
LABEL-ASSEMBLE:
LEVERAGING MULTIPLE DATASETS WITH PARTIAL LABELS

Mintong Kang1, Bowen Li2, Zengle Zhu3, Yongyi Lu2, Elliot K. Fishman4, Alan Yuille2, Zongwei Zhou2

1University of Illinois Urbana-Champaign 2Johns Hopkins University
3Tongji University 4Johns Hopkins University School of Medicine

ABSTRACT

The success of deep learning relies heavily on large labeled
datasets, but we often only have access to several small datasets
associated with partial labels. To address this problem, we
propose a new initiative, “Label-Assemble”, that aims to un-
leash the full potential of partial labels from an assembly of
public datasets. We discovered that learning from negative
examples facilitates both computer-aided disease diagnosis and
detection. This discovery will be particularly crucial in novel
disease diagnosis, where positive examples are hard to collect,
yet negative examples are relatively easier to assemble. For
example, assembling existing labels from NIH ChestX-ray14
(available since 2017) significantly improves the accuracy of
COVID-19 diagnosis from 96.3% to 99.3%. In addition to
diagnosis, assembling labels can also improve disease detec-
tion, e.g., the detection of pancreatic ductal adenocarcinoma
(PDAC) can greatly benefit from leveraging the labels of Cysts
and PanNets (two other types of pancreatic abnormalities),
increasing sensitivity from 52.1% to 84.0% while maintaining
a high specificity of 98.0%. Code is available here.

Index Terms— Partial label, diagnosis, detection

1. INTRODUCTION

Recent years have witnessed an increasing number of datasets
becoming publicly available thanks to the collective efforts of
imaging data archives [1] and international competitions [2, 3].
These datasets are collected, organized, annotated differently,
and often come with partial labels. Very few studies have been
done to unleash the full potential of an assembly of multiple
datasets with partial labels. The challenge is that labels in
those public datasets are often incomparable, heterogeneous,
or even conflicting [4, 5]. In this paper, we ponder the question:
Can we integrate and exploit such a great number of publicly
available datasets with partial labels to achieve an improved
computer-aided diagnosis and detection of specific diseases?

To address this question, we start by probing a principal
hypothesis (see §2.1): a dataset that is labeled with various
classes can foster more powerful models than one that is only
labeled with the class of interest. Consequently, we propose
a new initiative of “Label-Assemble” for leveraging partial

labels from an assembly of data on hand. Specifically, we
develop a new class query to encode different visual tasks,
which can dynamically integrate partial labels across different
datasets (detailed in §2.2). It is noteworthy that the conven-
tional classification must have a predefined and fixed number
of categories, but our class query trained with a question-
answer manner can handle arbitrary, varying categories, thus
becoming more suitable for multiple datasets with partial
labels. Furthermore, pseudo labels and consistency constraints
are introduced for the missing part of labels and for mitigating
the domain gap across different datasets (see Figure 1B).

We validate the effectiveness of Label-Assemble in both
computer-aided disease diagnosis and detection, supported by
two clinical applications. (I) Assembling existing labels from
ChestXray14 (available since 2017) significantly improves the
accuracy of COVID-19 diagnosis from 96.3% (previous state
of the art [6]) to 99.3%. The experiments show that assem-
bling pathologically-related labels can improve the diagnosis
accuracy of the interested disease. (II) Assembling partial
labels can also help disease detection, e.g., the detection of
pancreatic ductal adenocarcinoma (PDAC) can greatly benefit
from leveraging the labels of Cysts and PanNets (two other
types of pancreatic abnormalities), increasing sensitivity from
52.1% (previous state of the art [7]) to 84.0% and maintaining
a high specificity of 98.0%. The experiments also verify
that assembling spatially-related labels can help detect the
interested disease more precisely.

In summary, the improved results from Label-Assemble
are attributable to our simple yet powerful observation: learn-
ing from the classes of “negative examples” can better delimit
the decision boundary of the class of interest. This observa-
tion agrees with the concept of “Near Misses” [8, 9], which
proposed to construct negative examples near the decision
boundary to facilitate the learning of visual recognizers. These
results also suggest that rather than chasing for labels of the
interested class, assembling labels of alternative classes can
also lead to a substantial performance gain, especially for the
minority class, e.g., rare and novel diseases. To our best knowl-
edge, this study is among the first to systematically examine
the rationale of assembling multiple datasets and fully exploit
the potential of partial labels—the latest attempts [10, 11, 12]
built models on the labeled part of the data only.

https://github.com/MrGiovanni/LabelAssemble


Fig. 1: Overview. Our proposed framework is capable of harnessing partially labeled and unlabeled data from heterogeneous
sources (e.g., COVID-19 and non-COVID public datasets). A. With the same amount of data, learning from classes of “negative
examples” benefits the learning of the interested class (see §2.1). This observation is verified by six classification tasks and
two detection tasks, serving as the foundation of the Label-Assemble initiative. B. Labels in an assembly of public datasets are
incomparable and conflicting—negative examples in the COVID-19 dataset can include the positive class in other datasets. A
shared CNN extracts image features, and then a prediction head generates the predictions by inner producting features and class
queries. A supervised loss (Lbce) is used if the label is given; two unsupervised losses (Lpseudo & Lconsist) are used if the label is
absent. C. Assembling labels of other chest diseases improves lung nodule classification. The performance gain is positively
correlated to inter-class similarity between nodule and the assembled disease (see §3.1). The Pearson Coefficient is r = 0:83;
p = 4:93e-4. Assembling 1,000 labeled COVID-19 images with public data (available since 2017), we achieve significantly
higher performance than the previous state-of-the-art method, which required over 15,000 labeled COVID-19 images. Again,
pathologically similar diseases (i.e., Pneumonia) lead to greater improvement in computer-aided diagnosis of COVID-19.

2. LABEL-ASSEMBLE

2.1. Motivation

We hypothesize that a dataset that is labeled with various
classes can foster more powerful models than one that is only
labeled with the class of interest. To validate this point, we use
six multi-class datasets. For comparison, we train a multi-class
classifier and a binary classifier, wherein the interested class is
labeled as positive, and the rest classes are negatives. The goal
is to classify the interested class. Note that the total numbers
of images are the same for training the two classifiers—the
only variation is that the makeup of negatives is unknown
in the binary classifier, yet it is known in the multi-class
classifier. In the DermaMNIST, TissueMNIST, MNIST, and
CIFAR10 datasets, “melanoma”, “distal convoluted tubule”,
“zero”, and “cat” are the interested classes, respectively. In the

ChestXray and CheXpert datasets, five common chest diseases,
i.e., “cardiomegaly”, “pneumonia”, “atelectasis”, “edema”,
“effusion”, are the interested classes. Figure 1A shows that
in all six datasets, the multi-class classifier consistently out-
performs the binary classifier in identifying the interested
classes. We attribute the deficient performance of the binary
classifier to the lack of fine-grained labels in negative examples.
Now, we have reached a conclusion that learning from the
classes of “negative examples” can better delimit the decision
boundary of the class of interest. This conclusion has the
potential to accelerate the development circle of computer-
aided diagnosis and detection of novel diseases (e.g., COVID-
19 in late 2019), whose positive label is hard to collect, yet
negative labels are usually available and relatively easier to
assemble. Normally, one would not consider using extra labels
that seem unrelated to the interested class, but we find that
those existing datasets, even if they were not created for the
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