Three-dimensional pose discrimination in natural images of humans
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Abstract

Perceiving 3D structure in natural images is an immense com-
putational challenge for the visual system. While many pre-
vious studies focused on the perception of rigid 3D objects,
we applied a novel method on a common set of non-rigid ob-
jects—static images of the human body in the natural world.
We investigated to what extent human ability to interpret 3D
poses in natural images depends on the typicality of the under-
lying 3D pose and the informativeness of the viewpoint. Us-
ing a novel 2AFC pose matching task, we measured how well
subjects were able to match a target natural pose image with
one of two comparison, synthetic body images from a differ-
ent viewpoint—one was rendered with the same 3D pose pa-
rameters as the target while the other was a distractor rendered
with added noises on joint angles. We found that performance
for typical poses was measurably better than atypical poses;
however, we found no significant difference between informa-
tive and less informative viewpoints. Further comparisons of
2D and 3D pose matching models on the same task showed
that 3D body knowledge is particularly important when inter-
preting images of atypical poses. These results suggested that
human ability to interpret 3D poses depends on pose typicality
but not viewpoint informativeness, and that humans probably
use prior knowledge of 3D pose structures.
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Introduction

How three-dimensional objects are recognized and repre-
sented in the brain has attracted much attention from re-
searchers as a fundamental problem of vision. Recogniz-
ing three-dimensional objects is complex, since the two-
dimensional projected images of the same 3D object vary
considerably as a function of viewpoint, lighting, material
and articulation. Recognition is further challenged by the
need to recognize image patterns at various levels of ab-
straction from parts, to individuals, to categories. Many
of the early studies focused on the problem of recognizing
simple rigid 3D objects given viewpoint variations (Marr &
Nishihara, 1978; Biederman, 1987; Ullman, 1989; Tarr &
Pinker, 1989; Poggio & Edelman, 1990; Liu, Knill, & Ker-
sten, 1995). However, there has been much less behavioral
research on the problem of recognizing non-rigid, articulated
3D objects from natural images, where the range of image
variations is considerably larger. This study addresses the
problem of recognizing human poses in natural images.

The human body is a stimulus that occurs frequently in
daily life and carries a great deal of important information.
Our visual system has developed dedicated neural machin-
ery and mechanisms for processing body stimuli (Downing,

Jiang, Shuman, & Kanwisher, 2001; Peelen & Downing,
2005). Several behavioral studies on human bodies demon-
strated a high degree of sensitivity to properties like gen-
der, mood, identity, etc (Mather & Murdoch, 1994; Ma, Pa-
terson, & Pollick, 2006; Troje & Westhoff, 2006). More
recent works studied the representation of body orientation
(Lawson, Clifford, & Calder, 2009) as well as body facing
directions in the perception of pairs of human bodies (Papeo,
Stein, & Soto-Faraco, 2017; Abassi & Papeo, 2020). These
previous studies revealed global properties of the human body
that support recognition of people’s emotions, actions, and
social interactions. Yet we still have limited understanding
of an important basis for action-related interpretations—the
human pose as defined by local body parts and their spatial
relationships in three-dimensions.

In this paper, we focused on the perception of 3D poses
in natural images of humans, which is particularly challeng-
ing due to various joint articulations with different frequency
of occurrence, and appearance variations from changes due
to occlusion, clothing, lighting, and viewpoint. As natural
images may vary in pose typicality and the amount of infor-
mation views provide to support body part parsing, intuitively
we think that human ability to interpret 3D poses in natural
images may depend on 3D pose typicality and viewpoint in-
formativeness. To investigate this, we quantified measures of
pose typicality to capture the differences between frequent
poses (e.g. standing) and less frequent ones (e.g. hand-
standing) from pose datasets. We also quantified measures
of viewpoint informativeness to capture body parsing infor-
mation primarily based on visibility of joints from projected
images. Figure 1 (a) provides example natural images with
different 3D pose typicality under different viewpoints. Us-
ing a 2AFC pose matching task, we quantitatively measured
human performance on interpreting and matching 3D poses
in such images. During the task, we asked subjects to match
a target natural pose image with one of two comparison, syn-
thetic body images. Observers picked the synthetic image
whose 3D pose best matched the target discounting changes
in viewpoint about the vertical axis. We expected humans to
be better at interpreting typical pose 3D structures, as humans
may have more prior knowledge of them. We also expected
humans to be better at informative viewpoints where the im-
ages contained more useful parsing information.

Our quantitative results showed that human ability to accu-
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Figure 1: (a) Examples of selected natural pose images. (b) An example image (leftmost) with noise-free synthetic image
(second left) as well as noisy synthetic images rendered under different noise_level from 1 to 6 with no viewpoint difference.

rately match poses decreased with increasing differences be-
tween target and comparison viewpoints. When we grouped
trials by typicality of underlying 3D poses and informative-
ness of viewpoints from natural images, we found that perfor-
mance for typical poses was measurably better than atypical
poses; however, we found no significant difference between
informative and less informative viewpoints. These results
suggested that the ability to interpret 3D poses in natural im-
ages depends on the typicality of the underlying 3D poses but
not the informativeness of image viewpoints.

To get further insights on when 3D body information might
be more necessary for humans during the task, we built 2D
and 3D skeleton-based pose matching models using the same
oft-the-shelf 3D pose estimator. We tested both models in the
pose matching task and compared them under different pose
typicality and viewpoint informativeness conditions. Our re-
sults suggested that 3D body knowledge is particularly im-
portant when interpreting images of atypical poses, and that
humans probably use such knowledge of 3D pose structures.
Further, our psychophysical results provide useful bench-
marks and comparisons to human performance for compu-
tational models.

Method
Stimuli Generation

Natural human body images Our stimuli were sampled
from the UP-3D Dataset (Lassner et al., 2017), which pro-
vides high quality 3D body model fits for single person im-
ages from multiple human pose datasets, including MPII
(Andriluka, Pishchulin, Gehler, & Schiele, 2014), Fashion-
Pose (Dantone, Gall, Leistner, & Van Gool, 2014), LSP and
LSP-extended (Johnson & Everingham, 2011).

To ensure that our sampled stimuli were balanced across
different poses and viewpoints, we designed and calculated
objective scores of pose typicality and viewpoint informative-
ness for all images before sampling. In general, pose typical-
ity scores captured how similar a pose was to other poses in
the dataset. Poses that were dissimilar to the majority were
more likely to be infrequent and thus atypical. Viewpoint
informativeness scores quantified body parsing information
based on visibility of body joints from the image viewpoint.

To obtain pose typicality scores, we first defined the dis-
tance between two 3D poses. Each pose in UP-3D was
annotated with relative 3D rotations of all joints with re-
spect to their parents in the kinematic tree, and thus pose i
with K joints was represented by a list of unit quaternions
[di1; Gi2; :::qik] representing these 3D rotations. Distance be-
tween two poses i and j was defined as

DG ) = K, dis(Qik; ) )
K

where dis(Qik;Qjk) = arccos(jgik Qjkj) defines the distance

between two unit quaternions gk and ¢jx (Huynh, 2009).

Pose typicality score was subsequently defined as the aver-
age distance from the current pose to all other poses in UP-
3D. A pose would be deemed more atypical if it was on aver-
age more distant to the rest of the UP-3D poses.

For viewpoint informativeness scores, we first calculated
fik—the fraction of pixels for each joint k with respect to pix-
els for the whole body of pose i. We then standardized these
fractions for different joints across all images in UP-3D by
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where |l and Sy are mean and standard deviation of fij for



joint Kk across all poses in UP-3D. Viewpoint informativeness
scores were defined as the average z-score from K joints:

II<<= | sigmoid(z-score( fix))
K

where sigmoid was to ensure scores fall in (0;1). A pose
would be considered more informative if more joints were
visible with larger areas (i.e., more pixels) in the images.

With these objective scores for pose typicality and view-
point informativeness, we sampled 400 stimuli from UP-3D,
with 100 from each of the four categories defined by this
2 2 combination—(typical pose, atypical pose)
(informative view, less informative view). Then
we split these 400 stimuli into two groups of 200 stimuli
(Group; and Group,), and tested them on two groups of sub-
jects separately. Figure 1 (a) shows examples of natural pose
images selected for use in our experiments.

3

Synthetic human body images With 3D joint rotation pa-
rameters for each natural pose, we used Blender 2.79 to make
2D projections of 3D synthetic humans under different poses.

For each natural pose stimulus, we rendered both noise-
free and noisy synthetic humans with constant, predetermined
clothing and lighting. For noise-free versions, we posed syn-
thetic humans using original 3D joint rotations from UP-3D.
For noisy versions that were used as distractors under a given
noise_level, we added (2 noise_level 1)p=128 with a
random sign f+; g to the rotation angles in axis-angle repre-
sentations for all body joints, and we posed synthetic humans
using relative 3D joint rotations with added noises. Noise lev-
els were determined by pilot experiments and were set from 1
to 5 (Group; used an additional noise_level = 6 for control
trials). Figure 1 (b) shows an example with noisy synthetic
distractors generated under different noise_level.

Once we get all pairs of synthetic humans with and with-
out added joint rotation noises under each noise_level, we
rotated both noise-free and noisy synthetic humans horizon-
tally by r degree(s) together so that viewpoints were changed
from the original viewpoint in natural images. We uniformly
sampled r from [0 ;15 ;30 ;45 ;60 ;75 ;90 ].

Psychophysics

Participants Two groups of Amazon Mechanical Turk
workers based in US participated (n; = 35, n, = 42). Data
from subjects with control trial accuracy below threshold
(Ty =0:55, T, = 0:7) were excluded. Threshold T, was higher
because control trials in Group, used more distinct synthetic
distractors rendered with no viewpoint rotations at an addi-
tional noise_level = 6, whereas control trials in Group;
used synthetic distractors rendered with no viewpoint rota-
tions at noise_level =5. All reported results were based on
the data from the remaining participants (n; = 28, np = 33).

Procedure Each subject went through 200 trials with nat-
ural pose images entirely from one of the two groups. Each
image was shown exactly once across the experiment.

Figure 2: An example experiment trial where the noisy dis-
tractor pose was rendered under noise_level = 5. Both
noise-free (bottom left) and noisy distractor pose (bottom
right) had a 30 viewpoint difference from the target (top).
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Figure 3: An example for 3D and 2D skeleton-based model.
(a) Predicted 3D joints. (b) 3D skeleton. (c) Projected 2D
skeleton (discarding depth coordinate).

Each subject was given three practice trials before they
started the experiment. In each trial, they performed a 2AFC
pose matching task on a screen with three images. On the top
was the target natural pose image. On the bottom were two
comparison, synthetic body images—one was rendered with
the same 3D pose parameters as the target while the other
was a distractor rendered with added noises on joint angles
under a random noise_level. Both synthetic human bodies
were rotated by the same random degree(s) before rendered
into 2D image projections. These two synthetic body images
were randomly placed to the left or right of the screen in each
trial. Figure 2 shows an example trial where noise_level=35
and viewpoint difference was 30 . Subjects were asked to
pick the synthetic image whose 3D pose best matched the tar-
get discounting changes in viewpoint about the vertical axis.
Subjects were given unlimited time to respond to each trial
while the three images were constantly shown on the screen.
Subjects can choose to take a break after finishing 100 trials.

Pose matching model

3D joint coordinate estimation We used an off-the-shelf
monocular 3D human pose estimation model developed by
Moon, Chang, and Lee (2019) to estimate 3D body joints



from a single image. This model achieved comparable results
with the state-of-the-art on 3D single-person pose estimation.
In our task, we loaded the model with pre-trained weights on
MuCo-3DHP (Mehta et al., 2018) and MSCOCO (Lin et al.,
2014), and applied it on both natural and synthetic body im-
ages to get predicted joints and 3D skeletons (Figure 3 (a-b)).

Skeleton-based pose matching We transformed predicted
3D skeletons into view-invariant representations for pose
matching. Specifically, this representation is a list of joint
angles from a skeleton. A joint angle is the angle between the
two bones on either side of a joint. For example, given pre-
dicted joint positions of left shoulder Xs, left elbow Xje, and
left wrist X, 2 R>, the joint angle at the left elbow is

(Xis Xie) (Xiw  Xie)

Aje = arccos ~ — -
Xis  XieJJXiw  Xie)
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These joint angles did not change with the body orientation,
and thus were view-invariant. In the 2AFC task, the model
would pick the synthetic pose whose view-invariant represen-
tation was closer to that of the target natural pose. As a direct
comparison, we also tested a 2D skeleton-based model, where
the joint angles were calculated from projected 2D skeletons
(see Figure 3 (c)) and were not viewpoint-invariant.

Results
Psychophysics

We found that pose matching accuracy generally decreased
with increasing differences between target and comparison
viewpoints (see Figure 4).

We further conducted sensory threshold analysis on the
behavioral data from Group; and Group, separately. We
grouped trial results by typicality of underlying 3D poses and
informativeness of viewpoints in natural images, and we ex-
plored human performance differences for typical vs. atypical
poses as well as informative vs. less informative views. For
each condition and each level of viewpoint difference, we fit-
ted psychometric functions for pose matching accuracy with
respect to noise_level. Cumulative Gaussian was used to
fit these functions with quickpsy package (Linares & Lépez-
Moliner, 2016). Nonparametric bootstrap was applied to get
statistics on sensory thresholds.

Figure 5 (a) presents Group; results with plots of human
sensory thresholds vs. differences in target and comparison
viewpoints, along with linear regression results (see dashed
lines) for each condition. We found that sensory thresholds
increased with increasing viewpoint differences for all condi-
tions. For the comparison between typical and atypical poses,
we performed Welch’s t-test with alternative hypothesis that
the mean of sensory thresholds for atypical poses were greater
than that for typical poses. Results (Figure 5 (a) top) showed
that sensory thresholds for atypical poses were consistently
and significantly greater than that for typical poses in most
cases. For the comparison between informative and less in-
formative viewpoints, we also performed Welch’s t-test with
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Figure 4: Pose matching accuracy (human) under different
noise_level and viewpoint differences.

alternative hypothesis that the true difference in means was
not equal to 0. However, we found no significant and consis-
tent differences this time (Figure 5 (a) bottom). To rule out
the possibility that the performance differences were due to
subjects spending different amount of time for different con-
ditions, we looked into subjects’ median reaction time and
found no substantial differences across different conditions.
To validate these findings, we conducted the same analysis
on Group; data, and obtained consistent results with Group;.

Model Comparisons

We tested the aforementioned 2D and 3D skeleton-based pose
matching models on all trials that human participants previ-
ously went through. For 2D and 3D model testing data, we
performed the same sensory threshold analysis that was ini-
tially done on Group; and Group, behavioral data.

Figure 5 (b-c) shows model results on Group trials. Sen-
sory thresholds increased with increasing differences between
target and comparison viewpoints for all conditions in both
2D and 3D skeleton-based models. In most cases, the slope of
each regression line in 2D models was larger than its respec-
tive slopes in 3D models and humans. For the comparison
of typical vs. atypical poses, sensory thresholds for atypical
poses were significantly greater than that for typical poses in
both models. We further compared the sensory threshold for
skeleton-based models with the human sensory threshold. In
typical pose condition (Figure 5 dashed red regression lines
on the top), sensory thresholds for both models were compa-
rable with that for humans. In atypical pose condition (Fig-
ure 5 dashed green regression lines on the top), however, sen-
sory threshold for the 2D model was much larger than that
for humans, while sensory threshold for the 3D model was
more comparable with that for humans. For the comparison
of informative vs. less informative viewpoints, we examined
the results from both 2D and 3D skeleton-based models but
found no consistent and significant differences.

Again to validate these findings, we conducted the same
analysis using model testing data on Group; trials, and the
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Figure 5: Group; sensory threshold results for humans, 3D and 2D pose matching models with linear regressions (dashed
lines). Red and green up arrows in bottom plots indicate larger mean sensory thresholds for informative and less informative

viewpoints respectively.

results were consistent with those from Group;.

Discussion

Using the proposed 2AFC pose matching task, we were able
to quantitatively measure the ability of humans to interpret
3D poses from natural images. We found that human per-
formance on matching 3D poses decreased with increasing
viewpoint differences between target and comparison poses.
When comparing the slopes of the sensory threshold regres-
sion lines in the 2D model and humans, human performance
decreased much slower, suggesting that they were unlikely to
rely on pure 2D information for the task.

With these quantitative measurements, we first showed
that this ability to interpret and match 3D poses depends on
the typicality of the underlying 3D poses in natural images.
Human performance for typical poses was significantly and
consistently better than that for atypical poses, suggesting

that humans may have more prior knowledge of typical pose
structures. We also observed that both 2D and 3D models per-
formed comparably to humans for typical poses. Neverthe-
less, for atypical poses, 3D model performance was much bet-
ter than 2D model performance and was closer to human per-
formance. This shows that 3D body knowledge is particularly
important when interpreting images of atypical poses. The
greater ability of human observers to match atypical poses, in
contrast to the 2D model, is consistent with prior knowledge
of 3D body structures. Thus, humans probably use such 3D
body knowledge, at least for atypical pose matching.

Second, our results showed that human performance did
not differ for different informativeness of viewpoints in nat-
ural images. As previous studies indicated, body repre-
sentations in humans may have more viewpoint invariance
(Sekunova, Black, Parkinson, & Barton, 2013). Hence one
interpretation of our result is that humans may be robust to the



