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Abstract

Creating large-scale and well-annotated datasets to train AI algorithms is crucial for automated
tumor detection and localization. However, with limited resources, it is challenging to determine
the best type of annotations when annotating massive amounts of unlabeled data. To address this
issue, we focus on polyps in colonoscopy videos and pancreatic tumors in abdominal CT scans;
both applications require significant effort and time for pixel-wise annotation due to the high
dimensional nature of the data, involving either temporary or spatial dimensions. In this paper,
we develop a new annotation strategy, termed Drag&Drop, which simplifies the annotation pro-
cess to drag and drop. This annotation strategy is more efficient, particularly for temporal and
volumetric imaging, than other types of weak annotations, such as per-pixel, bounding boxes, scrib-
bles, ellipses, and points. Furthermore, to exploit our Drag&Drop annotations, we develop a novel
weakly supervised learning method based on the watershed algorithm. Experimental results show
that our method achieves better detection and localization performance than alternative weak anno-
tations and, more importantly, achieves similar performance to that trained on detailed per-pixel
annotations. Interestingly, we find that, with limited resources, allocating weak annotations from a
diverse patient population can foster models more robust to unseen images than allocating per-pixel
annotations for a small set of images. In summary, this research proposes an efficient annota-
tion strategy for tumor detection and localization that is less accurate than per-pixel annotations
but useful for creating large-scale datasets for screening tumors in various medical modalities.
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1 Introduction

Tumor detection and localization are often
approached as a semantic segmentation task
known as detection by segmentation. The hypoth-
esis is that identifying and delineating tumor
boundaries can improve the tumor detection
rate [1]. However, this idea might not apply to
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all medical scenarios, particularly for screening
purposes, in which it is more critical to predict
the approximate location and size of the tumors
rather than focusing on the accurate segmentation
of tumor boundaries. For instance, polyp detec-
tion only requires the identification of the polyp,
which can then be removed during the colonoscopy
procedure [2, 3]. In such cases, accurate seg-
mentation of the polyp’s boundary may not be
necessary. However, a majority of public datasets
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for polyp detection provide per-pixel annotation
for every polyp [4–8], which is exceptionally time-
consuming and costly. Similar issues arise in other
medical scenarios that focus on tumor detection
but allocate annotations at the pixel level [9–11].
This stresses the potential wastage of resources
when using the detection by segmentation strat-
egy for creating large-scale annotated datasets
for tumor detection. We posit that for certain
detection tasks, high precision in boundary seg-
mentation is not crucial, and therefore per-pixel
annotations may not be necessary.

On the contrary, weak annotations are more
cost-effective and require less time than per-pixel
annotations. We hypothesize that weak annota-
tions are more appropriate for tumor detection
and localization than the detection by segmen-
tation strategy. We justify this point from three
perspectives. Firstly, with a certain budget, per-
pixel annotations inevitably sacrifice data diver-
sity and population due to the high annotation
cost. Weak annotations allow for greater diver-
sity and thus improve the tumor detection rate
in minority cases, such as age (Tables 1–2). Sec-
ondly, the formulation of tumor segmentation
can generate numerous false positives. Pixel-wise
annotated datasets, e.g., KiTS [12], only pro-
vide images with tumors. This can create a bias
where AI algorithms learn to predict tumors in
every unseen image (Table 3). Thirdly, per-pixel
annotations require significant time and resources
to perform. Specifically, per-pixel annotations for
pancreatic tumors from 3D volumetric CT scans
require four minutes per subject, whereas weak
annotations only require an average of two seconds
per subject (Table 4). Similarly, for polyp detec-
tion, weak annotations are eight times faster to
perform than per-pixel annotations (2s vs. 16s).

While per-pixel annotation is dauntingly
expensive and time-consuming, it is still widely
adopted to train and test AI algorithms for tumor
detection and localization [13–15]. This paper
designs a new weak annotation strategy for high-
dimensional data, such as temporal and volumet-
ric medical images, by exploiting contextual infor-
mation across dimensions. We call this strategy
“Drag&Drop” because it involves clicking on the
tumor and then dragging and dropping to provide
the approximate radius of the tumor. This anno-
tation strategy is sufficient to capture the size and
location of each tumor without requiring precise

boundary segmentation. To utilize Drag&Drop
annotations, we further develop a weakly super-
vised framework based on the classical watershed
algorithm, and it is optimized using the approxi-
mate tumor size and location constraints provided
by Drag&Drop. Our weakly supervised frame-
work significantly reduces the impact of noisy
labels that commonly occur at tumor boundaries
in per-pixel annotations. We demonstrate in the
experiments that training using the weak annota-
tions by Drag&Drop, AI algorithms can perform
similarly to pixel-wise annotations in tumor detec-
tion and localization tasks. We also show the
superiority of our Drag&Drop annotations over
the previous weak annotation strategies, such as
scribbles, points, bounding boxes, and ellipses
annotations, in terms of tumor detection and
localization efficacy (Table 4).

2 Related Works

Many efforts have been developed to detect
lesions automatically. Specifically, deep convolu-
tional neural networks are successfully applied to
segment tumors in the brain [16–19], lung [20–
22], pancreas [23–25], liver [26, 27], polyp [8, 28–
31], etc. However, most methods require densely-
labeled high-quality annotations to train the
sophisticated network and achieve promising per-
formance. To reduce the annotation cost, some
solutions [32–42] have been dedicated to utilizing
weak supervisions with the devised loss functions,
network architectures, and learning strategies.

With the least amount of labeling effort,
Chen et al. [43] utilized category annotations
based on class activation mapping (CAM) with
a category-causality chain and anatomy-causality
chain to overcome the challenges of co-occurrence
phenomenon and the unclear boundary of object
foreground and background in medical images.

Despite the promising results, the efficacy of
the information contained within the category
labels is insufficient in precisely localizing lesions
in medical images. Zhang et al. [36] further used
scribble labels based on an auxiliary edge detec-
tion task to localize edges explicitly. To encour-
age the segmentation predictions to be consistent
under different perturbations for an input image,
Liu et al. [44] proposed an uncertainty-aware mean
teacher that is incorporated into the scribble-
based segmentation method. Similarly, Zhang et
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al. [45] proposed CycleMix, a framework for scrib-
ble that used consistency losses to regulate the
mixup strategy with a dedicated design of random
occlusion, to perform increments and decrements
of scribbles.

Nevertheless, the lack of direct generalizabil-
ity of commonly employed loss functions in fully
supervised contexts to their weakly supervised
counterparts poses a challenge in devising a robust
framework for effective object localization. Con-
sequently, Lu et al. [46] propose a multi-task
loss function that takes into account the area of
the geometric shape, the categorical cross-entropy,
and the negative entropy. In line with the parallel
concept, Chu et al. [37] proposed to jointly train
a lesion segmentation model and a lesion classifier
in a multi-task learning fashion, where the super-
vision of the latter is obtained by clustering the
RECIST measurements of the lesions.

Apart from the above weak annotations, the
bounding box is often used in the interactive
pipeline. Tian et al. [47] replace the original pixel-
wise mask loss with the proposed projection and
pairwise affinity mask loss to minimize the discrep-
ancy between the projections of the round-truth
box and the predicted mask and exploit the prior
that proximal pixels with similar colors are very
likely to have the same category label. Li et
al. [40] then proposed to iteratively learn a series
of level-set functions to obtain accurate segmen-
tation mask predictions. Beyond bounding boxes,
point clicks are the other time-efficient annota-
tion forms most commonly used in interactive
segmentation scenarios. Chen et al. [38] proposed
Implicit PointRend, which tackles the unique chal-
lenges of point supervision with implicit mask
representation.

By contrast, our Drag&Drop annotation is
the first weak annotating strategy that focuses
on high-dimensional data, such as temporal and
volumetric medical images. Different from low-
dimensional data, high-dimensional data requires
significant effort and time for pixel-wise annota-
tion due to the high-dimensional nature of the
data, involving either temporary or spatial dimen-
sions. By leveraging contextual information across
dimensions, our Drag&Drop annotation enables
manual labeling based on a single 2D annotation
in high-dimensional volumetric data, eliminat-
ing the need for annotating on a slice-by-slice
basis. To demonstrate its efficacy, we compare our

Drag&Drop annotations with per-pixel annota-
tions as an upper-bound performance reference
and all the aforementioned weak annotations.

3 Method

To reduce manual annotation efforts, we propose
a novel annotation strategy termed Drag&Drop
(Sec. 3.1) and a weakly supervised learning frame-
work, consisting of 3D annotation propagation
(Sec. 3.2) and noise reduction (Sec. 3.3) to achieve
a better cost-accuracy trade-off.

3.1 Drag&Drop Initialization—
Manual Annotation

According to empirical evidence, the annotat-
ing process can be segmented into two distinct
stages: edge determination and manual labeling.
When dealing with high-dimensional data, the
annotator first determines the edge of a lesion
and manually draws the labels according to the
annotating methods. Weak annotating methods
spanning multiple dimensions can substantially
reduce the number of labels and shorten the
manual labeling time compared to the lower-
dimensional ones that are based on a slice-by-slice
basis. As a result, to facilitate manual labeling,
we instructed annotators only to provide a sin-
gle 2D annotation in high-dimensional volumetric
data and propagate it by exploiting 3D contex-
tual information across dimensions (more details
in Sec. 3.2). Specifically, we ask the annotator to
drag a radius from the central point of the lesion
and drop it at the boundary. Fig. 1-(a) depicts the
detailed Drag&Drop annotation process. Com-
pared to other strategies that need multiple 2D or
3D annotations, our Drag&Drop only requires one
2D label per lesion within the high-dimensional
data, resulting in a significant reduction in manual
labeling time.

Considering edge determination time,
although Roth et al. [48] attempted to use extreme
points in high-dimensional data, it still necessi-
tates six click locations lying on the surface of
the target, demanding annotators precisely dis-
tinguish the lesion area. Similarly, Zhou et al. [49]
tried to simplify the video annotation process
with six clicks on the lumen-intima and media-
adventitia interfaces, which also makes a high
degree of precision in the observation of the video
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Volumetric Input

(b) Drag&Drop Propagation(a) Drag&Drop Initialization
Manual Annotation Weak Label Expansion Watershed Segmentation

(c) Noise Reduction

Lesion-wise Validation

Masked back-propagation

Fig. 1 Annotation and propagation process of the proposed Drag&Drop. The pancreas and tumor are represented by the
colors orange and green, respectively. Given the weak label, we expand it to a lesion marker (teal green) and background
markers (red). We then utilize the marker-based watershed algorithm to generate the initial segmentation area (blue),
following which dilated tumors (pink) are applied to compute the masked back-propagation.

frame necessary. In contrast, our Drag&Drop
only requires annotators to provide an approx-
imate radius from the central point without
the need for careful observation of the lesion’s
boundaries. As a result, our method significantly
reduces the time required for edge determination.
In this study, we automatically extract the cen-
tral location and its corresponding radius from a
given ground truth mask for training. In order to
simulate user interaction, we add some Gaussian
noise to x, y, and z directions.

To ensure the quality of Drag&Drop, the
annotators must adhere to the following guidance
for accurately labeling lesions. 1. First, the anno-
tators should locate the lesions and screen through
multiple scans to estimate their size and three-
dimensional center. 2. Next, as Drag&Dropis
adaptable to multiple classes and targets, the
annotators can conveniently annotate lesions in
arbitrary dimensions. Specifically, the given radius
should encompass the lesion in all dimensions, and
multi-class annotations can be applied accordingly
when multiple categories of lesions are present
within an image. 3. Last, the annotator could

refine the annotation by adding and removing
the annotation mask by simply clicking the fore-
ground and background, respectively. By follow-
ing the aforementioned steps, the introduction
of size discrepancies by different annotators can
be minimized or eliminated, thereby preserving
the quality of weak annotations when utilizing
Drag&Drop.

In terms of other weak annotations, we fol-
low the same method in Ji et al. [8] to generate
the annotations automatically. Specifically, the
bounding box is generated by calculating the
lower-/upper-bound of the object mask. Following
Cheng et al. [38], 10 points are randomly generated
within the area of the bounding box and classified
by the object mask to collect the positive and neg-
ative points. Next, we apply LIN algorithm [50]
to calculate the ellipse that fits (in a least-squares
sense) a set of 2D points best of all. As for scribble,
we use two high-degree curves to indicate the fore-
ground and background, respectively. To ensure
the objectivity of various annotators, we adopt lin-
ear or quadratic functions to randomly create the
above curves in the positive/negative region.
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Table 1 Given a certain annotation budget, our Drag&Drop strategy outperforms the per-pixel annotation by a large
margin in tumor detection and localization. More importantly, compared with per-pixel annotations, Drag&Drop improves
tumor segmentation from 0.43 to 0.54 for pancreatic tumor detection measured by DSC scores.

Lesion-level Patient-level

Method Strategy Sen. Spe. Pre. F1 Sen. Spe. Pre. F1
JHH [1]

nnUNet Per-pixel 0.611 0.339 0.422 0.522 0.765 0.702 0.752 0.613
nnU-Net Drag&Drop 0.715 0.429 0.575 0.610 0.886 0.649 0.749 0.735

SUN-SEG [8]

PNS+ Per-pixel 0.681 0.589 0.434 0.546 0.759 0.698 0.543 0.621
PNS+ Drag&Drop 0.719 0.677 0.512 0.595 0.804 0.790 0.644 0.668

3.2 Drag&Drop Propagation—
Watershed Algorithm

To propagate the Drag&Drop annotations to
pseudo labels, we adopt a marker-based water-
shed transformation algorithm [51] to separate
the image into positive and negative regions.
Compared to other segmentation methods, the
watershed algorithm does not require parameter
tuning and can use markers as a form of user
guide to refine the segmentation boundaries. That
is, we can use the given Drag&Drop annotation
to generate pseudo labels with a relatively pre-
cise location. The watershed algorithm views an
image as a topographic landscape with ridges and
valleys. The marker-based watershed algorithm
utilizes this hierarchical representation to decom-
pose an image into catchment basins by flooding
an image from the markers until it reaches the
boundaries, i.e., watershed line, of the regions. In
specific, given an input I, lesion markers ml

i, and
background markers mb

j , the watershed line can
be defined as the set of points of the support of I
that do not belong to any catchment basin:

Wsh(I,ml
i,m

b
j) =

supp(I) ∩
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i
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CB

(
ml

i

))⋃
j

(
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(
mb

j

))]
,

(1)
where CB(m) and supp(I) stand for the catch-
ment basin of the marker m and support of I,
respectively.

To accurately segment the boundary of the
lesions, we dilate the Drag&Drop annotations into
lesion and background markers in the 3D space as
the initial flooding points. Given a central point
and radius of a lesion in a high-dimensional input,
we first generate a 3D sphere and sample set the

surface of the sphere as the background markers
mb

j . Specifically, we set j as the number of integer
points on the surface and randomly sample the
background markers. Then we adaptively dilate
the central point according to a certain ratio N
of the given radius to avoid under-segmentation
and create the lesion marker ml

i, ensuring that the
result adequately covers the region of interest. To
remove noise while preserving the boundary infor-
mation, we further applied a morphological gradi-
ent to the input I before watershed segmentation.
By utilizing the lesion and background markers for
each lesion in conjunction with the denoised input,
we recursively applied a marker-based watershed
algorithm on each lesion to propagate the markers
to pseudo labels. Segment process and results are
illustrated in Fig. 1-(b).

3.3 Noise Reduction in Training
and Evaluation

Even though the watershed algorithm can detect
the boundaries of lesions, it remains vulnerable to
noise in the image, particularly in cases of individ-
ual variations in the approximate radius drawn by
the annotators, which is pronounced given their
irregular shapes. To this end, we propose a masked
back-propagation that computes the gradient only
on the lesion and background regions that are con-
fidently provided by the watershed algorithm; no
gradient on the uncertain regions. In detail, we
dilate pseudo labels with M kernel size and ignore
the gradient of the dilated area (which is the
uncertain region) during back-propagation. Due
to the constraint provided by background mark-
ers on the sphere, the pseudo label displayed a
lower rate of false positives. As a result, we chose
not to perform erosion to obtain the gradient-free
region. This strategy considerably increases the
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Table 2 Lesion-level performance comparison regarding to the age distribution on the JHH dataset. Our Drag&Drop
enables more diversity and thereby enhances the detection rate in minority cases (highlighted in bold). We used
nnU-Net [13] for per-pixel annotations. Note that in the age range of 45, the test result is 0 because all the cases were
healthy and had no tumors.

Age [35 40) [40 45) [45 50) [50 55) [55 60) [60 65) [65 70) [70 75) [75 80) [80 85)

Num. 20 20 27 21 25 16 17 6 12 6

Pre.
Per-pixel 0.166 0.095 0.000 0.307 0.200 0.600 0.562 0.499 0.428 0.454

Drag&Drop 0.125 0.133 0.000 0.333 0.333 0.368 0.705 1.00 0.611 0.600

F1
Per-pixel 0.286 0.174 0.000 0.459 0.316 0.666 0.624 0.666 0.558 0.594

Drag&Drop 0.222 0.235 0.000 0.484 0.429 0.494 0.828 1.00 0.720 0.750

Table 3 Training data distribution in terms of positive and negative samples. The methods trained on both positive and
negative data can generally surpass the one only trained on positive data.

Distribution Lesion-level Patient-level
Strategy Pos. Neg. Sen. Spe. Pre. F1 Sen. Spe. Pre. F1

JHH [1]

Per-pixel
1168 0 0.789 0.475 0.622 0.656 0.920 0.709 0.789 0.771
1168 515 0.789 0.729 0.780 0.620 0.937 0.980 0.982 0.351

Drag&Drop 1168 0 0.715 0.429 0.575 0.610 0.886 0.649 0.749 0.735
1168 515 0.769 0.691 0.747 0.620 0.914 0.953 0.958 0.478

SUN-SEG [8]

Per-pixel
189 0 0.783 0.681 0.551 0.634 0.869 0.748 0.620 0.700
189 318 0.763 0.813 0.669 0.640 0.846 0.900 0.801 0.671

Drag&Drop 189 0 0.719 0.677 0.512 0.595 0.804 0.790 0.644 0.668
189 318 0.716 0.701 0.530 0.600 0.804 0.819 0.677 0.669

robustness of the proposed method and refines the
segmentation result of the watershed algorithm
by largely reducing the number of false nega-
tives (Sensitivity: 0.98, Specificity: 1.00; detailed
in Table 5).

In addition, due to the absence of per-pixel
labels, the performance validation of the model
during training is susceptible to biases and inaccu-
racies, leading to the misestimation of the model’s
performance and the erroneously selected param-
eters. To address this issue comprehensively and
obtain optimal detection performance, we pro-
pose to adopt a lesion-wise metric for validation
purposes. Compared to the commonly adopted
pixel-wise metric [37], lesion-wise one has a high
tolerance for pixel-wise imprecision in the pseudo
label and thus poses the capability to achieve the
best model performance during training.

4 Experiment & Result

4.1 Benchmarking

Dataset. We adopt two large-scale high-
dimensional datasets in our experiments,

including a private 3D volumetric CT dataset
(i.e., JHH [1]) and a colonoscopy video dataset
(i.e., SUN-SEG [8]). JHH dataset includes 2, 426
CTs of 1, 213 patients with per-pixel annota-
tion of pancreatic tumor, containing classes of
pancreas, PDAC, and Cyst. Pancreatic protocol
CTs were retrospectively identified from clinical,
pathological, and radiological databases compiled
between 2003 and 2020. Patients with pancre-
atic tumors between 2011 to 2020 were scanned
with a dual-source MDCT scanner (Somatom
Definition, Definition Flash, or Force, Siemens
Healthineers), and the patients between 2003 to
2010 were scanned on a 16- or 64-slice MDCT
scanner (Somatom Sensation 16 or 64, Siemens
Healthineers). Both arterial and venous phase
images were collected for patients, resulting
in 2, 426 abdominal CT scans. Arterial phase
imaging was performed with fixed delay or
bolus triggering, usually between 25 ∼ 30 sec-
onds post-injection, and venous phase imaging
was performed at 60 seconds. Each CT scan
consists of 319 ∼ 1, 051 slices of 512 × 512
pixels, and have a voxel spatial resolution of
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([0.523 ∼ 0.977] × [0.523 ∼ 0.977] × 0.5)mm3

We randomly split 1683, 420, and 323 cases for
training, validation, and testing, respectively. It
is noteworthy that for the sake of simplicity, the
combined class of PDAC and Cyst is reported
during the evaluation process.

SUN-SEG dataset, on the other hand, offers
1, 106 video clips with 158, 690 frames total.
The colonoscopy videos in SUN-SEG dataset are
from Showa University and Nagoya University
database, the largest video polyp dataset for the
detection task. The videos are captured by the
high-definition endoscope (CF-HQ290ZI & CF-
H290ECI, Olympus) and video recorder (IMH-10,
Olympus), providing videos of various polyp sizes
at dynamic scenarios, such as imaging at dif-
ferent focusing distances and speeds. SUN-SEG
dataset contains annotations of attributes, object
masks, bounding boxes, boundaries, scribbles, and
polygons. According to the origin bounding box
labels of the SUN-database [5], ten experienced
annotators are instructed to offer various labels
using Adobe Photoshop. Then, three colonoscopy-
related researchers re-verify the quality and cor-
rectness of these initial annotations. We follow the
same data splitting protocol in [8] and re-split the
videos in a finer granularity, resulting in 507 and
126 cases respectively for training and validation.
As for the testing set, we merge the four original
testing sets and have 1, 050 cases.

Evaluation metrics. The assessment of the detec-
tion performance involves lesion-level and patient-
level evaluation, which include (a) Sensitivity
(Sen.) to evaluate the true positive prediction
TP of overall lesion areas and penalize the false
negative prediction FN to increase the screening
ability of the algorithm, which is defined as:

Sen. =
TP

TP + FN
.

(b) Specificity (Spe.) to calculate the ratio of
actual negatives accurately diagnosed TN and
penalize the false positive FP to suppress the
overdiagnosis. It can be defined as:

Spe. =
TN

TN+ FP
.

(c) Precision (Pre.). Different from sensitivity
evaluates the true positive prediction of overall

lesion areas, precision focuses on the ratio of the
true positive prediction in overall prediction areas.
Precision can be seen as a measure of quality
and sensitivity as a measure of quantity. Higher
precision means that an algorithm returns more
relevant results than irrelevant ones, and high sen-
sitivity means that an algorithm returns most of
the relevant results (whether or not irrelevant ones
are also returned). It can be defined as:

Pre. =
TP

TP + FP
.

(d) F1-score (F1). F1-score is an alternative eval-
uation metric that assesses the predictive skill of
an algorithm by elaborating on its class-wise per-
formance rather than an overall performance as
done by accuracy. It is a popular metric to use for
classification models as it provides robust results
for both balanced and imbalanced datasets, unlike
accuracy. It can be defined as:

F1 =
2× TP

2× TP + FN+ FP
.

In addition, we adopt Free-Response Receiver
Operating Characteristic (FROC) analysis, an
evaluation approach balancing both sensitivity
and false positives. The FROC analysis is reported
with sensitivities at various false positive levels.
We also adopt the age information provided in the
JHH dataset to compare the model performance
in different population distributions.

Implementation and baselines. For pancreatic
tumor detection and polyp detection, we adopt the
state-of-the-art per-pixel segmentation methods
(i.e., nnUNet [13] and PNS+ [8], respectively) as
our model to validate the efficacy of the proposed
annotation strategy. We follow the default train-
ing setting with the standard binary cross-entropy
loss and the Dice loss in the learning process. We
set N = 0.2 and M = 0.5 after extensive abla-
tion studies (see Table 5). As previous studies have
demonstrated outstanding outcomes in pancreas
segmentation, we utilize a masked cropped volume
to assist in the detection of pancreatic tumors.
And in polyp detection, we apply Drag&Drop at
the frame level. We re-train five weakly super-
vised baselines with the same data used by our
Drag&Drop, under their default settings, for fair
comparison.
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Fig. 2 Illustration of Drag&Drop annotations on the JHH and SUN-SEG datasets.

4.2 Population Diversity

To evaluate the performance gain provided by
data diversity in our Drag&Drop strategy, we cal-
culate the number of per-pixel labels that can
be annotated in the same amount of time. The
annotation time can be defined as detection time
plus the manual labeling time. Since pancreatic
tumors are more camouflaged and require more
time to be detected, we set the detection time
as 30′′ and 2′′ for pancreatic tumors and polyps,
respectively. With the manual labeling time of
4′15′′ and 2′′, we can have the number of per-pixel
labeled and Drag&Drop labeled cases for pancre-
atic tumor (131 vs. 1, 168) and polyp detection (33
vs. 189). The results in Table 1 and Table 2 both
illustrate that the utilization of weak annotations

can promote greater diversity and thus enhance
results.

4.3 Bias Mitigation

We further discuss the bias from the data distribu-
tion of positive and negative samples. We compare
the model trained with only positive data and the
one trained with both positive and negative data.
As shown in Table 3, the methods trained on both
positive and negative data can generally surpass
the one only trained on positive data. Specifically,
the results have increased significantly, especially
for specificity (0.649 vs. 0.958), suggesting that the
well-adopted ‘detection by segmentation’ strategy
is unsuitable for tumor detection on pixel-wise
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Table 4 We also present the cost-accuracy trade-off. Note that the baselines adopt low-dimensional annotation strategies
and are designed specifically for 2D input, resulting in severe performance degradation on the JHH dataset. In contrast,
nnUNet is highly adaptable to 3D volumetric data and thus achieves satisfying results.

Lesion-level Patient-level
Method Strategy Time Sen. Spe. Pre. F1 Sen. Spe. Pre. F1

JHH

SODSA Scribble 0′38′′ 0.086 0.005 0.025 0.048 0.121 0.027 0.126 0.200
WeakMTL Ellipse 0′46′′ 0.054 0.035 0.010 0.020 0.069 0.313 0.104 0.165
PointSup 10 Points 1′17′′ 0.525 0.411 0.562 0.507 0.514 0.460 0.524 0.507

Box2Mask B-Box 2′06′′ 0.488 0.384 0.414 0.481 0.659 0.693 0.712 0.543
nnUNet Per-pixel 4′15′′ 0.789 0.475 0.622 0.656 0.920 0.709 0.789 0.771

Ours Drag&Drop 0′02′′ 0.715 0.429 0.575 0.610 0.886 0.649 0.749 0.735
SUN-SEG

SODSA Scribble 0′03′′ 0.701 0.647 0.496 0.582 0.783 0.718 0.567 0.640
WeakMTL Ellipse 0′04′′ 0.709 0.485 0.389 0.522 0.792 0.576 0.469 0.595
PointSup 10 Points 0′07′′ 0.712 0.676 0.520 0.595 0.795 0.754 0.604 0.656

Box2Mask B-Box 0′09′′ 0.684 0.600 0.422 0.539 0.772 0.771 0.615 0.645
PNS+ Per-pixel 0′16′′ 0.783 0.681 0.551 0.634 0.869 0.748 0.620 0.700
Ours Drag&Drop 0′02′′ 0.719 0.677 0.512 0.595 0.804 0.790 0.644 0.668

Table 5 Ablation studies. N and M stand for the ratio of dilation kernel size to the sphere radius for a central point
and for pseudo labels, respectively.

Variant Pixel-level
No. N M Dice Precision Sensitivity Specificity

JHH
#1 0.1 0.5 0.677 0.688 0.847 0.997
#2 0.2 0.5 0.792 0.737 0.979 0.997
#3 0.4 0.5 0.790 0.694 0.998 0.995
#4 0.2 0.4 0.734 0.737 0.931 0.997
#5 0.2 0.5 0.792 0.737 0.979 0.997
#6 0.2 0.6 0.824 0.737 0.992 0.997

SUN-SEG
#7 0.1 0.5 0.784 0.787 0.893 0.996
#8 0.2 0.5 0.845 0.759 0.981 0.994
#9 0.4 0.5 0.776 0.664 0.999 0.988

#10 0.2 0.4 0.820 0.763 0.936 0.995
#11 0.2 0.5 0.845 0.759 0.981 0.994
#12 0.2 0.6 0.853 0.759 0.996 0.994

annotated datasets that only contain images with
tumors.

4.4 Cost-accuracy Trade-off

Last, we compare the proposed Drag&Drop to
other weak annotations in terms of the cost-
accuracy trade-off. As shown in Table 4, our
Drag&Drop offers a distinct advantage over other
strategies. Requiring only 2 seconds of annotation,
our method achieves similar performance to all
the other weak annotation strategies that demand
more annotation time. Therefore, our method is
well-suited for large-scale projects where cost-
effectiveness and efficient use of resources are

critical considerations. In terms of the annotation
time, two medical researchers are instructed to
offer various annotations and calculate the anno-
tation time. Each annotation type is conducted
on three randomly selected cases and presents the
average annotation time.

4.5 Detection Error Trade-off

As shown in Fig. 3, Free-response ROC (FROC)
of nnUNet trained by Drag&Drop and per-pixel
annotation strategy with a certain budget on JHH
dataset (see Table 1). The result indicates that the
proposed Drag&Drop annotation strategy gener-
ally outperforms the per-pixel annotation at most
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Fig. 3 FROC curves of nnUNet trained by Drag&Drop and per-pixel annotation strategy with a certain budget on the
JHH dataset.

threshold settings. Instead of a fixed threshold,
the threshold range is determined by the confi-
dence scores of local maximum predictions, with
the lowest and highest scores defining the range.

4.6 Ablation Study

To investigate the optimal setting of the hyper-
parameters, we conduct the ablation study of the
ratio of dilation kernel size to the sphere radius
for a central point N and pseudo labels M . As
shown in Table 5, we first ablate the ratio of dila-
tion kernel size to the sphere radius for a central
point N . We observe that #2 and #8 outperform
other settings (i.e., #1, #3, and #7, #9, respec-
tively) in terms of dice metric, which is our main
focus. Therefore, we setN = 0.2 to obtain the best
performance. We further investigate the setting of
M . With the increase of dilation kernel size, false
negative decreases, but true negative and super-
vision signal also decrease owing to the increase
of masked area, which hampers the learning pro-
cess. As a result, we set M = 0.5 for the balance
of noise reduction and learning efficiency.

4.7 Discussion

To conduct a more comprehensive comparison
with other strategies, we discuss the strengths
and weaknesses based on the state-of-the-art seg-
mentation methods, SAM [52] and MedSAM [53].
SAM and MedSAM are 2D segmentation meth-
ods where users can use a prompt to specify
the segmentation target. Namely, the proposed
Drag&Drop annotation strategy could serve as
a prompt to enhance flexibility and adaptability.
Compared to using bounding boxes or points as

SAM w/ Bounding Box SAM w/ Drag&Drop Ground Truth

Fig. 4 Illustration of the segmentation result of SAM
using Drag&Drop and bounding box as a prompt.

prompt, the proposed Drag&Drop is more effi-
cient, particularly for temporal and volumetric
imaging. Besides, SAM does not impose seman-
tic constraints for labeling objects, which makes
it inconvenient for radiologists to distinguish the
pathology of the lesions or identify multiple lesions
within a single image. As shown in Fig. 4, we adopt
a bounding box and the proposed Drag&Drop
as a prompt to detect a single lesion for a fair
comparison. Both bounding box and Drag&Drop
can accurately identify and segment the lesion,
thus affirming the effectiveness and applicability
of Drag&Drop.

4.8 Issues and Challenges

This section discusses some common issues, whose
visualization and quantitative results are pre-
sented in Fig. 2 and in Table 4, respectively.
Of note, pancreatic tumor detection and video
polyp segmentation is a challenging track in med-
ical imaging, and its overall accuracy is not high
enough. We observe that existing weak annota-
tion strategies (e.g., scribble and ellipse) and our
Drag&Drop still lack sufficient robustness. As
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for pancreatic tumor detection, our Drag&Drop
fails to capture the camouflaged boundaries of
the tumor area by only using the watershed
algorithm that utilizes gradient information. As
shown in Fig. 2, our Drag&Drop fails to capture
the whole pancreatic tumor due to insignificant
appearance changes. Besides, the non-gradient
area on the boundary indicates that the training
might cost more iterations to converge and could
lose the semantics information due to the insuf-
ficient boundary-related representation in such a
hard case. In terms of other weak annotation
strategies, the performance of pancreatic tumor
detection is relatively lower than Drag&Drop as
shown in Table 4. This might be due to the imbal-
anced data of the tumor area to the whole CT scan
and the insufficient boundary supervision. The
aforementioned drawbacks inspire us to explore a
more robust annotation strategy to improve the
accuracy of pancreatic tumor detection.

On the other hand, despite the generally satis-
factory performance of most annotation strategies
in video polyp segmentation, reducing annotation
time proves challenging due to the absence of a
fixed shape for the lesion in 3D spaces, such as the
one found in 3D volumetric data. Consequently,
annotations must be conducted on a slice-by-slice
basis. We also observe that our Drag&Drop con-
sistently fails to locate lesion regions that share
a similar color to the intestinal wall or are too
small to be detected. Thus, there is a large room
for improving the detection ability via camou-
flaged pattern discovery techniques [54, 55] and
object tracking techniques [56]. In summary, these
challenging cases are common difficulties that
other methods face and cause severe performance
degradation that deserves further exploration.

5 Conclusion

To simplify the annotation of temporal and vol-
umetric medical images, we propose a novel
annotation strategy called Drag&Drop and a
weakly supervised framework to exploit these
annotations. Our proposed strategy can reduce
87.5% and 99.2% annotation efforts for polyp
and pancreatic tumor detection, respectively, com-
pared with per-pixel annotations. The experi-
mental results demonstrate that our framework
achieves a comparable tumor detection rate to

per-pixel annotations and higher rates than alter-
native weak annotation strategies. More impor-
tantly, we show that allocating weak annotations
from a larger data population, given a certain
annotation budget, improves the model general-
izability of minority cases compared to per-pixel
annotations from a small dataset. We hope our
Drag&Drop strategy can streamline and acceler-
ate the annotation procedure for tumor detection
and localization in various medical modalities.
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