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Abstract

We demonstrate that AI models can accurately segment
liver tumors without the need for manual annotation by us-
ing synthetic tumors in CT scans. Our synthetic tumors
have two intriguing advantages: (I) realistic in shape and
texture, which even medical professionals can confuse with
real tumors; (II) effective for training AI models, which can
perform liver tumor segmentation similarly to the model
trained on real tumors—this result is exciting because no
existing work, using synthetic tumors only, has thus far
reached a similar or even close performance to real tumors.
This result also implies that manual efforts for annotating
tumors voxel by voxel (which took years to create) can be
significantly reduced in the future. Moreover, our synthetic
tumors can automatically generate many examples of small
(or even tiny) synthetic tumors and have the potential to im-
prove the success rate of detecting small liver tumors, which
is critical for detecting the early stages of cancer. In addi-
tion to enriching the training data, our synthesizing strategy
also enables us to rigorously assess the AI robustness.

1. Introduction
Artificial intelligence (AI) has dominated medical image

segmentation [21,26,73–75], but training an AI model (e.g.,
U-Net [48]) often requires a large number of annotations.
Annotating medical images is not only expensive and time-
consuming, but also requires extensive medical expertise,
and sometimes needs the assistance of radiology reports and
biopsy results to achieve annotation accuracy [12, 52, 59,
69–71]. Due to its high annotation cost, only roughly 200
CT scans with annotated liver tumors are publicly available
(provided by LiTS [5]) for training and testing models.

*Corresponding author: Zongwei Zhou (zzhou82@jh.edu)

To minimize annotation expenses, generating synthetic
tumors is an emerging research topic. Early attempts in-
clude, but only limited to, synthesizing COVID-19 infec-
tions [41,63], lung nodules [19] abdominal tumors [27], dia-
betic lesions [57], and brain tumors [60]. However, the syn-
thetic tumors in those studies appear very different from the
real tumors; due to this, AI models trained using synthetic
tumors perform significantly worse than those trained us-
ing real tumors. What makes synthesizing tumors so hard?
There are several important factors: shape, intensity, size,
location, and texture. In this paper, we handcraft a strat-
egy to synthesize liver tumors in abdominal CT scans. Our
key novelties include (i) location without collision with ves-
sels, (ii) texture with scaled-up Gaussian noise, and (iii)
shape generated from distorted ellipsoids. These three as-
pects are proposed according to the clinical knowledge of
liver tumors (detailed in §3.2). The resulting synthetic tu-
mors are realistic—even medical professionals usually con-
fuse them with real tumors in the visual examination (Fig-
ure 1; Table 2). In addition, the model trained on our syn-
thetic tumors achieves a Dice Similarity Coefficient (DSC)
of 59.81% for segmenting real liver tumors, whereas AI
trained on real tumors obtains a DSC of 57.63% (Figure 2),
showing that synthetic tumors have the potential to be used
as an alternative to real tumors in training AI models.

These results are exciting because using synthetic tu-
mors only, no previous work has thus far reached a sim-
ilar (or even close) performance to the model trained on
real tumors [24]. Moreover, our synthesizing strategy can
exhaustively generate tumors with desired locations, sizes,
shapes, textures, and intensities, which are not limited to a
fixed finite-size training set (the well-known limitation of
the conventional training paradigm [65]). For example, it
is hard to collect sufficient training examples with small tu-
mors. It is because early-stage tumors may not cause symp-
toms, which can delay detection, and these tumors are rela-
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Figure 1. [Better viewed in color and zoomed in for details] Can you tell which liver tumors are real and which are fake? The answers
are provided in Appendix. We have recruited two medical professionals with at least six years of experience to distinguish fake tumors,
generated by our method, from the real ones (namely, Visual Turing Test). Our synthetic tumors have passed the Visual Turing Test on
both two medical professionals (<50% fake tumors were picked out). More importantly, using our label-free synthetic tumors, AI models
can segment real tumors with performance similar to the AI models trained on real tumors with expensive, detailed, per-voxel annotation.

tively small and exhibit subtle abnormal textures that make
it difficult for radiologists to manually delineate the tumor
boundaries. In contrast, our synthesis strategy can generate
a large number of examples featuring small tumors. The key
contribution of ours is a synthetic tumor generator, which
offers five advantages as summarized below.

1. The synthesis strategy embeds medical knowledge into
an executable program, enabling the generation of re-
alistic tumors through the collaboration of radiologists
and computer scientists (§5.1; Table 2; Figure 3).

2. The entire training stage requires no annotation cost,
and the resulting model significantly outperforms pre-
vious unsupervised anomaly segmentation approaches
and tumor synthesis strategies (§5.2; Table 3).

3. The AI model trained on synthetic tumors can achieve
similar performance to AI models trained on real tu-
mors with per-voxel annotation in real tumors segmen-
tation, and can be generalized to CT scans with healthy
liver and scans from other hospitals (§5.3; Figure 4).

4. The synthesis strategy can generate a variety of tumors
for model training, including those at small, medium,
and large scales, and therefore have the potential to de-
tect small tumors and facilitate the early detection of
liver cancer (§5.4; Figure 5).

5. The synthesis strategy allows for straightforward ma-
nipulation of parameters such as tumor location, size,
texture, shape, and intensity, providing a comprehen-
sive test-bed for evaluating AI models under out-of-
distribution scenarios (§5.5; Figure 6).

These results have the potential to stimulate a shift in the
tumor segmentation training paradigm, as illustrated in Fig-
ure 2, from label-intensive to label-free AI development for
tumor segmentation. Our ultimate goal is to train AI models
for tumor segmentation without using manual annotation—
this study makes a significant step towards it.

2. Related Work

Unsupervised anomaly segmentation. Anomaly segmenta-
tion is a challenging application area, especially for medi-
cal diagnosis [29,62] and industrial defect detection [4,25].
Compared with their supervised counterparts, unsupervised
methods raises more attention for their low cost and scala-
bility. The general unsupervised anomaly detection setting
is to train with normal samples only, without any anomalous
data, and no image-level annotation or pixel-level annota-
tion is provided [30,51,53]. Under the unsupervised setting,
some previous works use self-organizing maps for unsuper-
vised anomaly detection [34, 44] and Huang et al. [25] in-
troduced gradient magnitude similarity and structured sim-
ilarity index losses in addition to mean square error to com-
pute the loss of image reconstruction. Evidenced in Table 3,
our label-free synthetic tumors achieve a significantly bet-
ter performance in unsupervised tumor segmentation than
some of the most recent work in this area.

Tumor synthesis. Successful works about tumor synthe-
sis include polyp detection from colonoscopy videos [54],
COVID-19 detection from Chest CT [41, 63], diabetic le-
sion detection from retinal images [57], cancer detection
from fluorescence microscopy images [23], and brain tu-
mor detection from MRI [60]. However, these works are



Figure 2. The paradigm shift from label-intensive to label-free tu-
mor segmentation in this work. AI trained on synthetic tumors can
segment liver tumors as accurately as AI trained on real tumors.
The performance is measured on real tumors using Dice Similar-
ity Coefficient (DSC) and Normalized Surface Distance (NSD).

restricted to the types of tumors, and other diseases, that are
fairly easy to visually identify in CT scans. Most recently,
Zhang et al. [67] synthesized liver and brain tumors for
pre-training and adapted the model to tumor segmentation
within the same organ under a low-annotation regime. The
manually crafted “counterfeit” tumors in the related work
appear very differently from real tumors. As a result, AI al-
gorithms, trained on synthetic tumors, may work well in de-
tecting synthetic tumors in the test set but fail to recognize
the actual tumors (evidenced in Table 3). We tackle these
limitations by integrating radiologists in the tumor synthe-
sis study for feedback (§3.2). This enables us to understand
deeply about tumors, and in turn, benefit in developing AI
algorithms to segment them more accurately.

Generalization from synthetic to real domains. The prob-
lem of domain generalization was introduced [6] for zero-
shot adaptation to data with a domain gap. Specifically, the
goal is to make a model using data from a single or multiple
related source domain(s) while achieving great generaliza-
tion ability well to any target domain(s) [58,68]. In this pa-
per, evaluating the model generalization ability on real data
is of great importance to justify whether our tumor gener-
ator is powerful enough. Domain generalization has been
widely studied in multiple computer vision tasks like ob-
ject recognition [33,35], semantic segmentation [56,64] and
medical imaging [37,38]. As deep learning models are data
hungry and annotated data are very expensive, how to train
a model with synthetic data but generalize well to real data
has been targeted in some previous works [8,9,13] and some
datasets [10, 14, 46, 47, 49] are created for benchmark and
further exploring. While previous works focus on preserv-
ing the transferable knowledge learned from synthetic data,
our paper aims to prove that our tumor generator is power-
ful enough to generate tumors with reasonable domain gap

and that our model has outstanding generalization ability to
detect real tumors (detailed in Section 5.3).

3. Method
3.1. Tumor Generation

To localize the liver, we first apply the pre-trained nnU-
Net1 to the CT scans. With a coarse location of the liver
available, we then develop a sequence of morphological
image-processing operations to synthesize realistic tumors
within the liver (see Figure 3). The tumor generation con-
sists of four steps: (1) location selection, (2) texture gener-
ation, (3) shape generation, and (4) post-processing.

Location selection. The first step is to select a proper lo-
cation for the tumor. This step is crucial because liver tu-
mors usually do not allow any vessels (e.g., hepatic vein,
portal vein, and inferior vena cava) to pass through them.
To avoid the blood vessels, we first conduct vessel segmen-
tation through the voxel value thresholding [16]. The seg-
mented vessel mask is given by the following equation:

v(x, y, z) =

{
1, f ′(x, y, z) > T, l(x, y, z) = 1
0, otherwise , (1)

where f ′(x, y, z) is the smoothed CT scan, f ′(x, y, z) =
f(x, y, z) ⊗ g(x, y, z;σa), by applying a Gaussian filter
g(x, y, z;σa) with standard deviation σa to the original CT
scans f(x, y, z); ⊗ is the standard image filtering opera-
tor. Smoothing can effectively eliminate noise caused by
CT reconstruction. The threshold T is set to a value slightly
greater than the mean Hounsfield Unit (HU) of the liver.

T = f(x, y, z)⊙ l(x, y, z) + b, (2)

where l(x, y, z) is the liver mask (background=0, liver=1),
⊙ is point-wise multiplication, and b is a hyperparameter.

With the vessel mask, one can detect whether a cho-
sen location is at risk of making a tumor collide with
vessels. After proposing a random location (X,Y, Z) ∈
{x, y, z | l(x, y, z) = 1}, we conduct the collision de-
tection by judging whether there are blood vessels within
the range of tumor radius r. If ∃ v(x, y, z) = 1,∀ x ∈
[X−r,X+r], y ∈ [Y −r, Y +r], z ∈ [Z−r, Z+r], there
is a risk of collision, so the location needs to be re-selected.
This process iterates until a tumor location (xt, yt, zt) with-
out collision is found. With the desirable tumor location,
we are able to generate the tumor texture and shape.

Texture generation. The HU values of liver and tumor tex-
tures follow the Gaussian distributions. To obtain realistic
tumor textures, we first generate a 3D Gaussian noise with

1The off-the-shield, pre-trained nnU-Net [26] for liver segmentation
can be downloaded here, which can achieve an average DSC of 95% on
unseen CT scans (sufficient for a coarse localization of the liver).

https://zenodo.org/record/4003545/files/Task003_Liver.zip?download=1


Figure 3. Liver tumor generation. After randomly selecting a location that avoids the vessels, we generate a Gaussian texture and
deformed ellipsoidal shape for a tumor. Then, the texture and shape are combined and placed in the selected location. In addition, we
take another two post-processing steps to make a generated tumor more realistic: (1) tumor edge expansion by local scaling warping; (2)
capsular generation by brightening the tumor edge. Four steps, in light green, are only used for Visual Turing Test (not for training).

the predefined mean HU intensity µt and the same stan-
dard deviation σp as the hepatic parenchyma (the liver area
excluding vessels), T (x, y, z) ∼ N (µt, σp). Since the ran-
dom Gaussian noise is usually too sharp as the texture for
the tumor, we soften the texture by scaling it up with spline
interpolation of the order 3 (cubic interpolation) on x, y, z
directions. The scaled-up texture is denoted as T ′(x, y, z) in
this work, we want it exhibits graininess close to the hepatic
parenchyma. The scaling factor η ∈ [1,∞) determines how
rough the generated grain feels. η = 1 means the Gaussian
texture is not scaled, resulting in large value fluctuation be-
tween adjacent voxels. Larger η brings greater graininess,
which may be similar to the real tumor texture. Finally, con-
sidering the tomography imaging quality, we further blur
the texture with Gaussian filter g(x, y, z;σb)

T ′′(x, y, z) = T ′(x, y, z)⊗ g(x, y, z;σb), (3)

where σb is the standard deviation. After blurring, the tex-
ture resembles those generated by real imaging.
Shape generation. Most tumors grow from the centers and
gradually swell, making small tumors (i.e., r < 20mm)
nearly spherical. This motivates us to generate tumor-like
shapes with ellipsoids. We randomly sample the half-axis
lengths of the ellipsoid for x, y, z directions from a uniform
distribution U(0.75r, 1.25r), and place the generated ellip-
soid mask centered at (xt, yt, zt). For a generated ellipsoid
tumor mask t(x, y, z) (background=0, tumor=1), and with
the same shape as the scanning volume f(x, y, z)), elastic
deformations [45, 48], controlled by σe, are applied to en-
rich its diversity. The deformed tumor mask is more sim-
ilar to the naturally grown tumors in appearance than sim-
ple ellipsoids. In addition, it can also improve the model’s
robustness by learning the shape-semantic invariance. The
deformed tumor mask is denoted as t′(x, y, z). In order to
make the transition between the generated tumor and the
surrounding liver parenchyma more natural, we finally blur
the mask by applying a Gaussian filter g(x, y, z;σc) with

the standard deviation σc. To be more specifically, we ob-
tain blur shape t′′(x, y, z) = t′(x, y, z)⊗ g(x, y, z;σc).

Post-processing. The first step of post-processing is plac-
ing the tumor on the scanning volume f(x, y, z) and corre-
sponding liver mask l(x, y, z). Assuming the tumor mask
array t′′(x, y, z) and the texture array T ′′(x, y, z) have the
same shape as f(x, y, z) and l(x, y, z). We can obtain new
scanning volume with tumor through equation

f ′(x, y, z) =(1− t′′(x, y, z))⊙ f(x, y, z)+ (4)
t′′(x, y, z)⊙ T ′′(x, y, z).

For the new mask with the tumor (bg=0,liver=1,tumor=2), it
can be synthesized with l′(x, y, z) = l(x, y, z)+t′′(x, y, z).
After placing the tumor, we adopt another two steps to make
the generated tumor more realistic to medical professionals.
They aim to simulate mass effect and the capsule appear-
ance, respectively. Mass effect means the expanding tumor
pushes its surrounding tissue apart. If the tumor grows large
enough, it will compress the surrounding blood vessels to
make them bend, or even cause the edge of the nearby liver
to bulge. Local scaling warping [18] is chosen in this work
to implement mass effect. It remaps pixels in a circle to be
nearer to the circumference. For a pixel with a distance γ to
the circle center, the remapped pixel distance γ′ is

γ′ =

(
1−

(
1− γ

γmax

)2

· I

100

)
· γ, (5)

where γmax is the radius of the expanded circular area,
I ∈ [0, 100] is a hyper-parameter for controlling the ex-
pansion intensity. Larger I leads to stronger warping. Note
that when I = 0, the remapping reduces to the identity func-
tion γ′ = γ. The remapping procedure is conducted on both
scanning and mask volumes. After warping, they are named
f ′′(x, y, z) and l′′(x, y, z). The latter one (liver/tumor seg-
mentation label) is now ready for the subsequent training.



parameter value parameter value
σa 0.5 + 0.025σp µt U(30, µp − 10)
σb 0.6 η U(1.1, 1.5)
σc U(0.6, 1.2) γmax 1.3r
σd 0.8 I 30
b 15 (lb, ub) (0.4, 0.7)
d 120

Table 1. Hyper-parameters. µp, σp are the mean and standard
deviation of the hepatic parenchyma. The values are adjusted by
(1) feedback from clinicians based on the clinical prior knowledge
about liver tumors (§3.2) and (2) visual assessment between the
real and synthetic tumors (§5.1).

Finally, we simulate the capsule appearance by brightening
the tumor edge. The edge area can be obtained by

e(x, y, z) =

{
1, t′′(x, y, z) ∈ [lb, ub]
0, otherwise , (6)

where lb and ub are the lower bound and upper bound for
filtering the edge from tumor mask. Then we increase HU
intensity of the blurred edge area to simulate the capsule

e′(x, y, z) = e(x, y, z)⊗ g(x, y, z;σd), (7)

f ′′′(x, y, z) = f ′′(x, y, z) + d · e(x, y, z), (8)

where d is the pre-defined HU intensity difference be-
tween a tumor and its capsule. The new scanning volume
f ′′′(x, y, z) is now ready for training or Turing test. The
parameters we use are shown in Table 1. Visualization ex-
amples can be found in Appendix Figures 8–10.

3.2. Clinical Knowledge about Liver Tumors

This work focuses on generating hepatocellular carcino-
mas (tumors grown from liver cells). After the contrast
injection, the clinical examination process of the liver is
divided into three phases, arterial phase (30s after injec-
tion), portal venous phase (60–70s after injection), and de-
lay phase (3min after injection). Typically, only the first two
phases are used for detecting hepatocellular carcinomas,
and the tumor HU intensity value in different stages dis-
tributes differently. The mean attenuation measurement of
the lesions in the hepatic arterial phase was 111 HU (range,
32–207 HU), and it decreased in the portal venous phase to
a mean of 106 HU (range, 36–162 HU). There was a mean
difference of 26 HU (range, –44 to 146 HU) between the
lesion and liver in the arterial phase. On average, the hep-
atocellular carcinomas measured 11 HU (range, –98 to 61
HU) less than the adjacent liver parenchyma in the portal
venous phase [32]. The distributional characteristics help
us determine the generated mean tumor HU values.

The location, shape, and number of tumors depend on
how severe the hepatocellular carcinomas are according to
the standardized guidance of the Liver Imaging Reporting

junior professional senior professional
real (P ) synt (N ) real (P ) synt (N )

tr
ut

h real (P ) 5 15 10 2
synt (N ) 21 8 7 12

1The junior professional achieves an Accuracy, Sensitivity, and Specificity of
26.5%, 27.6%, and 25.0%. One CT scan is marked unsure.
2The senior professional achieves an Accuracy, Sensitivity, and Specificity of
71.0%, 63.2%, and 83.3%. 19 CT scans are marked unsure.

Table 2. Results of Visual Turing Test. The test has been per-
formed on two medical professionals with 6-year and 15-year ex-
perience. Each professional is given 50 CT scans, some of which
contain real tumors and the others contain synthetic ones. The
professional can mark each CT scan as real, synthetic, or unsure.
“Synt” denotes synthetic tumors, P and N indicate positive and
negative classes for computing Sensitivity and Specificity.

and Data System (LI-RADS) [42]. Milder carcinomas usu-
ally lead to smaller, fewer spherical lesions. Only one small
tumor emerges in most cases. While multi-focal lesions,
which means scattered small tumors, only appear in seldom
cases. Severe carcinomas usually present a satellite lesion,
a large lesion surrounded by a cluster of small lesions. The
large central lesion also takes on a more irregular shape than
small lesions. And also, larger tumors usually display evi-
dent mass effects, accompanied by capsule appearances that
separate the tumor from the liver parenchyma.

4. Experiments
Datasets. Detailed per-voxel annotations for liver tumors
are provided in LiTS [5]. The volume of liver tumors ranges
from 38mm3 to 349 cm3, and the radius of tumors is in the
range of [2, 44]mm. We perform 5-fold cross-validation,
following the same split as in Tang et al. [55]. An AI model
(e.g. U-Net) is trained on 101 CT scans with annotated liver
and liver tumors. For comparison, a dataset of 116 CT scans
with healthy livers is assembled from CHAOS [28] (20 CT
scans), BTCV [31] (47 CT scans), Pancreas-CT [50] (38
CT scans) and health subjects in LiTS (11 CT scans). We
then generate tumors in these scans on the fly, resulting in
enormous image-label pairs of synthetic tumors for training
the AI model. We generate five levels of tumor sizes for
model training; the parameters and examples can be found
in Appendix Table 6 and Figure 11.

Evaluation metrics. Tumor segmentation performance was
evaluated by Dice similarity coefficient (DSC) and Normal-
ized Surface Dice (NSD) with 2mm tolerance; tumor detec-
tion performance was evaluated by Sensitivity and Speci-
ficity. For all the metrics above, 95% CIs were calculated
and the p-value cutoff of less than 0.05 was used for defin-
ing statistical significance.

Implementation. Our codes are implemented based on
the MONAI2 framework for both U-Net and Swin UN-

2https://monai.io/

https://monai.io/


tumors method architecture labeled / unlabeled CTs DSC (%) [95% CI] NSD (%) [95% CI]
none PatchCore [51] Wide-Resnet50-2 [66] 0 / 116 15.97 [11.86–20.09] 16.43 [10.42–22.44]
none f-AnoGAN [53] Customized [3] 0 / 116 19.00 [13.88–24.11] 16.94 [11.97–21.91]
none VAE [30] Customized [3] 0 / 116 24.63 [19.83–29.44] 23.63 [18.44–28.83]
synt Yao et al. [63] U-Net [48] 0 / 116 32.79 [28.66–36.92] 31.28 [26.87–35.70]
real fully-supervised U-Net 101 / 0 57.51 [52.24–62.79] 58.04 [52.56–63.52]
synt label-free (ours) U-Net 0 / 116 59.77 [54.54–64.99] 61.29 [56.12–66.47]

Table 3. Comparison with state-of-the-art methods, 5-fold cross-validation. We compare our methods with other unsupervised anomaly
segmentation baselines, tumor synthesis strategies, and fully-supervised methods. Our method significantly outperforms all other state-of-
the-art unsupervised baseline methods and even surpasses the fully-supervised method with detailed pixel-wise annotation.

ETR. Input images are clipped with the window range of
[-21,189] and then normalized to have zero mean and unit
standard deviation. Random patches of 96 × 96 × 96 were
cropped from 3D image volumes during training. All mod-
els are trained for 4,000 epochs, and the base learning rate
is 0.0002. The batch size is two per GPU. We adopt the lin-
ear warmup strategy and the cosine annealing learning rate
schedule. For inference, we use the sliding window strategy
by setting the overlapping area ratio to 0.75.

5. Results & Discussion
Using 116 CT scans from Pancreas-CT, CHAOS, and BTCV
with our label-free tumor generator, we outperformed all
those methods on the LiTS benchmark, wherein previous
methods used 101 CT scans and annotations from LiTS.

5.1. Clinical Validation using Visual Turing Test

We conduct the Visual Turing Test [15] on 50 CT scans,
where 20 scans are with real tumors from LiTS, and the re-
maining 30 scans are healthy livers from WORD [40] with
synthetic tumors. Two professionals with different experi-
ence levels take part in this test. They can inspect each sam-
ple in 3D view, which means continuous variation of slice
sequence can be observed by scrolling the mouse. This is an
important setting for the test because some important tumor
characteristics are not obvious in a 2D view (e.g., vessel col-
lision). In the test, professionals can label each sample as
real, synthetic or unsure. When calculating the performance
metrics, only the samples with definite results are counted.

The testing results are shown in Table 2. For junior pro-
fessionals with 6-year experience, definite judgments of 49
out of 50 samples are given. All of the accuracy, sensitiv-
ity, and specificity are below 30%, which means the gener-
ated samples succeed in confusing the junior professional.
In particular, the sensitivity of 27.6% means that the rest
72.4% synthetic samples are mistakenly regarded as real
samples. The result verifies that our synthesis method can
generate realistic tumors. According to the results given
by the senior professional with 15-year experience, 36.8%
synthetic samples seemed to be real, indicating that nearly
half of the generated samples can tease senior profession-
als. Noteworthy, the senior professional only gives 19 judg-

ments among all 30 synthetic samples. Adding up mis-
judged samples and uncertain samples, a total of 18 out of
30 generated samples have confused him/her.

5.2. Comparison with State-of-the-art Methods

We compare our label-free tumor synthesis strategy with
several prominent unsupervised tumor segmentation meth-
ods designed for both natural and medical images, such as
PatchCore [51], f-AnoGAN [53], VAE [3], and the method
proposed by Yao et al. [63]. To enhance the performance
of these baseline methods, we focus solely on the liver re-
gion for training and testing to minimize noise caused by
extraneous information. Table 3 shows that all the previ-
ous unsupervised methods exhibit suboptimal performance
in segmenting real liver tumors. In contrast, our label-free
tumor synthesis—a novel approach to unsupervised tumor
segmentation—significantly outperforms all these methods,
achieving a DSC of 59.77% and an NSD of 61.29%. On the
other hand, the model trained on real tumors using fully su-
pervised learning achieves a DSC of 57.51% and an NSD of
58.04%. These results highlight the potential of a paradigm
shift from label-intensive to label-free tumor segmentation.

5.3. Generalization to Different Models and Data

We verify the generalizability of synthetic tumors using
Swin UNETR3 [20], including its Tiny, Small, and Base
variants. Figure 4 shows that the model trained on real tu-
mors performs slightly better than that on synthetic tumors,
but there is no statistical difference between the two results
as the p-value is greater than 0.05. In addition to evaluat-
ing the models on the LiTS dataset, we assess their domain
generalization ability using data from other datasets4 (i.e.,
MSD-Pancreas, MSD-Spleen, MSD-Colon). As shown in
the right panel of Figure 4, our model trained with healthy
data collected from 3 different datasets shows better robust-
ness than the model trained on real data only from LiTS,

3Swin UNETR is a hybrid segmentation architecture, which integrates
the benefits of both U-Net [48] and Transformer [11, 39]. We select Swin
UNETR because it is very competitive and has ranked first in numerous
public benchmarks [55], including liver tumor segmentation (MSD-Liver).

4We first selected the tumor-free scans from these datasets and then had
radiologists review each one of the scans to dismiss the diseased liver.



Figure 4. Generalization to different models and data. Training U-Net on synthetic liver tumors outperforms as well as training it on
real tumors with per-voxel annotation (see Table 3). We further examine this observation using Swin UNETR [55], including its variance
of Tiny (Param = 4.0M), Small (Param = 15.7M), and Base (Param = 62.1M). The DSC, NSD, and Sensitivity scores are evaluated on the
LiTS datasets. The detailed results of 5-fold cross-validation are reported in Appendix Table 5. Moreover, the model trained on synthetic
tumors can also be generalized to CT scans with the healthy liver across datasets (e.g. MSD-Pancreas, MSD-Spleen, and MSD-Colon [2]),
generating fewer false positives and yielding a higher Specificity compared with the model trained on real tumors.

Figure 5. Small tumor detection. The upper panel presents two
examples of small tumors and the segmentation results. For both
models trained on real and synthetic tumors, the false negatives are
mostly smaller than 10mm. The lower panel presents the tumor
detection rate. The model trained on synthetic tumors could detect
tumors as small as 2mm.

while achieving much higher Specificity on the three exter-
nal datasets. It is noteworthy that higher Specificity (fewer
false positives) is crucial in clinical applications as it re-
duces the number of patients subjected to invasive diagnos-
tic procedures and their associated costs [7, 36, 61].

5.4. Potential in Small Tumor Detection

Early detection of small tumors is essential for prompt
cancer diagnosis, but such cases are scarce in real datasets
because most patients remain asymptomatic during the
early stages. AI models trained on these datasets ex-
hibit reduced detection sensitivity for small tumors (radius
< 5mm) compared with larger tumors (radius > 5mm),
displaying sensitivities of 52.0% and 91.6%, respectively.

Thus, an advanced tumor generator could create synthetic
data containing various tumor sizes for training and testing
models, addressing the size imbalance issue found in real
data. The lower panel of Figure 5 presents quantitative tu-
mor detection performance stratified by tumor size, and the
upper panel presents two cases with small tumors for qual-
itative comparison. Evidently, AI models (trained solely on
synthetic data) outperform those trained on real tumors in
detecting and segmenting small tumors in the liver. The
results indicate that the generation of copious amounts of
synthetic small tumors can improve the efficacy of models
in detecting real small tumors, thereby playing a crucial role
in the early detection of cancer.

5.5. Controllable Robustness Benchmark

Standard evaluation in medical imaging is limited to de-
termining the effectiveness of AI in detecting tumors. This
is because the number of annotated tumors in the existing
test datasets is not big enough to be representative of the
tumors that occur in real organs and, in particular, contains
only a limited number of very small tumors. We show that
synthetic tumors can serve as an accessible and comprehen-
sive source for rigorously evaluating AI’s performance in
detecting tumors at a variety of different sizes and loca-
tions with the organs. To be specific, our tumor genera-
tor can synthesize liver tumors varying in five dimensions,
i.e. location, size, shape, intensity, and texture, by tuning
hyperparameters in the tumor generation pipeline. Taking
five different options in each dimension, our tumor genera-
tor could create 25 (5×5) variants for each single CT scan.
Generating a large number of synthetic tumors during test-
ing enables us to find failure scenarios of current AI models.
After locating the worst cases of AI, we can synthesize and
include worst-case tumors in the training set and fine-tune
AI algorithms. Figure 6 illustrates the out-of-distribution
(o.o.d.) benchmark created by synthetic tumors, wherein



shape size texture intensity location
µ±σ µ±2σ µ±3σ µ±σ µ±2σ µ±3σ µ±σ µ±2σ µ±3σ µ±σ µ±2σ µ±3σ µ±σ µ±2σ µ±3σ

UNet++ [73] 81.84 85.78 84.35 68.45 63.01 9.27 75.92 85.75 82.54 90.16 75.58 26.99 84.12 83.89 81.49
nnU-Net [26] 82.18 83.85 85.44 80.23 59.55 5.39 84.91 88.47 84.18 91.60 83.61 30.53 84.84 85.42 84.06
Swin UNETR [55] 81.79 81.82 82.37 82.62 65.95 26.08 85.43 86.12 82.31 88.95 79.36 12.87 84.05 82.71 80.23

Figure 6. Controllable benchmark for robust evaluation. UNet++ [72], nnU-Net [26], and Swin UNETR [55] are very competitive
segmentation models in the medical domain. However, their limitations of tumor segmentation are not fully revealed due to the lack of
sufficient testing images (only 70 CT scans are available for testing in MSD Task03 [1]). On the contrary, synthetic tumors enable us to
perform an extensive evaluation of these models in segmenting liver tumors that vary from different conditions, i.e. shape, size, texture,
intensity, and location. We downloaded the checkpoints of these models trained on LiTS, and evaluated them on synthetic tumors. Synthetic
tumors were generated using different parameters, where µ and σ denote mean and standard deviation, respectively. Our findings indicate
that these public models exhibit robustness to variations in tumor shape, location, and texture, but they are sensitive to tumor size and
intensity. Specifically, these models are prone to errors when encountering tumors that are smaller or larger than those in the training set,
or when faced with differing Hounsfield Unit (HU) values, which may be attributable to contrast enhancement.

tiny size
elastic

deformation edge blurring
all tumors
DSC (%)

small tumors
det Sen. (%)

✓ 43.9 26.4
✓ ✓ 47.1 51.3
✓ ✓ 50.3 54.1

✓ ✓ 52.6 33.4
✓ ✓ ✓ 55.1 61.8

Table 4. Ablation study on shape generation. The quality of
synthesized tumors influences model performance to a certain de-
gree, emphasizing the importance of each component in our pro-
posed method (§3; Figure 3). The quality assessment of generated
tumors is in Appendix Figure 11. Moreover, generating tiny syn-
thetic tumors positively impacts the sensitivity of small tumors.

we evaluate several state-of-the-art models (trained on pub-
lic datasets). These models show good robustness in the
shape, location, and texture dimensions but are sensitive to
tumors of extreme sizes and intensities.

5.6. Ablation Study on Shape Generation

To show the importance of each step in tumor generation,
we design ablation studies focusing on shape generation and
synthesizing small tumors. We evaluate the models trained
with different incomplete settings of synthetic strategies on
two aspects: all tumor segmentation and small tumor detec-
tion. As shown in Table 4, the performance would be much
poorer without synthesizing small tumors, edge blurring or
elastic deformation in the shape generation. The reasons
are simple: (1) without elastic deformation and edge blur-
ring steps for shape generation (shown in Figure 3), the syn-

thetic tumors can be extremely unrealistic (i.e. the edge is
sharp and shape can only be ellipsoid). Several examples
are provided in Appendix Figure 12. (2) The model doesn’t
have the generalization ability to small tumors (radius <
5mm) when the training set does not have them.

6. Conclusion
In this paper, we have developed an effective strategy to

synthesize liver tumors. With zero manual annotation, we
verify that the AI model trained on synthetic tumors can
perform similarly to the ones trained on real tumors in the
LiTS dataset (which took months to create). This reveals
the great potential for the use of synthesis tumors to train AI
models on larger-scale healthy CT datasets (which are much
easier to obtain than CT scans with liver tumors). Further-
more, synthetic tumors allow us to assess AI’s capability of
detecting tumors of varying locations, sizes, shapes, intensi-
ties, textures, and stages in CT scans. In the future, we will
consider generative adversarial nets (GANs) [17,19], Diffu-
sion Models [22] and possibly improved with 3D geometry
models like NeRF [43] to generate better tumor texture.
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U-Net labeled/unlabeled CTs metric fold 0 fold 1 fold 2 fold 3 fold 4 average

real 101/0 DSC (%) 55.86 52.26 67.34 53.06 59.63 57.63
NSD (%) 56.87 49.02 68.54 55.02 61.06 58.10

synt 0/116 DSC (%) 61.83 50.38 69.63 57.75 59.46 59.81
NSD (%) 64.50 47.74 71.48 61.96 60.22 61.28

real & synt 50/52 DSC (%) 56.96 48.77 68.65 54.16 55.76 56.86
NSD (%) 59.09 43.21 69.44 54.01 54.56 56.06

Swin UNETR-Tiny labeled/unlabeled CTs metric fold 0 fold 1 fold 2 fold 3 fold 4 average

real 101/0 DSC (%) 52.88 49.24 67.94 53.93 55.63 55.92
NSD (%) 51.34 47.08 71.22 54.56 58.53 56.55

synt 0/116 DSC (%) 55.90 49.63 62.20 52.48 55.30 55.10
NSD (%) 59.97 46.92 63.23 54.08 53.88 55.61

Swin UNETR-Small labeled/unlabeled CTs metric fold 0 fold 1 fold 2 fold 3 fold 4 average

real 101/0 DSC (%) 60.01 50.56 69.83 52.08 59.98 58.49
NSD (%) 64.40 48.67 71.20 55.34 59.68 59.86

synt 0/116 DSC (%) 57.16 52.16 63.63 54.79 54.13 56.37
NSD (%) 63.61 50.04 66.89 57.66 52.98 58.24

Swin UNETR-Base labeled/unlabeled CTs metric fold 0 fold 1 fold 2 fold 3 fold 4 average

real 101/0
DSC (%)† 55.35 50.32 64.41 54.17 55.35 55.92
DSC (%) 59.19 54.04 68.32 52.58 60.97 59.02
NSD (%) 63.56 52.46 70.06 55.19 62.85 60.82

synt 0/116 DSC (%) 55.26 51.43 64.87 53.34 54.82 55.94
NSD (%) 62.08 49.87 67.89 57.56 53.61 58.20

†The 5-fold cross validation results are provided by Tang et al. [55].

Table 5. Performance on 5-fold cross-validation. We compare the model (U-Net, Swin-UNETR-Tiny, Small, Base) trained on synthetic
tumors with the model trained on real tumors with 5-fold cross-validation. We use Dice Similarity Coefficient (DSC) and Normalized
Surface Distance (NSD) as evaluation metrics to measure tumor segmentation performance. AI models trained solely on synthetic tumors
achieve comparable performance to those trained on per-voxel annotation. Furthermore, the U-Net architecture can even exceed the
performance of per-voxel annotation. The results indicate that synthetic tumors have the potential to serve as an alternative to real tumors
for training AI models. This also signifies a paradigm shift in liver tumor segmentation, transitioning from a label-intensive AI development
to a label-free one.



Figure 7. The answer of Figure 1. A. All the six examples in Figure 1 are synthetic liver tumors generated by our algorithm. B. Examples
of real liver tumors stratified by tumor size (small, medium, large). C. Examples of the Visual Turing Test for clinical validation. These
CT scans are sent to medical professionals (format as nii.gz). The professionals are asked to mark each CT scan as real, synthetic, or
unsure. Based on results in §5.1 and Table 2, the senior professional achieves an accuracy of 26.5% with 1 out of 50 CT scans marked
unsure, the junior professional achieves an accuracy of 71.0% with 19 out of 50 marked unsure.



Figure 8. Visualization of tumor generation: examples. We have developed a hand-craft strategy to generate synthetic liver tumors. Our
synthetic tumors are realistic in shape and texture, which even medical professionals can confuse with real tumors. On the other hand,
the generation pipeline is quite flexible, we can control its shape, size, texture, intensity, and location. This figure shows some examples
of synthetic tumors generated by our method. The size of the synthetic tumor exhibits an increase from top to bottom, and its intensity
becomes darker from left to right.



Figure 9. Visualization of tumor generation: shape. We show the effect of parameters in “Mask Shape Generation” (Figure 3). The
mask shape is controlled by the size r and deformation σe. With the increase of r and σe, the tumor mask shape becomes larger and more
irregular. By choosing appropriate numbers, we are able to simulate real tumor shapes.

Figure 10. Visualization of tumor generation: texture. We show the effect of parameters in “Texture Generation” (Figure 3). The texture
of our synthetic tumor is mainly controlled by the intensity µt and sharpness η. µt represents our synthetic tumor’s mean HU value, and η
determines how rough the generated texture feels. The hyper-parameters we use to simulate real texture can be found in Table 1.



Figure 11. Visualization of tumors for model training. During training time, we are able to generate liver tumors on the fly, theoretically
creating infinite image-label pairs. We show some visualization examples of “tiny”, “small”, “medium”, “large”, and “mix” tumors. The
parameters of these tumors are shown in Table 6.

parameter tiny small medium large mix
size r 4 8 16 32 /

deformation σe U [0.5, 1] U [1, 2] U [3, 6] U [5, 10] /
number N F [3, 10] F [3, 10] F [2, 5] F [1, 3] /

Table 6. Tumor parameters for model training. Let U [a, b] denotes a uniform distribution, F [a, b] denotes a discrete uniform distribu-
tion, N denotes synthetic numbers. To train an AI model, we design 5 different types of tumor sizes, tiny, small, medium, large, and mix
combine all. The sample probability during training is [0.2, 0.2, 0.2, 0.2, 0.2], respectively.



Figure 12. Visualization of shape ablation. To show the importance of synthetic shape, we design ablation studies on “Mask Shape
Generation” (Figure 3). Without edge blurring and elastic deformation, the edge is sharp and the shape can only be ellipsoid. Therefore,
synthetic tumors can be extremely unrealistic.
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