

in which $h_i \in \mathbb{R}^d$, h_{cls} is the text embedding of text [CLS] token and P means the number of text tokens.

Multi-modal video-text encoder. After obtaining the visual embedding F_v and text embeddings F_t, we feed them into the multi-modal encoder Q_m to perform multi-modal fusion by cross-attention layers [27, 26, 19]. The learned cross-modal representations are used for video-text matching and masked language modeling objectives (i.e., VTM and MLM) to pre-train the models.

3.2. Space-Time Token Sparsification

Although MAE has already randomly removed a large subset of frame patches, there still exist spatial and temporal redundancies among the remaining visible patches [44, 31, 58, 16], because MAE masks patches randomly without considering how informative they are. In order to make an informative decision, we introduce two context-dependent selection modules, for keeping informative tokens and removing uninformative ones. These modules can further save a large amount of pre-training costs (Table 10).

Visual token sparsification. A considerable amount of uninformative visual tokens (e.g., background patches) will have little impact on the final performance when they are removed [31]. Since the MAE encoder Q_v inherits the structure of ViT, we can insert a token sparsification module, inspired by EVIT [31], in the 4^{th}, 7^{th} and 10^{th} layers of the ViT-B encoder Q_v. The mechanism of token sparsification within a transformer layer is shown in Figure 2(b).

Specifically, the token sparsification module computes the average attention values among all heads from [CLS] with respect to the other tokens. The tokens whose corresponding attention values are top-k largest are regarded as attentive tokens, otherwise inattentive tokens. We retain the attentive tokens while fusing the inattentive tokens into a new token by taking the attention values as coefficients. The keeping rate of the tokens is defined as $\gamma = k/p$, where k and p mean the number of attentive tokens and total input tokens, and the attentive tokens have top $\gamma \times 100\%$ average attention values. We explain the details in the Appendix.

Text-guided video frame selection. Similar to the image-level redundancy, videos, as collections of frames, are also redundant on the temporal axis. A fraction of frames could contain more informative contexts than others, especially when corresponding text sentences are given. We hereby aim to select the most context-relevant frames from a given clip to perform video-language tasks.

To this end, we propose a Transformer-based frame selector S, which is illustrated in Figure 2(c). Specifically, it’s exemplified by the case of selecting the features of top-2 essential frames. It first takes the visual and textual embeddings from Equation (3) and (4) respectively, and then outputs the features of essential frames. The frame selection process is denoted as:

$$I = S(F_v; F_t) = \{F_v^{\mu_1}, \ldots, F_v^{\mu_\kappa}\}, \quad i = 1, \ldots, \kappa.$$

In Equation (5), $I \in \mathbb{R}^{\kappa \times \ell' \times d}$ ($1 <= \kappa < K$) denotes the sparse collection of video frame features selected from the original visual embeddings F_v, and L' is the sequence length of embedded patch embeddings. Since the frame selection process is discrete, we adopt the Gumbel-Softmax trick [18] to optimize the parameters of selector S in both the full pre-training stage and the task-specific fine-tuning stage. At inference time, the operation is discrete by selecting the top-k ($k = \kappa$) features as the final output. In this way, we obtain a sparse and efficient model.

3.3. Pre-training Objectives

Our models are pre-trained by using four objectives: (1) Video-Text Matching (L_{vtm}): it predicts the matching scores of the given video-text pairs through the multi-modal video-text encoder’s outputs. (2) Masked Language Modeling (L_{mlm}): it fuses both visual and textual features by the multi-modal video-text encoder to predict the masked textual tokens. (3) Video-Text Contrastive (L_{vtc}): it uses the pooled visual and textual representations to align parallel video-text pairs, so that they can have higher similarity scores. (4) Masked Visual Modeling (L_{mvm}): it learns to predict the original pixels of masked visual patches.

These objectives have been widely used for pre-training video-language models [26, 12, 54, 13, 28, 9], we describe the details of them in the Appendix. The full pre-training
We first evaluate our approach on text-to-video retrieval task across three video-language datasets. The recall performance at K (R@K) is reported. The pre-training process.

3.4. Pre-training Datasets

We adopt video-text and image-text data for pre-training. WebVid [2] is used as video-text data, which scrapes 2.5M video-text pairs from the web. The image-text data includes the combination of CC3M [47], CC12M [6], SBU Captions [41], Visual Genome (VG) [23] and COCO [32] datasets. Two subsets are employed for pre-training: 1) 5M corpus consisting of CC3M and WebVid. 2) 17M corpus that contains all the mentioned image-text and video-text datasets. Note that for the single frame setting, we sample only one frame from the video-text dataset, i.e., WebVid.

3.5. Implementation Details

Network structures. For the masked autoencoder, we adopt ViT-B [8] as the encoder \(Q_v \), whose weights are initialized from CLIP’s visual encoder (i.e., CLIP-B/16) [43]. The decoder \(D_v \) is the stack of one linear layer, three Transformer blocks, and one linear layer. We adopt BERT \(B_{BASE} \) model as our text encoder \(Q_l \) and multi-modal video-text encoder \(Q_m \). In particular, the first 9 layers and the last three layers of BERT \(B_{BASE} \) are initialized as \(Q_l \) and \(Q_m \), respectively. The cross-attention layers [27, 26] of the multimodal encoder are learned from scratch. The frame selector \(S \) consists of two linear layers and two Transformer blocks [51]. The Transformer blocks have two heads and a hidden size of 2048.

Model pre-training. We use 4×NVIDIA A6000 GPUs to pre-train our models with AdamW optimizer [36] and an initial learning rate of \(1e^{-4} \). We randomly sample one frame for the single-frame setting and four frames for the multiple-frame setting. The total pre-training epochs are 10, and the learning rate is warmed up in the first epoch, followed by cosine decay [35] to \(1e^{-6} \) finally. The input size of the video frames is 224×224. The data augmentation includes random resized crop and flip operations. When using the single frame for pre-training, our model only takes about 13 hours to pre-train on the 5M corpus and two days on the 17M corpus, attaining better performance than ALPRO [28], which takes three days to pre-train the same epochs (i.e., 10 epochs) on the 5M corpus with 16×A100 GPUs. It is worth mentioning that when using multiple video frames, i.e., four frames, for pre-training, the model weights are initialized from single-frame pre-trained models, and the total training epoch for such setup is 5.

4. Experiment

4.1. Down-Stream Tasks and Datasets

Text-to-video retrieval. We first evaluate our approach on text-to-video retrieval task across three video-language datasets. The recall performance at K (R@K) is reported.

- **MSRVTT** [62] consists of 10K videos from YouTube, and each video has 20 textual captions. We follow the standard setting as [26, 28, 40, 64], i.e., we fine-tune the pre-trained models with 7K videos and report the performances on the 1K test split [64].
- **DiDeMo** [1] includes 10K videos, which are collected from Flickr; there are 41K text descriptions total, and the train/val/test splits are adopted.
- **ActivityNet Captions** [22] consists of 20K YouTube videos which are paired with 100K captions. We evaluate the results on **val1** split.

For MSRVTT, we report the results of the standard text-to-video retrieval protocol, as for the other two datasets, we perform paragraph-to-video retrieval evaluation [26, 28], i.e., we concatenate all the captions in the same video to one single paragraph for retrieval.

Video question answering. We also select video question answering for evaluation, the accuracies are reported, and three benchmarks are chosen:

- **MSRVTT-MC** [64] is a dataset for multiple-choice question answering, which consists of 3K videos and needs to select the best matching caption choice from 5 candidates for each video.
- **MSRVTT-QA** [60] is built on MSRVTT, consisting of 10K videos paired with 244K open-ended questions.

Fine-tuning setups. When fine-tuning the models on text-to-video retrieval task, we use the same model architecture except that we remove MLM and MVM objectives. The models are trained with an initial learning rate of \(1e^{-5} \), which is decreased to \(1e^{-6} \) by cosine decay; the training epochs are 5, 10 and 10 for MSRVTT, DiDeMo, and ActivityNet-Captions datasets. During the inference stage, we sample 12 frames from each video for MSRVTT and DiDeMo datasets and 32 frames per video for the ActivityNet Captions dataset.

To evaluate the performances on open-ended video question answering datasets (e.g., MSRVTT-QA and ActivityNet-QA), an extra decoder is added after the multi-encoder, which generates the answers by taking the outputs from the multi-modal encoder. The models are fine-tuned with 10 epochs and tested with 12 frames. As for MSRVTT-MC, we follow the protocol of [27]. Specifically, the models trained on MSRVTT are leveraged to select the best matching choice with the highest retrieval scores as final predictions. Note that for all downstream tasks, we resize the video frames as 224×224, and the data augmentation is the same as the pre-training process.
Here, we show the performances of the proposed approach, the default masking ratios of MAE and masked language modeling (MLM) are 50% and 15%, and the keeping rate γ is 0.8. The number of input frames keeps unchanged during the pre-training and fine-tuning stages.

4.2. Comparison with State-of-the-arts

As for MSRVTT dataset, when the pre-training corpus is 5M and the final input frame number is 1, SMAUG can achieve 3.8% relative improvement on R@1 compared with Singularity [26], when pre-trained on the 17M corpus, SMAUG can also lead to 2.5% performance gain on R@1 compared with Singularity. These results can demonstrate the effectiveness of our approach. Note that our pre-training is also much faster compared with Singularity [26]. The analysis of pre-training costs is shown in Section 4.4.

We can also observe that, when pre-training the models on the 17M corpus, our method can still surpass the performances of VIOLET [12] on MSRVTT-QA and MSRVTT-MC benchmarks, note that we use less video-text data for pre-training (17M v.s. YT180M+5M).

4.3. Ablation Study

In this section, we ablate the influences of the proposed components. The pre-training corpus is 5M. We report the fine-tuning results on the text-video-retrieval task, and the

<table>
<thead>
<tr>
<th>Method</th>
<th>PT Datasets</th>
<th>#Frame</th>
<th>MSRVTT R@1</th>
<th>R@5</th>
<th>R@10</th>
<th>DiDeMo R@1</th>
<th>R@5</th>
<th>R@10</th>
<th>ActivityNet Cap R@1</th>
<th>R@5</th>
<th>R@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>ClipBERT [27]</td>
<td>COCO + VG</td>
<td>16/16/8</td>
<td>22.0</td>
<td>46.8</td>
<td>59.9</td>
<td>20.4</td>
<td>48.0</td>
<td>60.8</td>
<td>21.3</td>
<td>49.0</td>
<td>63.5</td>
</tr>
<tr>
<td>Frozen [2]</td>
<td>5M</td>
<td>4</td>
<td>31.0</td>
<td>59.5</td>
<td>70.5</td>
<td>31.0</td>
<td>59.8</td>
<td>72.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ALPRO [28]</td>
<td>5M</td>
<td>8</td>
<td>33.9</td>
<td>60.7</td>
<td>73.2</td>
<td>35.9</td>
<td>67.5</td>
<td>78.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Singularity [26]</td>
<td>5M</td>
<td>1</td>
<td>36.8</td>
<td>65.9</td>
<td>75.5</td>
<td>47.4</td>
<td>75.2</td>
<td>84.0</td>
<td>43.0</td>
<td>70.6</td>
<td>81.3</td>
</tr>
<tr>
<td>Singularity [26]</td>
<td>17M</td>
<td>1</td>
<td>41.5</td>
<td>68.7</td>
<td>77.0</td>
<td>53.9</td>
<td>79.4</td>
<td>86.9</td>
<td>47.1</td>
<td>75.5</td>
<td>85.5</td>
</tr>
<tr>
<td>Ours</td>
<td>5M</td>
<td>1</td>
<td>40.6</td>
<td>67.6</td>
<td>77.5</td>
<td>49.2</td>
<td>76.7</td>
<td>85.6</td>
<td>48.8</td>
<td>72.2</td>
<td>82.7</td>
</tr>
<tr>
<td>Ours</td>
<td>17M</td>
<td>1</td>
<td>44.0</td>
<td>70.4</td>
<td>78.8</td>
<td>55.6</td>
<td>80.8</td>
<td>88.4</td>
<td>49.2</td>
<td>76.9</td>
<td>86.8</td>
</tr>
</tbody>
</table>

Table 2: Zero-shot results compared with existing video-language pre-training methods on text-to-retrieval tasks. The pre-training (PT) text-video datasets are HowTo100M (HT100M) [40], YT-Temporal-180M (YT180M) [66], MS-COCO (COCO) [32], Visual Genome (VG) [23], 5M corpus and 17M corpus. Note that 5M and 17M settings are illustrated in Section 3.4. For MSRVTT dataset, results using 9K training videos are greyed out. The methods using other modalities (e.g., speech and audio) are highlighted by pink. “#Frame” denotes the number of final video frames for video-language model pre-training. For methods that adopt different input frames for different datasets, we use “/” to separate them.
Method	PT Datasets	#Frame	MSRVTT-QA	ActivityNet-QA	MSRVTT-MC
Pre-trained with >100M video-text pairs
JustAsk [63] | HT69M | 640 | 41.5 | 38.9 | -
MERLOT [66] | YT180M | 5 | 43.1 | 41.4 | 90.9
VideoCLIP [61] | HT100M | 960 | - | - | 92.1
VIOLET [12] | YT180M+5M | 4 | 43.9 | - | 91.9

Pre-trained with <100M video-text pairs
ClipBERT [27] | COCO + VG | 16 | 37.4 | - | 88.2
ALPRO [28] | 5M | 16 | 42.1 | - | -
Singularity [26] | 5M | 1 | 42.7 | 41.8 | 92.0
Singularity [26] | 17M | 1 | 43.5 | 43.1 | 92.1
Ours | 5M | 1 | 43.4 | 42.7 | 92.7
Ours | 17M | 1 | 44.5 | 44.2 | 92.9

Table 3: Results compared with existing video-language pre-training methods on video question answering task. The pre-training text-video datasets are HowTo100M (HT100M) [40], YT-Temporal-180M (YT180M) [66], MS-COCO (COCO) [32], Visual Genome (VG) [23], HowToVQA69M (HT69M) [63], 5M corpus and 17M corpus. Note that 5M and 17M settings are illustrated in Section 3.4. “#Frame” denotes the number of final video frames for video-language model pre-training.

<table>
<thead>
<tr>
<th>Masking Ratio</th>
<th>PT Time</th>
<th>MSRVTT R@1</th>
<th>R@5</th>
<th>R@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>74.9 hours</td>
<td>40.7</td>
<td>66.6</td>
<td>76.7</td>
</tr>
<tr>
<td>10%</td>
<td>70.8 hours</td>
<td>40.5</td>
<td>66.3</td>
<td>76.5</td>
</tr>
<tr>
<td>25%</td>
<td>64.6 hours</td>
<td>40.1</td>
<td>65.7</td>
<td>76.0</td>
</tr>
<tr>
<td>50%</td>
<td>50.4 hours</td>
<td>39.3</td>
<td>65.4</td>
<td>75.6</td>
</tr>
<tr>
<td>65%</td>
<td>44.3 hours</td>
<td>38.1</td>
<td>64.2</td>
<td>75.0</td>
</tr>
</tbody>
</table>

Table 4: Ablation study on using different masking ratios.

<table>
<thead>
<tr>
<th>Keeping Rate</th>
<th>PT Time</th>
<th>MSRVTT R@1</th>
<th>R@5</th>
<th>R@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.6</td>
<td>44.8 hours</td>
<td>37.5</td>
<td>64.2</td>
<td>74.6</td>
</tr>
<tr>
<td>0.7</td>
<td>47.6 hours</td>
<td>38.2</td>
<td>64.7</td>
<td>75.3</td>
</tr>
<tr>
<td>0.8</td>
<td>50.4 hours</td>
<td>39.3</td>
<td>65.4</td>
<td>75.6</td>
</tr>
<tr>
<td>0.9</td>
<td>53.8 hours</td>
<td>39.8</td>
<td>65.9</td>
<td>76.0</td>
</tr>
</tbody>
</table>

Table 5: Ablation study on using different keeping rates.

MSRVTT dataset is chosen. Except for the ablation studies of Table 6, 8 and 10, the number of the final input frames is 1 for the experiments. “PT Time” denotes the total time for model pre-training, we report the GPU hours of using a single A6000 GPU. The results highlighted in blue are used to specify the default settings.

Impact of masking ratios. To figure out the influence of masking ratios of MAE for video-language pre-training, we show the results in Table 4, when the masking ratio is 50%, the pre-training time can be efficiently reduced from 70.8 hours, whose masking ratio is 10%, to 50.4 hours, while losing only 1.2% on R@1, which can demonstrate the potential of extending MAE for video-language pre-training.

Effect of keeping rates. The results of adopting different keeping rates for visual token sparsification (VTS) are shown in Table 5. When the keeping rate is 0.8 (i.e., 80%), the pre-training time can be reduced from 53.8 hours, whose keeping rate is 0.9, to 50.4 hours, while only losing 0.5% on R@1. The saving of pre-training time is promising, considering the masked autoencoder already removes plenty of visual patches and the number of the input frames is only 1.

<table>
<thead>
<tr>
<th>Frame Selection</th>
<th>PT Time</th>
<th>MSRVTT R@1</th>
<th>R@5</th>
<th>R@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-frame selection</td>
<td>1</td>
<td>50.4 hours</td>
<td>39.3</td>
<td>65.4</td>
</tr>
<tr>
<td>4→1</td>
<td>75.3 hours</td>
<td>40.6</td>
<td>67.6</td>
<td>77.5</td>
</tr>
</tbody>
</table>

Table 6: Ablation study on selecting different frames by the proposed selector S.

Effectiveness of frame selection. We display the results of frame selection (FS) in Table 6. When selecting one frame among 4 video frames (i.e., 4→1), the performance can be improved from 39.3% to 40.6% on R@1. When multiple frames are selected, for example, selecting 2 frames among 4 video frames (i.e., 4→2), the loss on R@1 is only 0.5% compared with pre-training using 4 video frames, while reducing the pre-training time from 82.5 hours to 77.8 hours. Note that pre-training with the four-frame input can lead to a 2.4% improvement in R@1 but increase 32.1 pre-training hours compared to the single-frame input setting.

Impact of different visual encoders. In Table 7, we report results of using different visual encoders, Singularity [26] which adopts BEiT-Base [3] and CLIP-B/16 [43].

<table>
<thead>
<tr>
<th>Method</th>
<th>MSRVTT R@1</th>
<th>R@5</th>
<th>R@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singularity* [26]</td>
<td>36.8</td>
<td>65.9</td>
<td>75.5</td>
</tr>
<tr>
<td>Ours*</td>
<td>38.9</td>
<td>67.0</td>
<td>76.8</td>
</tr>
<tr>
<td>Ours+</td>
<td>40.6</td>
<td>67.6</td>
<td>77.5</td>
</tr>
</tbody>
</table>

Table 7: Ablation study on different visual encoders. * and + mean adopting BEiT-Base [3] and CLIP-B/16 [43].

Impact of different strategies for the proposed modules. In Table 8, we report the results of using different strate-
Table 8: Ablation study on using different strategies.

<table>
<thead>
<tr>
<th>Strategy</th>
<th>MAE</th>
<th>VTS</th>
<th>FS</th>
<th>MSRVTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>39.8 66.5 76.8</td>
</tr>
<tr>
<td>Tube (Ours)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>41.2 67.8 77.9</td>
</tr>
<tr>
<td>Random</td>
<td>✓</td>
<td>✗</td>
<td>✗</td>
<td>39.5 66.4 76.6</td>
</tr>
<tr>
<td>Ours</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>41.2 67.8 77.9</td>
</tr>
</tbody>
</table>

Table 9: Ablation study on adopting VTS for inference.

<table>
<thead>
<tr>
<th>VTS Inference Time (Per Example)</th>
<th>MSRVTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>✗</td>
<td>144.5 hours 42.6 68.8 79.2</td>
</tr>
<tr>
<td>✓</td>
<td>93.5 hours 42.0 68.4 78.7</td>
</tr>
<tr>
<td>✗</td>
<td>82.5 hours 41.6 67.9 78.3</td>
</tr>
<tr>
<td>✓</td>
<td>77.8 hours 41.2 67.8 77.9</td>
</tr>
</tbody>
</table>

Table 10: Ablation study on using different components of SMAUG on the multiple-frame setting (i.e., “4→2”).

<table>
<thead>
<tr>
<th>Method</th>
<th>PT Time</th>
<th>MSRVTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Singularity* [26]</td>
<td>83.4 hours 36.8 65.9 75.5</td>
<td></td>
</tr>
<tr>
<td>Ours*</td>
<td>75.3 hours 40.6 67.6 77.5</td>
<td></td>
</tr>
<tr>
<td>Singularity+ [26]</td>
<td>285.3 hours 41.5 68.7 77.0</td>
<td></td>
</tr>
<tr>
<td>Ours+</td>
<td>198.2 hours 44.0 70.4 78.8</td>
<td></td>
</tr>
</tbody>
</table>

Table 11: Pre-training with different scales of the video-text corpus. “*” and “+” mean the pre-trained models with 5M and 17M corpus respectively. We report the results pre-trained with the single-frame setting.

- **Caption:** A man is talking
- **Figure 3:** An example of frame selection. The frame denoted by the green box means the final selected frame.
- **Figure 4:** The examples of pixel prediction for masked patches. The top row represents the original frames, the middle row means the masked frames, and the bottom row denotes the pixel reconstruction for masked patches.

4.4. Analysis of SMAUG

Pre-training Datasets and Costs. The pre-training efficiency of our proposed method can be observed in Table 11. We report the pre-training time of Singularity [26] by using their official codes. When adopting 5M and 17M corpus for pre-training, our approach can consistently use less pre-training time while achieving better performances. For example, when pre-trained on the 17M corpus, our approach can obtain 2.5% performance gain on R@1 while saving 87.1 pre-training hours compared with Singularity, demonstrating the strong scalability of our method.

Visualization. Finally, we showcase the example of frame selection by selector \mathcal{S} in Figure 3. It can be observed that there’re abundant video frames in a video clip which not correspond to the given caption, removing these chaotic frames are reasonable. Our approach can accurately select the most essential frame according to the given caption.

5. Conclusion

In this paper, we propose an efficient video-language pre-training method, SMAUG, which is built on masked autoencoders. We additionally develop a space-time sparsification module to remove the spatial and temporal redundancies among the remaining visible patches. Our SMAUG can achieve state-of-the-art or comparable performances on two video-language tasks across six popular benchmarks, while obtaining 1.9× pre-training time speedup.

Acknowledgement. CW and AY is supported by ONR N00014-21-1-2690 and Amazon award to JHU AI2AI.
References

[17] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 16000–16009, 2022. 1, 2, 3

