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ABSTRACT

The pre-training and fine-tuning paradigm has become prominent in transfer learn-
ing. For example, if the model is pre-trained on ImageNet and then fine-tuned to
PASCAL, it can significantly outperform that trained on PASCAL from scratch.
While ImageNet pre-training has shown enormous success, it is formed in 2D and
the learned features are for classification tasks; when transferring to more diverse
tasks, like 3D image segmentation, its performance is inevitably compromised
due to the deviation from the original ImageNet context. A significant challenge
lies in the lack of large, annotated 3D datasets rivaling the scale of ImageNet
for model pre-training. To overcome this challenge, we make two contributions.
Firstly, we construct AbdomenAtlas 1.1 that comprises 9,262 three-dimensional
computed tomography (CT) volumes with high-quality, per-voxel annotations of 25
anatomical structures and pseudo annotations of seven tumor types. Secondly, we
develop a suite of models that are pre-trained on our AbdomenAtlas 1.1 for trans-
fer learning. Our preliminary analyses indicate that the model trained only with 21
CT volumes, 672 masks, and 40 GPU hours has a transfer learning ability similar to
the model trained with 5,050 (unlabeled) CT volumes and 1,152 GPU hours. More
importantly, the transfer learning ability of supervised models can further scale
up with larger annotated datasets, achieving significantly better performance than
preexisting pre-trained models, irrespective of their pre-training methodologies or
data sources. We hope this study can facilitate collective efforts in constructing
larger 3D vision datasets and more releases of supervised pre-trained models.

1 INTRODUCTION

Pre-training and fine-tuning is a widely adopted transfer learning paradigm (Zoph et al., 2020). Given
the relationship across different vision tasks, a model pre-trained on one dataset is expected to benefit
another. Over the past few decades, pre-training has been important in AI development (Radford et al.,
2021; Kumar, 2017). For 2D vision tasks, there are two available options: (i) supervised pre-training
and (ii) self-supervised pre-training, but for 3D vision tasks, option (i) is often not available simply
due to the lack of large, annotated 3D volumetric datasets (Wang et al., 2022).

Supervised pre-training can learn image features that are transferable to many target tasks. It has
been common practice to pre-train models using ImageNet and then fine-tune the model on target
tasks that often have less training data, e.g., PASCAL. However, two challenges arise in ImageNet
pre-training. Firstly, ImageNet predominantly comprises 2D images, leaving a palpable void in
large-scale 3D datasets and investigation in 3D transfer learning (Huang et al., 2023). Secondly,
ImageNet is intended for image classification, so the benefit for segmentation (and other vision tasks)
can be somewhat compromised (He et al., 2019). If such an ImageNet-like dataset exists—formed
in 3D and annotated per voxel—supervised pre-trained models are expected to transfer better to 3D
image segmentation than self-supervised ones for two reasons.

1. Supervised pre-training is more efficient in data and computation because of its explicit
learning objective. While self-supervised pre-training can learn features without manual annota-
tion, it often requires a large corpus of datasets (Xiao et al., 2022). Extracting meaningful features
∗Correspondence to Zongwei Zhou (ZZHOU82@JH.EDU).
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directly from raw, unlabeled data is inherently challenging. Unlabeled data have a high degree of
redundancy (Haghighi et al., 2020; 2021) and noise (Mahajan et al., 2018), which can complicate
the learning process. Therefore, self-supervised pre-training often calls for greater computational
resources and time to match the outcomes achieved by supervised pre-training (Chen et al., 2020a;
Tang et al., 2022). We have quantified the improved data and computational efficiency from
perspectives of both pre-training (Figure 2a; 99.6% fewer data) and fine-tuning (Figure 2b; 66%
less computation). Specifically, the model trained with 21 CT volumes, 672 masks, and 40 GPU
hours shows transfer learning ability similar to that trained with 5,050 CT volumes and 1,152
GPU hours, highlighting the remarkable efficiency of supervised pre-training.

2. Supervised pre-training enables the model to learn image features that are relevant to image
segmentation. Self-supervised pre-training must extract images features from raw, unlabeled
data using pretext tasks such as mask image modeling (Zhou et al., 2021b; He et al., 2022; Tao
et al., 2020; Chen et al., 2019a), instance discrimination (Xie et al., 2020; Shekoofeh et al.,
2021; Chaitanya et al., 2020), etc. Despite their efficacy in pre-training, these pretext tasks share
no obvious relation to the target image segmentation. In contrast, supervised pre-training uses
semantically meaningful annotations (e.g., organ/tumor segmentation) as supervision, with which
the model can mimic the behavior of medical professionals—identifying the edge and boundary
of specific anatomical structures. As a result, the pre-training is interpretable, and the learned
features are expected to be relevant to image segmentation tasks (Zamir et al., 2018; Ilharco et al.,
2022; You et al., 2022). We have demonstrated that the learned features can be direct inference for
organ segmentation on CT volumes collected from hospitals worldwide (Table 3; evaluated on
three novel hospitals). The features learned by supervision can also be fine-tuned to perform novel
class segmentation (unseen in the pre-training) with higher accuracy and less annotated data than
the features learned by self-supervision (Table 4; evaluated on 63 novel classes).

This paper seeks to answer the question how well the model transfers to 3D medical imaging tasks IF
it is pre-trained on large, annotated 3D datasets. Naturally, we start with creating an IF dataset at a
massive scale. Firstly, we construct a dataset (termed AbdomenAtlas 1.11) of 9,262 CT volumes
with per-voxel annotations of 25 anatomical structures and pseudo annotations of seven types of
tumors. This large-scale, fully-annotated dataset enables us to train models in a fully supervised
manner using multi-organ segmentation as the pretext task. As reviewed in Table 1, this dataset
is much more extensive (considering both the number of CT volumes and annotated classes) than
public datasets (Wasserthal et al., 2022; Ma et al., 2022; Qu et al., 2023). Scaling experiments in
§3.1 suggested that pre-training models on more annotated datasets can further improve the transfer
learning ability. Secondly, we develop a suite of Supervised Pre-trained Models, termed SuPreM,
that combined the good of large-scale datasets and per-voxel annotations, demonstrating the efficacy
across a range of target segmentation tasks. As reported in §3.2, some of the dominant segmentation
backbones have been pre-trained and will be available to the public. Current pre-trained backbones
are U-Net (CNN-type) (Ronneberger et al., 2015), SegResNet (CNN-type) (Chen et al., 2016), and
Swin UNETR (Transformer-type) (Tang et al., 2022), and more backbones will be added along time.

In prospective endeavors, we anticipate that the expansion of datasets and annotations will not only
enhance feature learning, as demonstrated in this study, but also promote the development of advanced
AI algorithms and benchmark the state of the art in terms of segmentation performance, inference
efficiency, and domain generalizability.

2 BRIEF HISTORY: SUPERVISED PRE-TRAINING

In a major initiative aimed at developing widely transferable AI models—known as Foundation
Models in the medical domain (Moor et al., 2023; Butoi et al., 2023; Ma & Wang, 2023a)—one faces
a critical decision: should the focus of pre-training be supervised or self-supervised? While human
annotations undeniably improve task-specific performance, such as semantic segmentation, the best
strategy for learning generic image features that can be transferable across a spectrum of tasks has yet
to be determined. For 2D vision tasks, the advent of ImageNet (Deng et al., 2009) makes it possible
to debate the merits and limitations of supervised pre-trained models for transfer learning compared

1Segmentation is fundamental in the medical domain (Ma & Wang, 2023b). It can be viewed as a per-voxel
classification task. Therefore, the per-voxel supervision used in our pre-training (272.7B annotated voxels) is
much stronger than the per-image supervision used in ImageNet pre-training (14M images).
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with self-supervised ones. We refer the readers to Yang et al. (2020) and Tendle & Hasan (2021) for
a plethora of viewpoints from either side. In essence, the debates are about clarifying the learning
objective (loss function) of emulating human vision (Zhou, 2021).

The learning objective of supervised pre-training is to minimize the discrepancy between AI predic-
tions and semantic labels annotated by humans. Over the years, supervised pre-training on ImageNet
has shown marked success in transfer learning (Yosinski et al., 2014). Moreover, the transfer learning
ability can be further enhanced when models are trained on increasingly expansive datasets, such as
ImageNet-21K (Kolesnikov et al., 2020), Instagram (Mahajan et al., 2018), JFT-300M (Sun et al.,
2017), and JFT-3B (Zhai et al., 2022). In general, supervised pre-training exhibits clear advantages
over self-supervised pre-training when sizable annotated datasets are available (Steiner et al., 2021;
Ridnik et al., 2021). However, acquiring millions of manual annotations is labor-intensive, time-
consuming, and challenging to scale—but certainly not impossible—evidenced by several recent
influential endeavors (Kuznetsova et al., 2020; Mei et al., 2022; Kirillov et al., 2023; Bai et al., 2023).

On the other hand, self-supervised pre-training offers an alternative by enabling AI models to learn
from raw, unlabeled data (Jing & Tian, 2020; Zoph et al., 2020; Ren et al., 2022; 2023), thus reducing
the need for manual annotation. Self-supervised pre-training has historically lagged behind the
state-of-the-art supervised pre-training in ImageNet benchmarks (Pathak et al., 2016; Noroozi &
Favaro, 2016). The recent pace of progress in self-supervised pre-training has yielded models whose
performance not only matches but, at times, surpasses those achieved by supervised pre-training (Chen
et al., 2020a; Grill et al., 2020; Chen et al., 2020b; Zhou et al., 2021a; Wei et al., 2022). This has raised
hopes that self-supervised pre-training could indeed replace the ubiquitous supervised pre-training in
advanced computer vision going forward. The caveat, however, is the significant demand for both
data and computational power, often exceeding the resources available in academic settings. For
example, He et al. (2020) have demonstrated that self-supervised features trained on 1B images (a
factor of 714× larger) can transfer comparably or better than ImageNet features.

Supervised pre-training on ImageNet has demonstrated benefit for 2D medical image tasks after
transfer learning (Tajbakhsh et al., 2016; Shin et al., 2016; Zhou et al., 2017). Unfortunately, it has
been constrained for 3D medical imaging tasks due to the lack of a 3D counterpart to ImageNet.
Although there are a great number of raw, unlabeled medical images available (Team, 2011; Baxter
et al., 2023; Zhao et al., 2023; Saenz et al., 2024), annotating these images is a labor-intensive under-
taking for professionals. Our contribution to a large, annotated 3D dataset could spark the debate of
whether self-supervised or supervised pre-training leads to better performance and data/computational
efficiency, which would not be possible without the invention of a dataset of such scale.

3 MATERIAL & METHOD

We constructed an AbdomenAtlas 1.1 dataset comprising 9,262 three-dimensional CT volumes
and over 300K masks spanning 25 anatomical structures and seven types of tumors. In addition, we
released a suite of supervised pre-trained models (SuPreM) to benefit 3D medical imaging tasks.

3.1 EXTENSIVE DATASET: ABDOMENATLAS 1.1

Interactive segmentation, an integration of AI algorithms and human expertise, was used to create
AbdomenAtlas 1.1 in a semi-automatic procedure. We recruited a team of ten radiologists to
perform manual annotations to ensure the annotation quality2. Given the complexity of 3D data,
rather than annotating the entire dataset voxel by voxel, we asked the radiologists to focus on the
most important CT volumes and regions therein. In doing so, an importance score for each volume
was computed, derived from the uncertainty, consistency, and overlap (Qu et al., 2023). Six junior
radiologists revised the annotations predicted by AI under the supervision of four senior radiologists,
and in turn, AI improved its predictions by learning from these revised annotations. This interactive
procedure continued to enhance the quality of annotations until no major revision was required from
the radiologists. Subsequently, four senior radiologists went through the final visualizations for
all the annotations, detecting and revising major errors as needed before the dataset was released.
Annotation tools employed included a licensed version from Pair and an open-source MONAI Label.

2Ensuring high-quality annotations is costly and time-consuming, yet it is critical for transfer learning, as
quantified in Appendix B.4, and for reducing ambiguity when training AI models for image segmentation.
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Table 1: Contribution #1: An extensive dataset of 9,262 CT volumes with per-voxel annotations
of 25 anatomical structures. This dataset is unprecedented in terms of data and annotation scales,
providing over 300K organ/tumor masks and 3.7M annotated images that are taken from 88 hospitals
worldwide. In 2009, before the advent of ImageNet (Deng et al., 2009), it was challenging to empower
an AI model with generalized image representation using a small or even medium size of labeled
data, the same situation, we believe, that presents in 3D medical image analysis today. As seen in
the table, the annotations of public datasets are limited, partial, and incomplete, and the CT volumes
in these datasets are often biased toward specific populations, medical centers, and countries. Our
constructed dataset mitigates these gaps, representing a significant leap forward in the field. The CT
volumes in datasets 1–17 are used to construct AbdomenAtlas 1.1. Detailed information can be
found in Appendix B.1, and the domain gap across these datasets is illustrated in Appendix B.2.

dataset (year) [source] # of
class

# of†

volume
# of

center dataset (year) [source] # of
class

# of†

volume
# of

center

1. Pancreas-CT (2015) [link] 1 42 1 2. BTCV (2015) [link] 12 47 1
3. AbdomenCT-1K (2021) [link] 4 1,050 12 4. CHAOS (2018) [link] 4 20 1
5. Trauma Detect. (2023) [link] 0 4,714 23 6. LiTS (2019) [link] 1 131 7
7-12. MSD CT Tasks (2021) [link] 9 945 1 13. KiTS (2020) [link] 1 489 1
14. AMOS22 (2022) [link] 15 200 2 15. WORD (2021) [link] 16 120 1
16. CT-ORG (2020) [link] 5 140 8 17. FLARE’23 (2022) [link] 13 4,100 30
18. AbdomenAtlas (2023) [link] 8 5,195 26 19. AbdomenAtlas 1.1 25 9,262‡ 88
†Our reported number of CT volumes may differ from original publications, as some CT volumes are reserved for validation purposes.
‡The number of CT volumes in AbdomenAtlas 1.1 is lower than the sum of datasets 1–17 due to overlaps within these public datasets.

AbdomenAtlas 1.1 is a composite dataset that unifies CT volumes from public datasets 1–17 as
summarized in Table 1 and Appendix B.1. We provide per-voxel annotations for 25 anatomical
structures, including 16 abdominal organs, two thorax organs, five vascular structures, and two skeletal
structures. We also provide pseudo annotations for seven types of tumors, namely liver, kidneys,
pancreatic, hepatic vessel, lung, colon tumors, and kidney cysts. In total, more than 272.7B voxels
are annotated in AbdomenAtlas 1.1, marking a significant leap compared with the 4.3B voxels
annotated in the existing public datasets, amplifying the annotations by a factor of 63.4× (illustrated
in Appendix Figure 5). AbdomenAtlas 1.1 presents a level of diversity because the CT volumes are
sourced from 88 hospitals worldwide. The gap between these CT volumes includes changes in image
quality due to different acquisition parameters, reconstruction kernels, and contrast enhancement,
exampled in Appendix B.2. The CT volumes in AbdomenAtlas 1.1 include pre, portal, arterial, and
delayed phases. We commit to releasing the entire AbdomenAtlas 1.1 to the public. This dataset, the
largest public per-voxel annotated CT collection by far, accounts for only 0.01% of the CT volumes
annually acquired in the United States (Papanicolas et al., 2018). Therefore, cross-institutional
collaboration is crucial for accelerating data sharing, annotation, and AI development.

3.2 A SUITE OF PRE-TRAINED MODELS: SUPREM

The magnitude of our AbdomenAtlas 1.1 is unprecedented in terms of data and annotations. One
of the advantages is that it enables us to train AI models in both a supervised and self-supervised
manner. At the time this paper is written, neither supervised nor self-supervised pre-training has
been performed on this scale of dataset (9,262 volumetric data)3. We have developed models
(termed SuPreM) pre-trained on data and annotations in AbdomenAtlas 1.1, which leverage
established CNN backbones, such as U-Net and SegResNet, as well as Transformer backbones,
such as Swin UNETR. With the growing trend of using pre-trained models, we have maintained a
standardized, accessible project page to sharing public model weights as well as a suite of supervised
pre-trained models (SuPreM) released by us. Releasing pre-trained models should be considered a
marked contribution as they offer an alternative way of knowledge sharing while protecting patient
privacy (Zhang & Metaxas, 2023; Sellergren et al., 2022; Ma et al., 2023a). In this study, all of the
models in SuPreM follow pre-training and fine-tuning configurations as below.

3For supervised pre-training, the largest study to date was by Liu et al. (2023b), which was developed on
3,410 (2,100 for training and 1,310 for validation) annotated CT volumes. For self-supervised pre-training,
the largest one was by Tang et al. (2022), which was trained on 5,050 unannotated CT volumes. Concurrently,
Valanarasu et al. (2023) pre-trained a model on 50K volumes of CT and MRI using self-supervised learning.
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Table 2: Contribution #2: A suite of pre-trained models (termed SuPreM) comprising several
widely recognized AI models. We provide pre-trained AI models based on CNN, Transformer, and
their hybrid versions, and more AI models will be added. Each model was supervised pre-trained
on large datasets and per-voxel annotations from AbdomenAtlas 1.1. Compared with learning
from scratch and publicly available models, fine-tuning the models in SuPreM consistently achieve
the state-of-the-art organ and tumor segmentation performance on two datasets. All of the result,
including the mean and standard deviation (mean±s.d.) across ten trials. In addition, we have further
performed an independent two-sample t-test between learning from scratch and fine-tuning models in
our SuPreM. The performance gain is statistically significant at the P = 0.05 level, with highlighting
in a light red box. Detailed per-class performance can be found in Appendix §C.1.

TotalSegmentator proprietary dataset
model (# of param) pre-training organ muscle cardiac organ gastro cardiac

U-Net (2015)
family
(19.08M)

scratch 88.9±0.6 92.9±0.4 88.8±0.7 85.6±0.5 69.8±1.2 38.1±1.1
Zhou et al. (2019) 85.9 90.1 86.3 80.1 65.5 36.9
Chen et al. (2019b) 86.9 91.4 87.4 79.0 66.2 36.7
Xie et al. (2022) 88.5 92.9 89.0 - - -
Zhang et al. (2021) 89.3 93.8 89.1 85.7 72.7 38.3
SuPreM 92.1±0.3 95.4±0.1 92.2±0.3 90.8±0.2 76.2±0.8 70.5±0.5

Swin UNETR (2021)
(62.19M)

scratch 86.4±0.5 88.8±0.5 84.5±0.6 77.3±0.9 65.9± 1.7 35.5±1.4
Tang et al. (2022) 89.3 93.8 88.3 87.9 72.5 38.9
Liu et al. (2023b) 89.7 94.1 89.4 89.1 74.6 67.6
SuPreM 91.3±0.3 94.6±0.2 90.3±0.3 90.4±0.7 75.9±1.2 69.8±0.9

SegResNet (2016)
(470.13M)

scratch 88.6±0.5 91.3±0.4 89.8±0.4 80.6±0.8 67.0±1.4 36.0±1.3
SuPreM 91.3±0.5 94.0±0.1 91.3±0.5 86.6±0.3 73.7±1.0 67.9±0.8

To perform a fair and rigorous comparison, we benchmarked with public pre-training methods by
pre-training SuPreM using 2,100 CT volumes (same as Liu et al. (2023b) and fewer than Tang et al.
(2022)) in Tables 2, 4 and Figures 1, 2b, 3. Then, we scaled up the number of CT volumes for
pre-training to 9,262 CT volumes to perform direct inference in Table 3. Lastly, we scaled down the
number of CT volumes to 21 to explore the edge of our SuPreM in Figure 2a. All these pre-trained
models and configurations have been summarized in Appendix Table 8. The best-performing model
was selected based on the highest average DSC score over 32 classes on a validation set of 1,310 CT
volumes. Implementation details of both pre-training and fine-tuning can be found in Appendix C.2.

The transfer learning ability is assessed by segmentation performance on two datasets, i.e., TotalSeg-
mentator and a proprietary dataset. Benchmarking results in Table 2 indicate that, in comparison with
learning from scratch and with existing public models, those fine-tuned from our SuPreM consis-
tently attain superior organ, muscle, cardiac, and gastro segmentation performance on both datasets.
U-Net, as a simple and lightweight segmentation backbone, still performs competitively compared
with alternative choices like Swin UNETR and SegResNet. This observation is aligned with the
majority of the medical imaging community (Isensee et al., 2021; Eisenmann et al., 2023), suggesting
that more exploration is needed for advancing segmentation backbones. Moreover, in the scenarios
of either small data regimes shown in Figure 1 or large data regimes shown in Appendix Figure 8a–d,
supervised models transfer better than their self-supervised counterparts. In summary, our SuPreM
surpasses all existing 3D pre-trained models by a large margin in transfer learning performance,
irrespective of their pre-training methodologies or data sources.

Figure 1: We present the transfer performance on a pro-
prietary dataset with few-shot examples (N = 5, 10, 20).
The transfer performance (Y-axis) stands for the average
DSC score over 20-class organ segmentation and 3-class
tumor segmentation. Overall, in few-shot learning, su-
pervised pre-trained models (in red) transfer better than
self-supervised pre-trained models (in gray). Notably,
our SuPreM achieves the best transfer performance
over other well-known publicly available models.
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Figure 2: Analysis of pre-training and fine-tuning efficiency. For a fair comparison, both supervised
(in red) and self-supervised (in gray) models use Swin UNETR as the backbone, and the compared
self-supervised pre-training is the current state of the art (Tang et al., 2022). The target task was
on the TotalSegmentator dataset. (a) scales the model transfer learning ability when pre-trained on
varying numbers of images. The results indicate a consistent improvement in transfer learning ability
when pre-training on more images. The model trained with 21 CT volumes, 672 masks, and 40 GPU
hours shows a transfer learning ability similar to that trained with 5,050 CT volumes and 1,152 GPU
hours. Specifically, supervised pre-training is more efficient, requiring 99.6% fewer data and 96.5%
less computation. (b) assesses the annotation & learning efficiency by fine-tuning models on different
number of annotated CT volumes from TotalSegmentator. Specifically, SuPreM, fine-tuned on 512
per-voxel annotated CT volumes, can achieve a segmentation performance on par with self-supervised
models fine-tuned on 1,024 volumes, reducing 50% manual annotation cost for target tasks.

4 EXPERIMENT & ANALYSIS

4.1 DATA, ANNOTATION, AND COMPUTATIONAL EFFICIENCY

Summary. We demonstrate the remarkable efficiency: (1) SuPreM trained with 21 CT volumes,
672 masks, and 40 GPU hours shows transfer learning ability similar to that trained with 5,050 CT
volumes and 1,152 GPU hours. (2) SuPreM requires 50% fewer manual annotations for organ/tumor
segmentation than self-supervised pre-training.

Data efficiency for pre-training. As shown in Figure 2a, supervised pre-training requires less data (21
vs. 5,050 CT volumes) for the pretext task than self-supervised pre-training. This discrepancy arises
from the inherent differences in their learning learning objectives and the information they leverage.
Supervised pre-training benefits from explicit annotations, which provide direct guidance for the task,
i.e., segmentation in this study. The model learns features from both data and annotations, which offer
strong and precise supervision. On the other hand, self-supervised learning relies on pretext tasks
derived from the raw data, which may offer a more ambiguous learning signal, therefore requiring
more examples to capture meaningful features. Importantly, our finding suggests that supervised pre-
training is more scalable with increased data. When data are increased from 21 to 1,575 volumes, the
transfer learning performance on TotalSegmentator improves from 90.4% to 91.3%. In comparison,
for self-supervised pre-training, an increase in data from 1,000 to 5,050 volumes only marginally
improves performance from 89.7% to 89.9%. Therefore, supervised pre-training requires significantly
less data than self-supervised and is more scalable and effective with increased data.

Annotation efficiency for fine-tuning. We have assessed the annotation efficiency by fine-tuning
SuPreM and self-supervised models (Tang et al., 2022) on the TotalSegmentator dataset. Figure 2(b)
suggests that fine-tuning SuPreM can reduce annotation costs for the segmentation task by 50%,
averaged over the classes that were not used for pre-training (per-class performance can be found in
Appendix Figure 9a–d). Specifically, SuPreM fine-tuned on 512 per-voxel annotated CT volumes
can achieve segmentation performance similar to Tang et al. (2022) fine-tuned on 1,024 annotated
CT volumes. The fine-tuning performance improvement gets bigger when the number of annotated
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Table 3: Direct inference on three external datasets. We conduct external validation across
numerous hospitals worldwide. Specifically, our SuPreM—trained on 9,262 CT volumes—is
directly inferred (inf.) on three external datasets, i.e., TotalSegmentator (representing the Central
European population from Switzerland), FLARE’23 (the East Asian population from China), and the
proprietary dataset (the North American population from the United States) measured by DSC scores.
For every dataset, we compare the out-of-distribution (OOD) performance obtained by SuPreM with
independently and identically distributed (IID) performance obtained by AI models trained on the
data and annotations of that specific dataset, which are considered as upper bound performance. We
find that SuPreM can be generalized well across external datasets without additional fine-tuning,
yielding comparable or even superior performance to the IID counterparts, evidenced by the t-test
results. Appendix B.3 and Appendix E.1 visualizes examples of anatomical structures rendering and
anatomical structures segmentation, respectively.

class TotalSegmentator FLARE’23 our proprietary dataset
inf. (SuPreM) Wasserthal et al. inf. (SuPreM) Liu et al. inf. (SuPreM) Wang et al.

spleen 95.2±0.0 93.2 96.5±0.0 96.6 95.0±0.0 89.6
kidney right 92.5±0.2 91.2 93.7±0.1 90.7 92.2±0.0 88.0
kidney left 89.0±0.3 89.4 93.0±0.0 91.0 91.6±0.1 83.9
gall bladder 82.8±0.2 82.2 84.8±0.2 82.1 83.6±0.2 85.4
liver 94.7±0.2 94.0 96.8±0.1 97.8 95.0±0.3 91.4
stomach 85.2±0.3 82.8 90.7±0.6 92.9 92.2±0.1 90.1
aorta 75.6±0.2 72.1 87.0±0.7 84.5 73.9±0.3 87.0
IVC 74.2±0.2 73.7 85.5±0.4 87.8 77.7±0.4 80.8
pancreas 83.5±0.2 80.6 85.4±0.2 81.7 79.0±0.3 79.3
average 85.9±0.2 84.4 90.4±0.3 89.5 86.7±0.2 86.1

CT volumes is limited in the target task (e.g., 64, 128, 256). In addition, similar levels of annotation
efficiency (reduced 50% cost) are observed when fine-tuning SuPreM on the three-class tumor
segmentation task using the proprietary dataset, as presented in Appendix Figure 9e–g.

Computational efficiency for both pre-training and fine-tuning. This efficiency stems, in part, from
the reduced data requirements inherent to supervised pre-training, as discussed above. As shown in
Figure 2(a), supervised pre-training only needs 40 GPU hours to achieve a transfer learning perfor-
mance comparable to that of self-supervised pre-training, which requires 1,152 GPU hours—a factor
increase of 28.8×. When fine-tuning on target tasks, such as on a 10% subset of TotalSegmentator
in Figure 10, the supervised pre-trained model converges much faster than the self-supervised one,
reducing the GPU hours needed from 60 to 20. This implies that image features learned by supervised
pre-training are intrinsically more expressive, enabling the model to seamlessly adapt across a myriad
of 3D image segmentation tasks with minimal annotated data for fine-tuning. This computational
efficiency makes supervised pre-training a compelling choice for 3D image segmentation without
compromising model performance, especially when the large, annotated dataset is available.

4.2 ENHANCED FEATURES FOR NOVEL DATASETS, CLASSES, AND TASKS

Summary. The learned features manifest considerable generalizability and adaptability. The features
can direct inference for organ segmentation on external datasets of CT volumes taken from different
hospitals. The features can also be fine-tuned to segment novel organ/tumor classes and classify
tumor sub-types with higher accuracy and less annotated data than those learned by self-supervision.

Direct inference on external datasets. AI models trained on a specific dataset often encounter
challenges in generalizing to novel datasets when a marked difference—referred to as a domain
gap—exists between them (Zhang & Metaxas, 2023). While domain adaptation and generalization
are prevalent research strategies to mitigate this challenge (Guan & Liu, 2021; Zhou et al., 2022a),
we choose to address this issue by training a model on an expansive and diverse dataset (elaborated
in Appendix B.2). We assume the domain gap between CT volumes from different hospitals is not
as pronounced as those in computer vision. This is because of the relatively standardized nature of
computer tomography as an imaging modality, where pixel intensity conveys consistent anatomical
significance (Zhou et al., 2022b). AbdomenAtlas 1.1 presents impressive diversity, covering CT
volumes with variations in contrast enhancement, reconstruction kernels, CT scanner types, and
acquisition parameters. This breadth and diversity are imperative for developing an AI model with
the robustness required to accommodate the variations present in novel datasets. We conduct external
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Table 4: Fine-tuning SuPreM on 66 novel classes. Following the standard transfer learning
paradigm, we fine-tune our SuPreM on the segmentation task of novel classes. These tasks include
segmenting 19 muscles, 15 cardiac structures, 5 organs, and 24 vertebrae from TotalSegmentator, as
well as three fine-grained pancreatic tumor types from the proprietary dataset. It is important to note
that these classes were not part of the pre-training of SuPreM. We observe that SuPreM, supervised
pre-trained on only a few classes, can transfer better than those self-supervised pre-trained on raw,
unlabeled data measured by DSC scores (per-class results in Appendix E.3). In other words, it is the
task of segmentation itself that can enhance the model’s capability of segmenting novel-class objects.
This benefit is much more straightforward and understandable than such self-supervised tasks as
contextual prediction, mask image modeling, and instance discrimination in the context of transfer
learning. We hypothesize that it is because the model learns to understand the concept of objectness
in a broader sense through full supervision, as suggested by Kirillov et al. (2023), but this certainly
deserves further exploration. In addition, an independent two-sample t-test was performed between
the self-supervised pre-trained model and the supervised pre-trained model. The performance gain
(∆) is statistically significant at the P = 0.05 level, with highlighting in a light red box.

novel class self-super. super. ∆ novel class self-super. super. ∆

humerus left 92.6±0.3 93.1±0.2 0.5 vertebrae L5 89.6±0.7 89.0±0.7 -0.6
humerus right 87.3±1.0 94.9±0.1 7.6 vertebrae L4 90.4±0.7 93.0±0.2 2.5
· · · (15 more classes) · · · (20 more classes)
iliopsoas left 84.5±0.4 85.9±0.4 1.5 vertebrae C2 86.3±0.5 86.5±1.9 0.2
iliopsoas right 87.6±0.4 88.8±0.2 1.1 vertebrae C1 79.5±2.3 78.9±1.1 -0.6
average (muscle) 93.9±0.3 94.3±0.1 0.4 average (vertebrae) 84.3±1.3 85.4±0.9 1.1

trachea 93.4±0.1 93.3±0.1 -0.1
heart myocardium 88.9±0.2 89.7±0.2 0.8
· · · (11 more classes) PDAC 53.4±0.3 53.6±0.4 0.2
urinary bladder 90.1±0.9 91.2±0.5 1.1 Cyst 41.6±0.4 49.2±0.5 7.6
face 75.3±0.8 85.0±0.4 9.7 PanNet 35.4±0.8 45.7±0.8 10.2
average (cardiac) 88.9±0.5 90.7±0.3 1.8 average (tumor) 48.9±0.4 53.1±0.4 4.2

validation on several novel datasets sourced from Switzerland and East Asia to challenge the AI
model on the data distribution that it has not encountered during the training. This result is referred
to as out-of-distribution (OOD) performance. For comparison, we also collect the result achieved
by dataset-specific AI models—those individually trained on the specific datasets—referred to as
independently and identically distributed (IID) performance. As shown in Table 3, our SuPreM can
be generalized well to novel data distribution without the need for further fine-tuning or adaptation,
consistently offering OOD performance that matches or even exceeds that of its IID counterparts.

Fine-tuning on novel classes. The value of transfer learning lies in fine-tuning the pre-trained models
on novel scenarios (Zhou et al., 2021b), such as novel classes, image modalities, and vision tasks
that are completely unseen during the pre-training. In this study, we evaluate the proficiency of
SuPreM when transferred to a wide variety of novel classes for 3D image segmentation tasks4.
These novel classes include 19 muscles, 15 cardiac structures, 5 organs, and 24 vertebrae from the
TotalSegmentator dataset, as well as three fine-grained pancreatic tumor types from the proprietary
dataset. As shown in Table 4, our SuPreM, supervised pre-trained on 25 classes, can transfer better
to novel classes than those self-supervised models pre-trained on raw, unlabeled data. We find
that the pretext task of segmentation itself can enhance the model capability of segmenting novel
classes. Correlation analysis in Appendix Figure 14 reveals a strong positive correlation (r = 0.81; p
= 0.0031) in segmentation performance between the pretext and target tasks. The benefit of same-
task transfer learning, i.e., segmentation as pretext and target tasks, is much more straightforward
and understandable than other pretext tasks such as contextual prediction, mask image modeling,
and instance discrimination. Through full supervision in segmentation tasks, the model learns to
understand the concept of objectness5, wherein the model gains a more profound understanding of
what characterizes an object. The model does not just recognize predefined objects but begins to
understand the foundational factors of objects in general. Such factors include texture, boundary,
shape, size, and other low-level visual cues that are often deemed essential for image segmentation.

4The fine-tuning performance of 17 seen classes, detailed in Appendix E.2, is promising, but this is expected
given that the model is exposed to more examples of these classes in both pre-training and fine-tuning phases.

5Objectness refers to the inherent attributes that distinguish something as an object within an image, differen-
tiating it from the background or other entities.
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Figure 3: Fine-tuning SuPreM on fine-grained tumor classification. We plot receiver operating
characteristic (ROC) curves to evaluate the transfer learning performance of tumor classification.
Detecting Cysts and PanNETs raises additional challenges for AI because these lesions exhibit a
greater variety of texture patterns than PDACs. This diversity in texture patterns is reflected in the
values of the Area Under the Curve (AUC) that we obtained. For all three sub-types of pancreatic
tumors, SuPreM (in red) demonstrates superior performance over the self-supervised model (Tang
et al., 2022) (in gray), showcasing its effectiveness in fine-grained tumor classification.

This resonates with our assertion in the introduction: just as classification-based features from
ImageNet transfer optimally for classification tasks (Huh et al., 2016; He et al., 2019; Zoph et al.,
2020; Ridnik et al., 2021), segmentation-based features are optimal for segmentation tasks.

Fine-tuning on novel tasks. We have investigated the cross-task transfer learning ability of SuPreM
between organ segmentation and fine-grained tumor classification. The distance between the two
tasks is much larger than transferring among segmentation tasks. It is challenging to benchmark
fine-grained tumor classification, particularly due to the scarcity of annotations in public datasets
(often limited to hundreds of tumors). To overcome this limitation, we employed our proprietary
dataset (Xia et al., 2022), which comprises 3,577 annotated pancreatic tumors, including detailed sub-
types: 1,704 PDACs, 945 Cysts, and 928 PanNets. This extensive dataset enabled us to thoroughly
assess the transfer learning ability of SuPreM in tumor-related tasks. Figure 3 shows that supervised
models (SuPreM) transfer better to target classification tasks than self-supervised models (Tang et al.,
2022), leading to improved Area Under the Curve (AUC) for identifying each tumor type. Notably,
the transfer learning results detailed in Appendix E.4 reveal a sensitivity of 86.1% and specificity
of 95.4% for PDAC detection. This performance surpasses the average radiologist’s performance
in PDAC identification by 27.6% in sensitivity and 4.4% in specificity, as reported in Cao et al.
(2023). Moreover, Appendix Figure 9 shows that SuPreM requires 50% fewer manual annotations
for fine-grained tumor classification than self-supervised pre-training. This is particularly critical for
tumor imaging tasks because annotating tumors requires much more effort and often relies on the
availability of pathology reports.

5 CONCLUSION AND DISCUSSION

This study examines the transfer learning ability of supervised models that are pre-trained on
3D annotated datasets and fine-tuned on 3D image segmentation tasks. We start by constructing
AbdomenAtlas 1.1, an extensive collection of 9,262 three-dimensional CT volumes with high-
quality, per-voxel annotations. The magnitude of this dataset is unprecedented regarding data volume
(3.8M images), granularity of annotations (300K masks), and inclusive diversity (88 hospitals).
This dataset facilitates the development of a suite of pre-trained models, termed SuPreM, that can
be effectively transferred to a broad spectrum of 3D image segmentation tasks. Notably, SuPreM
transfers better than all existing 3D models by a large margin, irrespective of their pre-training
methodologies or data sources; the benefit is more pronounced if the model is transferred to datasets
that have limited annotations. The model trained with 21 CT volumes, 672 masks, and 40 GPU
hours shows a transfer learning ability similar to that trained with 5,050 CT volumes and 1,152 GPU
hours, highlighting the remarkable efficiency of supervised pre-training. We also demonstrate that
the learned features can direct inference effectively on external datasets and fine-tune to segment
novel classes and classify multiple types of tumors with higher accuracy and less annotated data
than those learned by self-supervision. As open science, we will release both the annotated dataset
(AbdomenAtlas 1.1) and pre-trained models (SuPreM) to the public.
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A OVERVIEW

Figure 4: Our main contributions are as follows: (a) An extensive dataset of 9,262 CT volumes with
per-voxel annotations of 25 anatomical structures, enabling us to perform supervised pre-training of
AI models. (b) A suite of pre-trained models comprising several widely recognized AI models, each
pre-trained on large-scale datasets and per-voxel annotations. In summary, supervised pre-training (in
red) strikes as a preferred choice in terms of performance and efficiency compared with self-supervised
pre-training (in gray). We anticipate that the release of our annotated dataset (AbdomenAtlas 1.1)
and the suite of pre-trained models (SuPreM) will bolster collaborative endeavors in establishing
Foundation Datasets and Foundation Models for the broader applications of 3D volumetric medical
image analysis.

We assess the transfer learning ability of our SuPreM, supervised pre-trained by organ segmentation,
under five distinct settings.

1. Transfer to external datasets (domains) to segment the same anatomical structures—classes
that were used for pre-training.

2. Transfer to segmentation tasks of organs, muscles, vertebrae, and cardiac structures—classes
that were not used for pre-training.

3. Transfer to segmentation tasks of pancreatic tumor segmentation—more challenging classes
that were not used for pre-training.

4. Transfer to few-shot segmentation tasks using only a limited number of annotated CT
volumes—classes that were not used for pre-training.

5. Transfer to classification tasks that identify fine-grained tumors, including PDAC, Cyst, and
PanNet in the proprietary dataset.

This evaluation protocol has been widely adopted to assess transfer learning ability in medical
imaging (Zhou et al., 2021b; Tang et al., 2022; Jiang et al., 2023) and computer vision (He et al.,
2022; Zhai et al., 2022). In the future, we plan to assess the transfer learning ability across imaging
modalities and broader 3D vision tasks.
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B EXTENSIVE DATASET: ABDOMENATLAS 1.1

B.1 DATASET SOURCES

Table 5: An extensive dataset of 9,262 CT volumes with per-voxel annotations of 25 anatomical
structures. This dataset is unprecedented in terms of data and annotation scales, providing 300K
organ/tumor masks and 3.7M annotated images that are taken from 88 hospitals worldwide. In 2009,
before the advent of ImageNet (Deng et al., 2009), it was challenging to empower an AI model
with generalized image representation using a small or even medium size of labeled data, the same
situation, we believe, that presents in 3D medical image analysis today. As seen in the table, the
annotations of public datasets are limited, partial, and incomplete, and the CT volumes in these
datasets are often biased toward specific populations, medical centers, and countries. Our constructed
dataset mitigates these gaps, representing a significant leap forward in the field.

dataset (year) [source] # of
class

# of
volume

# of
center

source
countries license

1. Pancreas-CT (2015) [link] 1 82 1 US CC BY 3.0

2. LiTS (2019) [link] 2 201 7 DE, NL, CA,
FR, IL CC BY-SA 4.0

3. AbdomenCT-1K (2021) [link] 4 1,000 12 DE, NL, CA,
FR, IL, US, CN CC BY-NC-SA

4. KiTS (2020) [link] 3 300 1 US CC BY-NC-SA 4.0
5. AutoPET (2022) [link] 1 1,014 2 DE TCIA Restricted
6. CHAOS (2018) [link] 4 40 1 TR CC BY-SA 4.0
7-11. MSD CT Tasks (2021) [link] 9 947 1 US CC BY-SA 4.0
12. BTCV (2015) [link] 12 50 1 US CC BY 4.0
13. AMOS22 (2022) [link] 15 500 2 CN CC BY-NC-SA
14. WORD (2021) [link] 16 150 1 CN GNU GPL 3.0

15. CT-ORG (2020) [link] 6 140 8 DE, NL, CA,
FR, IL, US CC BY 3.0

16. FLARE’23 (2022) [link] 13 4,000 30 - CC BY-NC-ND 4.0
17. AATTCT-IDS (2023c) [link] - 300 1 CN -
18. KiPA22 (2021) [link] 4 100 1 CN CC BY-NC-ND 3.0
19. Abdominal Trauma Det. (2023) [link] - 3,147 23 - -
20. FUMPE (2018) [link] 1 35 1 IR CC BY 4.0
21. TotalSegmentator (2022) [link] 104 1,204 1 CH CC BY 4.0
22. CTSpine1K (2021) [link] 26 1,005 - - CC BY 4.0

23. AbdomenAtlas 1.1 25 9,262 88
US, DE, NL,
FR, IL, CN,
CA, TR, CH

pending

US: United States DE: Germany NL: Netherlands CA: Canada FR: France IL: Israel IR: Iran
CN: China TR: Turkey CH: Switzerland

Our objective in developing AbdomenAtlas 1.1 is to drive algorithmic advancements and set new
benchmarks in the field of 3D medical imaging. In many ways, our dataset echoes the early days
of ImageNet (Deng et al., 2009), as both datasets emerged at times when large-scale data, diverse
classes, and detailed labels were sparse in their respective fields. The limitations of publicly available
datasets have been summarized with statistics in Appendix Table 5 and Appendix Figure 5.

Segmentation is often conceptualized as per-voxel classification. In the medical domain, segmentation
holds the same fundamental importance as classification does in general computer vision (Ma &
Wang, 2023b). We bet that ImageNet-like datasets in the medical domain should be formed as
per-voxel segmentation labels. Our dataset aligns with this vision by providing per-voxel labels,
offering a level of detail far surpassing ImageNet’s per-image labels. Concretely, the per-voxel
labels in our dataset (272.7B annotated voxels) are much more extensive than the per-image labels in
ImageNet (14M annotated images).

Appendix Table 5 has detailed the source and permissions for data release. Our approach involves
disseminating only the annotations of the CT volumes, which users can combine with the original
CT volumes obtained from their original sources. All data created and licensed out by us will be in
separate files, ensuring no modifications to the original CT volumes. Legal consultations confirm our
permission to distribute these annotations under the licenses of each dataset. We will also release
the entire AbdomenAtlas 1.1 dataset to the public, providing 300K organ/tumor masks and 3.7M
annotated images that are taken from 88 hospitals worldwide. This dataset will continue to expand
with the collective effort from the community.
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Figure 5: Evolution: from a combination of public data to AbdomenAtlas 1.1. AbdomenAtlas
1.1 is NOT a simple combination of existing datasets. The 9K CT volumes in the combination of
public datasets only contain a total of 39K annotated organ masks, while our AbdomenAtlas 1.1
provides over 300K annotated organ/tumor masks for these CT volumes, substantially increasing the
number of masks by 7.6 times. Creating 300K high-quality organ/tumor masks for 9K CT volumes
requires extensive medical knowledge and annotation cost (much more difficult than annotating
natural images). Based on our experience and those reported in Park et al. (2020), trained radiologists
annotate abdominal organs at a rate of 30–60 minutes per organ per three-dimensional CT volume.
This translates to 247K human hours for completing AbdomenAtlas 1.1. We employed a highly
efficient annotation method, combining AI with the expertise of three radiologists using active
learning (details in Appendix B.3), to overcome this challenge and produce the largest annotated
dataset to date.
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B.2 DOMAIN TRANSFER ACROSS DATASETS

Figure 6: Domain gaps. Examples of CT volumes from different domains (e.g., hospitals and
countries) illustrate the variability in images. AbdomenAtlas 1.1 are created by a large variety of
CT scanners, imaging protocols, and acquired from numerous hospitals worldwide (Table 1). We note
that substantial differences in CT volumes occur in image quality and technical display, originating
from different acquisition parameters, reconstruction kernels, and contrast enhancements.

Table 3 shows that SuPreM is pretty robust because our AbdomenAtlas 1.1 covers a variety of
domains (i.e., 88 hospitals with different scanners and protocols), as shown in Appendix Figure 6;
models pre-trained on this dataset are expected to be generalizable for novel domains. Therefore,
domain transfer becomes less important if the model is pre-trained on large and diverse datasets,
elaborating on the two points below.

1. The domain transfer problem could be solved by methodology innovation, and also by
training AI models on enormous datasets. This point has been more clear recently demon-
strated by large language models (GPT) and vision foundation models (SAM), which show
incredible performance in “novel domain”. However, this achievement may not be directly
attributed to method-driven solutions for domain transfer, but simply because the AI might
have been trained on similar sentences or images. This was also pointed out by Yann
Lecun—beware of testing on the training set—in response to the incredible results achieved
by GPT.

2. In some sense, our paper explores dataset-driven solutions for domain transfer. The ro-
bust performance of our models when direct inference on multiple domains could also be
attributed to our large-scale, fully-annotated medical dataset—as one of our major contribu-
tions. The release of AbdomenAtlas 1.1 can foster AI models that are more robust than
the majority of existing models that are only trained on a few hundred CT volumes from
limited domains. In addition, existing domain transfer methods could also be supplemented
with direct inference and fine-tuning to further improve AI performance.
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B.3 UNIFORM ANNOTATION STANDARDS

Figure 7: Automated organ annotations. Our annotation pipeline involved an interactive segmenta-
tion approach, an integration of AI algorithms and human expertise, which premises to improve the
efficiency while upholding high-quality annotations. One senior radiologist revised the annotations
predicted by our AI models, and in turn, the AI models improved their predictions by learning from
these revised annotations. This interactive procedure continued to enhance the quality of annotations
until no major revision is needed. Subsequently, five junior radiologists examine the final visual-
izations for accuracy (examples of the rendered images are shown above). The junior radiologists
were responsible for reviewing the correctness of the annotations and marking the patient ID for any
major discrepancies. Such cases are then reviewed by the senior radiologist. Our uniform annotation
standards, largely overlapping with those in Ma et al. (2023b), require trained radiologists to spend
approximately 30–60 minutes annotating each organ in a three-dimensional CT volume.

Automated (pseudo) tumor annotations. We have established uniform annotation standards for
tumors, with both senior and junior radiologists actively refining and adhering to these guidelines.

• Liver tumors: Liver tumors include primary tumor lesions and metastases in the liver.
Annotations should encompass the entire tumor, including any invasive parts, necrosis,
hemorrhage, fibrous scars, and calcifications. Healthy areas or unrelated lesions are not
included.

• Kidney tumors: Kidney tumors include both benign and malignant tumor lesions growing
in the kidneys. The entire tumor and its invasive parts to surrounding areas, plus internal
changes like necrosis and calcification, should be annotated. Exclude healthy structures.

• Pancreatic tumors: Pancreatic tumors include all benign and malignant tumor lesions
growing in the pancreas. Annotations cover the whole tumor and its invasive growth into
adjacent areas, including changes like cysts, necrosis, and calcification. Exclude healthy
structures.

• Colon tumors: Colon tumors include all benign and malignant tumor lesions developing
from the colon wall. The entire tumor and its invasion into nearby structures, along with
internal changes like necrosis, should be annotated, excluding healthy areas.

• Hepatic vessel tumors: Hepatic vessel tumors include all primary tumor lesions developing
from the intrahepatic vessel wall and tumor thrombus in intrahepatic vessels. Annotations
should include the tumor within the vessels, excluding external parts and unrelated lesions.

Overall, AbdomenAtlas 1.1 offers 51.8K pseudo tumor masks visually inspected by radiologists,
though without biopsy confirmation. While these masks lack pathological validation, we anticipate
they will serve as a valuable foundation for expanding precise tumor annotations in future research.
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B.4 ON THE IMPORTANCE OF ANNOTATION QUALITY

Table 6: On the importance of annotation quality. We intentionally introduced deformities to the
annotations within our dataset, termed AbdomenAtlas 1.1 (noisy), and trained a noisy AI model
using this dataset. For comparison, a clean AI model is trained using the original AbdomenAtlas
1.1 (clean). We then evaluate the noisy model and the clean model using the pretext test set of
AbdomenAtlas 1.1 and the target test set of TotalSegmentator. Results show that the suboptimal
AI model shows diminished transfer learning ability on the target dataset, leading to negative
transfer (Zhang et al., 2022). In summary, annotation quality profoundly impacts AI performance
and transfer learning ability. These observations are corroborated by Figure 14, where superior
performance in the pretext task indicates enhanced transfer learning ability, and vice versa.

pretext dataset (AbdomenAtlas 1.1) AbdomenAtlas 1.1 (noisy) AbdomenAtlas 1.1 (clean)
spleen 92.9 93.2
right kidney 88.9 89.2
left kidney 88.4 87.6
gall bladder 71.0 71.4
esophagus 72.1 71.3
liver 94.5 94.7
stomach 84.8 85.0
aorta 89.1 88.8
postcava 79.5 79.3
portal vein and splenic vein 67.3 61.1
pancreas 76.5 75.6
right adrenal gland 13.3 44.2
left adrenal gland 56.8 58.9
duodenum 59.5 60.8
hepatic vessel 29.2 29.4
right lung 85.8 85.9
left lung 65.0 72.2
colon 70.4 70.7
intestine 81.2 81.0
rectum 64.1 64.8
bladder 67.0 67.6
prostate 71.0 70.0
left head of femur 31.8 64.1
right head of femur 88.9 88.9
celiac truck 77.0 72.9
kidney tumor 20.3 25.6
liver tumor 35.2 45.0
pancreas tumor 15.0 17.2
hepatic vessel tumor 30.6 39.6
lung tumor 0.0 28.8
colon tumor 7.0 8.5
kidney cyst 9.0 9.4
average 58.8 62.6
target dataset (TotalSegmentator)
spleen 72.2 96.3
kidney right 51.8 93.5
kidney left 47.6 94.9
gallbladder 71.3 84.5
liver 78.1 97.7
stomach 52.6 92.3
aorta 78.9 94.3
inferior vena cava 35.1 90.5
portal vein and splenic vein 67.2 81.6
pancreas 78.5 87.7
adrenal gland right - 85.5
adrenal gland left - 79.7
lung upper lobe left 81.2 96.0
lung lower lobe left 75.1 93.4
lung upper lobe right 73.4 89.7
lung middle lobe right 69.1 91.9
lung lower lobe right 73.8 95.2
average (organ) 67.1 90.9
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C A SUITE OF PRE-TRAINED MODELS: SUPREM

C.1 DIFFERENT BACKBONES IN THE SUITE OF MODELS

Table 7: Detailed results of different backbones on TotalSegmentator. The performance is
measured by the Dice Similarity Coefficient (DSC) and normalized surface dice (NSD) with a
tolerance of 1mm. Current backbones included U-Net (CNN-type) (Ronneberger et al., 2015),
SegResNet (CNN-type) (Chen et al., 2016), and Swin UNETR (Transformer-type) (Tang et al., 2022),
and more backbones will be added along time.

TotalSegmentator
(Wasserthal et al., 2022)

scratch U-Net SegResNet Swin UNETR
DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%)

spleen 96.2±0.1 73.8±0.6 95.5±0.3 73.3±0.7 96.5±0.1 73.9±0.6 96.5±0.1 74.5±0.4
kidney right 95.0±0.2 76.3±0.6 95.3±0.4 70.9±0.5 94.8±0.1 75.4±0.8 94.1±0.6 71.6±0.8
kidney left 89.4±1.9 73.8±1.3 95.0±0.3 68.6±1.0 94.4±0.6 71.9±0.8 95.3±0.3 72.8±0.7
gallbladder 78.6±1.3 47.8±1.4 86.6±0.4 49.5±0.9 82.9±1.2 51.7±1.4 85.7±0.6 43.3±1.1
liver 97.6±0.0 72.3±0.3 97.7±0.1 73.0±0.4 97.8±0.0 72.9±0.4 97.7±0.2 72.0±0.4
stomach 88.4±0.2 59.5±0.8 93.3±0.5 60.7±0.7 92.7±0.5 60.3±1.1 93.1±0.5 59.0±0.4
aorta 92.7±0.7 73.1±0.4 95.3±0.2 73.4±0.3 95.2±0.4 72.6±0.3 96.1±0.1 71.9±0.4
inferior vena cava 89.3±0.3 62.8±0.6 89.5±0.6 62.9±0.3 90.9±0.4 61.6±0.6 89.4±0.2 60.5±0.7
portal & splenic vein 75.4±1.3 58.4±1.4 83.4±0.6 58.6±0.8 82.2±0.9 56.6±0.8 81.5±0.5 54.7±0.7
pancreas 86.2±0.5 58.3±1.0 88.5±0.6 59.5±0.8 88.1±0.7 59.9±0.8 88.9±0.4 56.7±0.3
adrenal gland right 82.1±0.5 69.4±0.6 87.8±0.3 69.6±0.8 85.2±0.3 66.4±0.9 87.1±0.1 64.9±0.3
adrenal gland left 75.1±1.2 59.3±1.4 83.1±0.8 60.4±0.9 80.7±0.7 57.1±1.3 79.1±0.5 55.1±0.5
lung upper lobe left 96.6±0.2 74.5±0.4 96.2±0.1 73.4±0.5 96.3±0.2 72.8±0.3 96.3±0.0 72.8±0.2
lung lower lobe left 92.3±0.7 71.5±0.2 95.3±0.3 69.9±0.7 93.6±0.4 69.9±0.7 93.5±0.5 69.3±0.4
lung upper lobe right 91.0±0.5 68.9±0.4 96.1±0.1 64.4±1.0 93.0±0.7 65.4±0.7 91.5±0.5 66.5±0.5
lung middle lobe right 90.2±0.3 60.0±0.4 92.0±0.0 60.0±0.4 92.7±0.3 59.7±0.6 91.6±0.2 56.8±0.4
lung lower lobe right 94.8±0.1 72.7±0.5 95.0±0.0 72.5±0.5 95.3±0.5 72.0±0.3 94.7±0.1 71.4±0.4
average 88.9±0.6 66.6±0.7 92.1±0.3 65.9±0.7 91.3±0.5 65.9±0.7 91.3±0.3 64.3±0.5

humerus left 88.6±1.5 69.1±1.0 92.3±0.2 71.4±0.7 90.0±0.3 48.3±1.2 93.3±0.4 72.8±1.0
humerus right 86.1±1.4 64.0±1.3 96.4±0.2 68.8±0.8 88.7±0.1 32.5±0.7 94.9±0.1 68.6±2.1
scapula left 92.4±0.2 79.4±0.9 95.2±0.2 79.1±1.0 93.4±0.1 73.2±0.7 92.7±0.5 77.1±0.5
scapula right 95.4±0.2 81.2±0.3 95.5±0.2 81.0±0.2 93.5±0.1 74.1±0.2 94.6±0.2 79.3±0.2
clavicula left 95.9±0.0 81.3±0.2 96.4±0.1 83.3±0.3 93.8±0.1 71.2±0.3 95.9±0.0 81.7±0.2
clavicula right 95.1±0.0 77.0±0.2 95.9±0.1 80.0±0.3 93.4±0.1 67.3±0.4 94.8±0.3 76.8±0.2
femur left 85.5±0.5 64.3±1.1 95.0±0.2 66.2±1.2 94.4±0.2 60.6±1.5 94.5±0.2 65.8±2.1
femur right 97.8±0.0 77.8±0.7 97.9±0.1 76.8±0.4 97.3±0.0 72.3±0.3 98.2±0.0 82.5±0.3
hip left 97.5±0.0 83.4±0.4 98.0±0.1 84.3±0.2 95.9±0.6 77.0±0.3 97.8±0.1 82.9±0.4
hip right 98.2±0.0 84.9±0.4 98.4±0.0 85.8±0.1 97.3±0.1 78.2±0.2 98.2±0.0 84.5±0.3
sacrum 96.6±0.2 80.1±0.8 97.0±0.1 80.9±0.2 95.6±0.1 72.0±0.5 96.6±0.0 78.5±0.3
gluteus maximus left 96.8±0.1 63.8±0.6 97.0±0.0 66.1±0.3 96.6±0.0 62.3±0.6 96.3±0.1 59.9±0.3
gluteus maximus right 96.9±0.1 66.2±0.6 97.1±0.1 66.2±0.2 96.9±0.0 64.9±0.4 97.0±0.0 64.8±0.2
gluteus medius left 95.6±0.1 59.2±0.4 95.9±0.1 60.7±0.2 95.2±0.1 54.8±0.5 94.9±0.1 52.8±0.3
gluteus medius right 90.8±0.3 58.8±1.4 96.3±0.1 59.8±1.1 95.6±0.1 53.8±0.5 95.4±0.1 53.9±1.0
gluteus minimus left 93.6±0.1 62.2±0.5 94.1±0.0 63.7±0.3 92.0±0.1 54.4±0.4 92.4±0.2 55.9±0.4
gluteus minimus right 88.8±1.6 64.6±0.7 94.8±0.1 66.9±0.3 93.2±0.1 58.1±0.3 93.2±0.1 59.8±0.7
autochthon left 96.3±0.1 69.5±0.2 96.8±0.0 71.1±0.2 96.4±0.1 67.4±0.2 95.8±0.0 63.3±0.2
autochthon right 96.6±0.0 69.7±0.2 96.8±0.0 70.9±0.3 96.2±0.0 65.9±0.2 95.9±0.0 63.2±0.3
iliopsoas left 79.4±1.2 59.0±0.6 86.4±0.6 61.4±0.5 89.6±0.4 55.5±0.3 85.6±0.6 54.5±0.7
iliopsoas right 87.6±0.5 64.3±0.6 89.6±0.3 61.4±0.7 88.9±0.4 57.9±1.3 89.1±0.6 60.5±0.4
average 92.9±0.4 70.5±0.6 95.4±0.1 71.7±0.5 94.0±0.1 62.9±0.5 94.6±0.2 68.5±0.6

esophagus 93.4±0.1 73.9±0.3 93.8±0.1 75.8±0.3 92.4±0.1 69.4±0.2 90.0±0.2 63.3±0.4
trachea 91.2±1.4 82.2±0.2 95.5±0.4 82.9±0.2 94.6±0.4 78.7±0.3 93.5±0.4 76.3±0.4
heart myocardium 89.7±0.2 56.7±0.5 92.8±0.1 58.5±0.5 91.9±0.1 56.1±0.6 89.9±0.2 48.9±0.3
heart atrium left 93.6±0.2 66.1±0.5 95.6±0.4 65.7±0.5 95.0±0.1 61.8±0.5 94.6±0.0 55.7±0.4
heart ventricle left 94.9±0.1 55.7±0.6 95.6±0.1 57.2±0.6 94.5±0.1 53.9±0.7 93.5±0.4 48.0±0.3
heart atrium right 90.2±0.9 55.8±0.7 94.9±0.1 56.3±0.5 94.7±0.1 54.4±0.5 92.8±0.2 46.6±0.2
heart ventricle right 87.7±0.1 54.3±0.6 95.4±0.2 56.3±0.4 94.8±0.0 54.1±0.4 93.9±0.1 47.3±0.7
pulmonary artery 93.1±0.2 62.4±0.6 93.0±0.3 62.8±0.2 91.8±0.2 59.3±0.5 92.0±0.2 52.8±0.2
brain 87.5±2.8 53.4±0.7 95.0±0.6 55.0±1.5 94.8±0.5 54.0±1.2 95.6±0.6 54.7±1.8
iliac artery left 93.1±0.1 78.9±0.4 93.3±0.1 80.2±0.6 91.2±0.1 73.6±0.6 87.7±0.4 67.7±1.0
iliac artery right 88.4±1.5 78.0±0.5 93.0±0.2 80.1±0.6 90.7±0.2 72.4±0.6 87.7±0.6 67.3±1.1
iliac vena left 94.2±0.1 75.4±0.5 92.8±0.2 74.6±0.7 91.8±0.4 68.7±0.6 90.1±0.4 63.4±0.7
iliac vena right 84.8±1.4 74.4±0.5 92.7±0.3 75.2±0.6 91.3±0.3 68.7±0.7 89.9±0.3 63.3±0.9
small bowel 81.7±1.0 53.8±1.0 85.8±0.5 56.1±0.7 85.4±0.8 54.0±0.8 86.8±0.2 50.6±0.7
duodenum 78.0±1.0 47.0±0.6 84.9±0.3 48.2±0.4 82.5±0.2 45.3±0.7 81.9±0.3 40.7±0.7
colon 91.1±0.3 55.5±0.4 90.9±0.2 57.1±0.5 91.6±0.3 55.5±0.4 88.8±0.3 48.1±0.4
urinary bladder 88.3±0.8 51.0±0.8 93.3±0.9 51.5±0.5 92.6±0.3 47.6±1.1 91.2±0.4 43.5±0.6
face 77.9±0.9 50.7±0.9 80.7±0.9 49.6±0.7 80.5±1.7 45.0±0.6 85.0±0.9 38.0±1.8
average 88.8±0.7 62.5±0.6 92.2±0.3 63.5±0.6 91.2±0.3 59.6±0.6 90.3±0.3 54.2±0.7
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C.2 SUPERVISED AND SELF-SUPERVISED BENCHMARKING

C.2.1 BACKGROUND

The goal of Table 2 and Appendix Table 8 is to provide a practical benchmark for the transfer learning
ability of readily available pre-trained models. Our intent is not to compare the specific pre-training
methodologies of each model for two primary reasons.

1. The majority of researchers tend to fine-tune pre-existing models rather than retrain them
from scratch due to convenience and accessibility.

2. Reproducing these models would require specialized hyper-parameter tuning and varied
computational resources. For example, models like Swin UNETR (Tang et al., 2022) were
pre-trained using large-scale GPU clusters at NVIDIA, making them challenging for us to
faithfully retrain.

Considering both practical user scenarios and computational constraints, we decided to directly use
their released models and fine-tune them with consistent settings on the same datasets.

However, using existing pre-trained models can inevitably lead to certain problems. For example,
the U-Net family has seen numerous variations over the years (Siddique et al., 2021). Pre-trained
models released before 2021 typically employed a basic version of U-Net (Zhou et al., 2019; Chen
et al., 2019b). On the other hand, our U-Net benefits from a more advanced code base, thanks to
the MONAI platform at NVIDIA, which includes enhanced architectures and advanced training
optimization strategies. Consequently, our U-Net, even trained from scratch, is capable of surpassing
the performance of these older baseline models.

Table 8: Benchmarking all the self-supervised and supervised models.

name backbone params pre-trained data performance†

self-
supervised

Models Genesis (Zhou et al., 2019) U-Net 19.08M 623 CT volumes 90.1
UniMiSS (Xie et al., 2022) nnU-Net 61.79M 5,022 CT&MRI volumes 92.9

NV∗ Swin UNETR 62.19M 1,000 CT volumes 93.2
NV∗ Swin UNETR 62.19M 3,000 CT volumes 93.4
NV (Tang et al., 2022) Swin UNETR 62.19M 5,050 CT volumes 93.8
NV∗ Swin UNETR 62.19M 5,050 CT volumes 94.2
NV∗ Swin UNETR 62.19M 9,262 CT volumes 94.3

supervised

Med3D (Chen et al., 2019b) Residual U-Net 85.75M 1,638 CT volumes 91.4
DoDNet (Zhang et al., 2021) U-Net 17.29M 920 CT volumes 93.8
DoDNet∗ U-Net 17.29M 920 CT volumes 94.4
Universal Model (Liu et al., 2023b) U-Net 19.08M 2,100 CT volumes -
Universal Model (Liu et al., 2023b) Swin UNETR 62.19M 2,100 CT volumes 94.1

SuPreM∗ U-Net 19.08M 2,100 CT volumes 95.4
SuPreM∗ Swin UNETR 62.19M 2,100 CT volumes 94.6
SuPreM∗ SegResNet 470.13M 2,100 CT volumes 94.0

†We report the transfer learning performance of muscle segmentation on TotalSegmentator.
∗The name with a star (∗) denotes it is implemented by us and pre-trained using our AbdomenAtlas 1.1.

C.2.2 IMPLEMENTATION DETAILS OF PRE-TRAINING

For benchmark purposes (Tables 2, 4 and Figures 1, 2b, 3), we pre-trained U-Net, Swin UNETR,
and SegResNet on 2,100 fully annotated CT volumes with 25 anatomical structures and pseudo
annotations of seven tumors. The best model was selected based on the largest average DSC over the
32 classes on 310 CT volumes as the validation set. We randomly crop sub-volumes, sized 96×96×96
voxels, from the original CT volumes. Our SuPreM is pre-trained with AdamW using β1 = 0.9
and β2 = 0.999 with a batch size of 2 per GPU and a cosine learning rate schedule with a warm-up
for the first 100 epochs. We start with an initial learning rate of 1e−4 and a decay of 1e−5. The
pre-training has been conducted on four NVIDIA A100 using multi-GPU (4) with distributed data
parallel (DDP), implemented in MONAI 0.9.0., with a maximum of 800 epochs. We use the binary
cross-entropy and Dice Similarity Coefficient (DSC) losses as the objective function for pre-training.
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C.2.3 IMPLEMENTATION DETAILS OF FINE-TUNING

We fine-tune the pre-trained models using TotalSegmentator and the proprietary dataset datasets.
During fine-tuning, configurations from pre-training persist, but we adjust the warm-up scheduler to
20 epochs, set a maximum of 200 epochs, and use a single GPU.
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Figure 8: A comprehensive benchmark on supervised and self-supervised models. We present
the segmentation performance achieved by fine-tuning models using the entire TotalSegmentator
training set (N = 1081 annotated CT volumes) as target tasks. A larger circle size denotes a greater
number of model parameters. Overall, for target tasks, supervised models (in red) transfer better for
pre-training in comparison with self-supervised models (in gray). Detailed per-class performance can
be found in Appendix Table 9.
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Table 9: Detailed results of supervised and self-supervised benchmarking on TotalSegmentator.
The performance is measured by the Dice Similarity Coefficient (DSC) and normalized surface dice
(NSD) with a tolerance of 1mm.

TotalSegmentator
(Wasserthal et al., 2022)

scratch Tang et al. (2022) Liu et al. (2023b) SuPreM (ours)
DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%) DSC (%) NSD (%)

spleen 96.2±0.1 73.8±0.6 96.0±0.2 73.0±0.7 96.3±0.2 72.8±0.7 96.5±0.1 74.5±0.4
kidney right 95.0±0.2 76.3±0.6 95.2±0.4 75.6±0.3 94.1±0.2 74.1±0.8 94.1±0.6 71.6±0.8
kidney left 89.4±1.9 73.8±1.3 89.6±0.6 70.0±0.3 92.7±1.1 72.4±0.7 95.3±0.3 72.8±0.7
gallbladder 78.6±1.3 47.8±1.4 83.2±1.0 48.8±0.9 83.6±1.0 48.7±1.2 85.7±0.6 43.3±1.1
liver 97.6±0.0 72.3±0.3 97.6±0.1 71.9±0.4 97.7±0.1 71.1±0.6 97.7±0.2 72.0±0.4
stomach 88.4±0.2 59.5±0.8 92.5±0.5 57.7±0.6 92.8±0.3 57.1±0.5 93.1±0.5 59.0±0.4
aorta 92.7±0.7 73.1±0.4 93.2±0.1 70.0±0.4 93.2±0.5 69.1±0.4 96.1±0.1 71.9±0.4
inferior vena cava 89.3±0.3 62.8±0.6 88.0±0.4 60.0±0.3 86.4±0.2 58.5±0.5 89.4±0.2 60.5±0.7
portal & splenic vein 75.4±1.3 58.4±1.4 77.4±0.5 55.0±0.9 78.7±0.7 51.6±0.7 81.5±0.5 54.7±0.7
pancreas 86.2±0.5 58.3±1.0 85.9±0.7 56.4±0.9 86.3±0.5 56.3±0.9 88.9±0.4 56.7±0.3
adrenal gland right 82.1±0.5 69.4±0.6 82.9±1.2 66.5±0.8 82.4±0.5 61.0±0.4 87.1±0.1 64.9±0.3
adrenal gland left 75.1±1.2 59.3±1.4 74.1±0.7 56.2±0.7 77.8±0.7 52.1±0.6 79.1±0.5 55.1±0.5
lung upper lobe left 96.6±0.2 74.5±0.4 96.0±0.2 72.7±0.3 95.7±0.2 70.4±0.3 96.3±0.0 72.8±0.2
lung lower lobe left 92.3±0.7 71.5±0.2 93.1±0.4 69.0±0.6 92.6±0.6 67.1±0.5 93.5±0.5 69.3±0.4
lung upper lobe right 91.0±0.5 68.9±0.4 88.4±0.2 65.5±1.0 89.8±0.2 61.1±0.5 91.5±0.5 66.5±0.5
lung middle lobe right 90.2±0.3 60.0±0.4 90.7±0.6 56.1±0.5 89.9±0.6 54.1±0.4 91.6±0.2 56.8±0.4
lung lower lobe right 94.8±0.1 72.7±0.5 94.1±0.5 70.4±0.5 94.5±0.5 69.8±0.3 94.7±0.1 71.4±0.4
average 88.9±0.6 66.6±0.7 89.3±0.5 64.4±0.6 89.7±0.5 62.8±0.6 91.3±0.3 64.3±0.5

humerus left 88.6±1.5 69.1±1.0 93.0±0.8 78.0±0.9 92.7±0.3 73.0±0.6 93.3±0.4 72.8±1.0
humerus right 86.1±1.4 64.0±1.3 87.9±1.2 71.4±0.9 88.3±0.3 69.2±0.8 94.9±0.1 68.6±2.1
scapula left 92.4±0.2 79.4±0.9 93.5±0.6 79.8±0.2 92.4±0.2 78.0±0.7 92.7±0.5 77.1±0.5
scapula right 95.4±0.2 81.2±0.3 95.1±0.2 81.6±0.3 95.3±0.2 81.3±0.3 94.6±0.2 79.3±0.2
clavicula left 95.9±0.0 81.3±0.2 95.2±0.1 82.5±0.5 96.7±0.0 84.0±0.2 95.9±0.0 81.7±0.2
clavicula right 95.1±0.0 77.0±0.2 95.7±0.1 79.6±0.3 95.7±0.1 79.2±0.2 94.8±0.3 76.8±0.2
femur left 85.5±0.5 64.3±1.1 86.2±0.8 66.9±1.6 89.8±0.4 65.3±1.0 94.5±0.2 65.8±2.1
femur right 97.8±0.0 77.8±0.7 98.2±0.1 83.0±0.9 97.5±0.1 81.8±0.2 98.2±0.0 82.5±0.3
hip left 97.5±0.0 83.4±0.4 98.0±0.0 84.2±0.2 97.9±0.0 83.5±0.2 97.8±0.1 82.9±0.4
hip right 98.2±0.0 84.9±0.4 98.4±0.0 86.2±0.3 98.4±0.0 85.8±0.1 98.2±0.0 84.5±0.3
sacrum 96.6±0.2 80.1±0.8 96.9±0.1 81.2±0.3 97.0±0.1 81.0±0.2 96.6±0.0 78.5±0.3
gluteus maximus left 96.8±0.1 63.8±0.6 96.4±0.1 63.0±0.7 96.5±0.0 62.8±0.1 96.3±0.1 59.9±0.3
gluteus maximus right 96.9±0.1 66.2±0.6 96.9±0.1 66.9±0.7 96.9±0.0 65.1±0.2 97.0±0.0 64.8±0.2
gluteus medius left 95.6±0.1 59.2±0.4 95.3±0.1 56.9±0.5 95.1±0.1 55.6±0.3 94.9±0.1 52.8±0.3
gluteus medius right 90.8±0.3 58.8±1.4 90.9±0.3 57.8±0.7 91.2±0.2 57.2±0.4 95.4±0.1 53.9±1.0
gluteus minimus left 93.6±0.1 62.2±0.5 93.2±0.1 59.6±0.5 92.2±0.1 55.3±0.4 92.4±0.2 55.9±0.4
gluteus minimus right 88.8±1.6 64.6±0.7 93.7±0.1 63.8±0.9 93.7±0.1 61.5±0.3 93.2±0.1 59.8±0.7
autochthon left 96.3±0.1 69.5±0.2 96.2±0.0 66.3±0.4 96.4±0.0 68.0±0.2 95.8±0.0 63.3±0.2
autochthon right 96.6±0.0 69.7±0.2 96.1±0.0 65.9±0.4 96.2±0.1 66.4±0.1 95.9±0.0 63.2±0.3
iliopsoas left 79.4±1.2 59.0±0.6 84.6±0.5 60.3±0.2 86.6±0.7 62.9±0.6 85.6±0.6 54.5±0.7
iliopsoas right 87.6±0.5 64.3±0.6 87.8±0.8 64.2±0.6 89.7±0.4 65.4±0.3 89.1±0.6 60.5±0.4
average 92.9±0.4 70.5±0.6 93.8±0.3 71.4±0.6 94.1±0.2 70.6±0.4 94.6±0.2 68.5±0.6

esophagus 93.4±0.1 73.9±0.3 88.7±0.2 60.6±0.6 89.4±0.2 61.8±0.4 90.0±0.2 63.3±0.4
trachea 91.2±1.4 82.2±0.2 93.4±0.1 75.9±0.5 93.3±0.1 75.9±0.3 93.5±0.4 76.3±0.4
heart myocardium 89.7±0.2 56.7±0.5 89.0±0.1 46.0±0.5 89.5±0.1 46.9±0.4 89.9±0.2 48.9±0.3
heart atrium left 93.6±0.2 66.1±0.5 93.6±0.4 50.8±0.5 94.2±0.2 54.8±0.4 94.6±0.0 55.7±0.4
heart ventricle left 94.9±0.1 55.7±0.6 93.2±0.1 44.9±0.5 93.5±0.1 46.4±0.4 93.5±0.4 48.0±0.3
heart atrium right 90.2±0.9 55.8±0.7 92.0±0.2 42.9±0.5 92.6±0.1 44.3±0.5 92.8±0.2 46.6±0.2
heart ventricle right 87.7±0.1 54.3±0.6 90.4±0.8 43.6±0.5 93.3±0.3 44.9±0.3 93.9±0.1 47.3±0.7
pulmonary artery 93.1±0.2 62.4±0.6 88.7±0.2 51.5±0.6 91.8±0.1 52.4±0.6 92.0±0.2 52.8±0.2
brain 87.5±2.8 53.4±0.7 95.5±0.1 55.0±1.2 95.6±0.4 55.1±0.7 95.6±0.6 54.7±1.8
iliac artery left 93.1±0.1 78.9±0.4 87.1±0.4 65.4±0.6 87.1±0.4 65.5±0.5 87.7±0.4 67.7±1.0
iliac artery right 88.4±1.5 78.0±0.5 85.8±0.2 64.1±0.9 87.6±0.4 65.4±0.5 87.7±0.6 67.3±1.1
iliac vena left 94.2±0.1 75.4±0.5 87.5±0.3 58.8±0.6 88.5±0.4 60.0±0.5 90.1±0.4 63.4±0.7
iliac vena right 84.8±1.4 74.4±0.5 87.3±0.1 59.7±0.4 88.5±0.6 60.7±0.6 89.9±0.3 63.3±0.9
small bowel 81.7±1.0 53.8±1.0 84.3±0.3 48.3±0.5 84.4±0.8 48.4±0.5 86.8±0.2 50.6±0.7
duodenum 78.0±1.0 47.0±0.6 79.1±0.7 40.7±0.5 80.3±1.1 42.3±0.5 81.9±0.3 40.7±0.7
colon 91.1±0.3 55.5±0.4 87.2±0.3 45.2±0.4 87.8±0.3 45.9±0.3 88.8±0.3 48.1±0.4
urinary bladder 88.3±0.8 51.0±0.8 90.0±0.3 38.9±0.8 89.7±0.2 39.2±0.5 91.2±0.4 43.5±0.6
face 77.9±0.9 50.7±0.9 76.0±1.1 41.2±1.2 82.0±1.2 37.3±1.6 85.0±0.9 38.0±1.8
average 88.8±0.7 62.5±0.6 88.3±0.3 51.9±0.6 89.4±0.4 52.6±0.5 90.3±0.3 54.2±0.7
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D DATA, ANNOTATION, AND COMPUTATIONAL EFFICIENCY

D.1 ANNOTATION EFFICIENCY IN FINE-TUNING

Figure 9: SuPreM detailed annotation and learning efficiency for segmenting 66 novel classes.
We assesses the annotation & learning efficiency by fine-tuning models on different number of
annotated CT volumes from TotalSegmentator and the proprietary dataset for a total of 66 novel
classes.
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D.2 CONVERGENCE AND LEARNING EFFICIENCY IN FINE-TUNING

Figure 10: Convergence & learning efficiency in fine-tuning. We present the learning curves for
fine-tuning supervised and self-supervised models for target tasks. Supervised models converge faster
and achieve markedly better performance in cardiac segmentation using TotalSegmentator.
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E ENHANCED FEATURES FOR NOVEL DATASETS, CLASSES, AND TASKS

E.1 DIRECT INFERENCE ON THREE EXTERNAL DATASETS

Figure 11: Direct inference on TotalSegmentator.
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Figure 12: Direct inference on the proprietary dataset. We performed direct inference using the
proprietary dataset, which covers 23 specific classes. These include the aorta, adrenal gland, common
bile duct, celiac abdominal aorta, colon, duodenum, gallbladder, IVC, left kidney, right kidney, liver,
pancreas, pancreatic duct, superior mesenteric artery, small bowel, spleen, stomach, and various veins
like the left and right renal veins. It also includes PDAC, pancreatic cysts, and PanNET.
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E.2 FINE-TUNING SUPREM ON 17 SEEN CLASSES

Table 10: Fine-tuning SuPreM on 17 seen classes. The fine-tuning performance of 17 seen classes
is promising, but this is expected, given that the model is exposed to more examples of these classes
in both pre-training and fine-tuning phases. We perform an independent two-sample t-test between
the self-supervised pre-trained model and the supervised pre-trained model. The performance gain
(∆) is statistically significant at the P = 0.05 level, with highlighting in a light red box.

seen class self-super. super. ∆ seen class self-super. super. ∆

spleen 95.9±0.1 96.5±0.2 0.6 pancreas 85.6±0.3 88.8±0.5 3.2
kidney right 95.4±0.5 93.7±0.3 -1.7 adrenal gland right 82.2±0.2 86.9±0.2 4.7
kidney left 89.5±0.7 95.1±0.1 5.6 adrenal gland left 74.0±0.4 79.2±0.7 5.3
gallbladder 82.6±0.3 85.3±0.3 2.7 femur left 86.2±0.8 94.5±0.2 8.3
liver 97.6±0.0 97.6±0.0 0.1 femur right 98.2±0.1 98.2±0.0 0.0
stomach 92.7±0.6 93.2±0.5 0.4 esophagus 88.7±0.2 90.0±0.2 1.3
aorta 93.2±0.1 96.0±0.1 2.8 duodenum 79.1±0.7 81.9±0.3 2.8
inferior vena cava 88.1±0.5 89.4±0.4 1.3 colon 87.2±0.3 88.8±0.3 1.6
portal & splenic vein 77.0±0.4 80.9±0.5 3.9
average 87.8±0.4 90.4±0.3 2.5
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E.3 FINE-TUNING SUPREM ON 63 NOVEL CLASSES

Table 11: Fine-tuning SuPreM on 66 novel classes. Following the standard transfer learning
paradigm, we fine-tune our SuPreM on several novel segmentation tasks. These tasks include
segmenting 19 muscles, 15 cardiac structures, 5 organs, and 24 vertebrae from TotalSegmentator, as
well as 3 pancreatic tumors from the proprietary dataset. It is important to note that these classes were
not part of the pre-training of SuPreM. We observe that SuPreM, supervised pre-trained on only a
few classes, can transfer better than those self-supervised pre-trained on raw, unlabeled data. In other
words, it is the task of segmentation itself that can enhance the model’s capability of segmenting
novel-class objects. This benefit is much more straightforward and understandable than such self-
supervised tasks as contextual prediction, mask image modeling, and instance discrimination in the
context of transfer learning. We hypothesize that it is because the model learns to understand the
concept of objectness in a broader sense through full supervision, as suggested by Kirillov et al.
(2023), but this certainly deserves further exploration. In addition, we have further performed an
independent two-sample t-test between the self-supervised pre-trained model and the supervised
pre-trained model. The performance gain (∆) is statistically significant at the P = 0.05 level, with
highlighting in a light red box.

novel class self-super. super. ∆ novel class self-super. super. ∆

humerus left 92.6±0.3 93.1±0.2 0.5 lung upper lobe left 96.0±0.1 96.4±0.2 0.4
humerus right 87.3±1.0 94.9±0.1 7.6 lung lower lobe left 92.9±0.4 93.5±0.8 0.6
scapula left 93.1±0.1 92.5±0.1 -0.6 lung upper lobe right 89.1±1.2 91.5±0.3 2.5
scapula right 94.9±0.1 94.6±0.1 -0.3 lung middle lobe right 90.5±0.4 91.7±0.2 1.2
clavicula left 95.3±0.4 95.9±0.1 0.6 lung lower lobe right 94.0±0.4 94.7±0.1 0.7
clavicula right 95.6±0.1 94.7±0.1 -0.9 average (organ) 92.5±0.5 93.6±0.3 1.1
hip left 98.1±0.1 97.8±0.1 -0.3
hip right 98.4±0.0 98.2±0.0 -0.2 vertebrae L5 89.6±0.7 89.0±0.7 -0.6
sacrum 96.9±0.1 96.4±0.1 -0.5 vertebrae L4 90.4±0.7 93.0±0.2 2.5
gluteus maximus left 96.4±0.1 96.0±0.1 -0.4 vertebrae L3 87.4±1.4 92.4±0.2 4.9
gluteus maximus right 96.9±0.1 96.7±0.1 -0.2 vertebrae L2 82.2±1.9 86.0±0.5 3.8
gluteus medius left 95.3±0.2 94.5±0.2 -0.8 vertebrae L1 89.0±1.1 92.3±0.3 3.3
gluteus medius right 92.3±2.4 94.8±0.3 2.5 vertebrae T12 88.9±1.1 88.6±0.3 -0.4
gluteus minimus left 93.2±0.1 92.1±0.1 -1.1 vertebrae T11 91.0±1.4 90.3±0.3 -0.7
gluteus minimus right 93.7±0.1 93.2±0.1 -0.5 vertebrae T10 91.2±1.2 90.3±0.4 -0.8
autochthon left 96.1±0.0 95.8±0.0 -0.3 vertebrae T9 87.0±1.3 89.4±0.6 2.3
autochthon right 96.1±0.0 95.9±0.0 -0.2 vertebrae T8 81.9±1.1 84.4±0.8 2.6
iliopsoas left 84.5±0.4 85.9±0.4 1.5 vertebrae T7 80.7±1.3 85.3±0.8 4.6
iliopsoas right 87.6±0.4 88.8±0.2 1.1 vertebrae T6 78.2±1.3 80.4±0.8 2.2
average (muscle) 93.9±0.3 94.3±0.1 0.4 vertebrae T5 77.2±1.8 77.8±1.5 0.6

vertebrae T4 74.6±1.6 74.9±1.3 0.3
trachea 93.4±0.1 93.3±0.1 -0.1 vertebrae T3 82.1±1.4 81.9±1.3 -0.3
heart myocardium 88.9±0.2 89.7±0.2 0.8 vertebrae T2 85.0±0.9 86.1±1.3 1.1
heart atrium left 93.5±0.2 94.6±0.0 1.0 vertebrae T1 90.1±1.0 90.3±1.2 0.1
heart ventricle left 93.3±0.3 93.4±0.4 0.1 vertebrae C7 89.3±1.0 86.6±1.3 -2.6
heart atrium right 92.1±0.2 92.8±0.2 0.7 vertebrae C6 76.4±1.8 79.9±1.2 3.5
heart ventricle right 90.4±0.8 93.9±0.2 3.6 vertebrae C5 73.4±0.8 73.8±1.4 0.4
pulmonary artery 88.7±0.1 92.1±0.2 3.3 vertebrae C4 80.4±3.9 81.4±1.8 1.1
brain 95.6±0.4 95.5±0.4 -0.2 vertebrae C3 90.7±0.2 90.0±0.6 -0.6
iliac artery left 87.0±0.3 87.6±0.2 0.6 vertebrae C2 86.3±0.5 86.5±1.9 0.2
iliac artery right 85.8±0.5 86.8±0.6 0.9 vertebrae C1 79.5±2.3 78.9±1.1 -0.6
iliac vena left 87.5±0.7 88.9±0.5 1.4 average (vertebrae) 84.3±1.3 85.4±0.9 1.1
iliac vena right 87.3±0.7 88.5±0.6 1.2
small bowel 84.5±0.9 86.9±0.6 2.4 PDAC 53.4±0.3 53.6±0.4 0.2
urinary bladder 90.1±0.9 91.2±0.5 1.1 Cyst 41.6±0.4 49.2±0.5 7.6
face 75.3±0.8 85.0±0.4 9.7 PanNet 35.4±0.8 45.7±0.8 10.2
average (cardiac) 88.9±0.5 90.7±0.3 1.8 average (tumor) 48.9±0.4 53.1±0.4 4.2
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E.4 FINE-TUNING SUPREM ON FINE-GRAINED TUMOR CLASSIFICATION

Figure 13: Fine-grained pancreatic tumor classification. We would like to stress the challenges in
benchmarking tumor segmentation/classification, particularly due to the scarcity of annotations in
publicly available datasets (often limited to hundreds of tumors). To overcome this limitation, we
employed our proprietary dataset, which comprises 3,577 annotated pancreatic tumors, including
detailed sub-types: 1,704 PDACs, 945 Cysts, and 928 PanNets. The proprietary dataset contains
CT scans taken by a variety of vendors, e.g., Philips, Siemens, GE, and Toshiba. This extensive
dataset enabled us to thoroughly assess the transfer learning ability of our pre-trained models in
tumor-related tasks. Notably, the transfer learning results detailed here demonstrate a sensitivity
of 86.1% and specificity of 95.4% for PDAC detection. This performance surpasses the average
radiologist’s performance in PDAC identification by 27.6% in sensitivity and 4.4% in specificity, as
reported in Cao et al. (2023). This is one of the demonstrations of how our pre-trained models could
be deployed for clinical applications.
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F MORE DISCUSSION

F.1 HOW TRANSFERABLE ARE FEATURES IN SUPREM?

Table 12: How transferable are features in SuPreM? The suite of models (to be released) provides
both pre-trained encoder ( ) and decoder ( ); the encoder encodes input images into features, and
the decoder decodes features back to images. We conduct an ablation study to assess how the encoder
and decoder features are transferable. The white block denotes random features, and the red one
denotes pre-trained encoder or decoder features. The ablation study reveals that the improved target
performance is mainly attributable to the encoder features; conversely, decoder features generally
do not contribute to transfer learning and often impair performance (a.k.a., negative transfer as
reviewed in Zhang et al. (2022)). This insight is consistent across both self-supervised and supervised
pre-trained models.

pre-training vertebrae cardiac muscle organ

scratch 58.6±0.9 60.4±0.7 75.9±0.5 54.7±0.8

self-supervised 72.9±0.3 67.9±0.6 86.6±0.2 61.8±0.2
supervised 73.5±0.4 78.0 ±0.2 87.1±0.1 75.3±0.2

self-supervised 62.0±0.5 67.5±0.4 81.3±0.1 62.8 ±0.3
supervised 65.6±0.3 79.8±0.5 85.2±0.1 73.3±0.4
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F.2 TRANSFER LEARNING ABILITY ESTIMATION

Figure 14: Correlation analysis between pretext and target task performance. For the pretext
task, we pre-train 12 different models using AbdomenAtlas 1.1 and its per-voxel annotations. For
the target task, we fine-tune these models using TotalSegmentator. The paired performance of pretext
(X-axis) and target (Y-axis) tasks reveals a strong positive correlation. Specifically, the Pearson
correlation coefficient (r = 0.81; p = 0.0031) suggests that the pretext performance can estimate
the transfer learning ability of supervised models to some extent. This insight provides an explicit
objective for effectively learning image features that are relevant to segmentation. It also offers a
more precise measure for estimating model transferability than that proposed by Nguyen et al. (2020);
Tan et al. (2021); You et al. (2021); Pándy et al. (2022), reducing the need for actual fine-tuning.
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F.3 SUPERVISED PRE-TRAINING: IMAGE-LANGUAGE OR IMAGE-MASK PAIRS AS
SUPERVISION?

We have proven that pre-training with masks as supervision transfers much better than pre-training
using data only. Acquiring these masks needs extra annotations because annotating organ/tumor
boundaries per voxel is not part of radiologists’ workflow. In recent years, exploiting image-language
pairs for pre-training has been a trending research topic because acquiring image-language pairs are
easier, (e.g., from social media) than acquiring human-annotated image-mask pairs. It is also true in
the medical domain—the use of radiology reports. This is because radiologists must write a report for
each subject during the clinical workflow. However, we argue that image-mask pairs are expected to
be more effective if the annotated datasets are already available than image-language pairs. Language
is not accurate. A tumor if described in the form of radiology reports often contains information
such as its rough position and size6. Mask is more accurate, and more expressive if incorporated
with the image. In supervised pre-training, image-mask pairs, despite requiring more effort to obtain
than image-language pairs, offer greater accuracy and effectiveness. For instance, a radiology report
might vaguely describe a tumor’s size and location, but this lacks the precision of a mask’s per-voxel
boundary annotations. While image-language pairs are easier to collect, especially through radiology
reports, the detailed and precise information from image-mask pairs is invaluable in medical imaging,
making them a more effective choice for training when annotated datasets are available.

6A well-circumscribed and homogeneously enhancing mass is noted at the pancreatic head, measuring
27×36×39 mm.
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F.4 BROADER IMPACT TO 3D VISION TASKS?

Transfer learning across different imaging modalities, such as from CT to MRI, might be less effective
compared to transfers within the same modality, primarily due to the significant differences in their
imaging techniques. The discrepancies in image acquisition methods between CT and MRI result in
distinct intensity values and ranges. Nonetheless, our pre-trained model could still be valuable for
abdominal MRI applications. This is because the underlying anatomical structures remain consistent
across both CT and MRI, allowing for the potential transfer of shared knowledge.

Given that our dataset includes detailed per-voxel annotations for 25 anatomical structures and
tumors, it enables the automatic generation of 3D shape representations. These representations can be
formatted as point clouds, voxel occupancy grids, meshes, and implicit surface models (e.g., signed
distance functions), each catering to different algorithmic needs. We anticipate our dataset could be
useful for a variety of other 3D medical vision tasks (Li et al., 2023), such as pose estimation, surface
reconstruction, depth estimation, etc. Since these studies go far beyond the scope of the current
manuscript and our expertise, we would like to leave the investigation as an independent work in the
future.
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