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Abstract This is an opinion paper about the strengths

and weaknesses of Deep Nets for vision. They are at the

heart of the enormous recent progress in artificial in-

telligence and are of growing importance in cognitive

science and neuroscience. They have had many suc-

cesses but also have several limitations and there is lim-

ited understanding of their inner workings. At present

Deep Nets perform very well on specific visual tasks

with benchmark datasets but they are much less gen-

eral purpose, flexible, and adaptive than the human vi-

sual system. We argue that Deep Nets in their current

form are unlikely to be able to overcome the funda-

mental problem of computer vision, namely how to deal

with the combinatorial explosion, caused by the enor-

mous complexity of natural images, and obtain the rich

understanding of visual scenes that the human visual
achieves. We argue that this combinatorial explosion

takes us into a regime where “big data is not enough”

and where we need to rethink our methods for bench-

marking performance and evaluating vision algorithms.

We stress that, as vision algorithms are increasingly

used in real world applications, that performance eval-

uation is not merely an academic exercise but has im-

portant consequences in the real world. It is impractical

to review the entire Deep Net literature so we restrict

ourselves to a limited range of topics and references

which are intended as entry points into the literature.
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1 Introduction

In the last few years Deep Nets have enabled enormous

advances in computer vision and the study of biolog-

ical visual systems. But as researchers in these areas,

we have mixed feelings about them. On the one hand,

we marvel at their successes and how they have led

to amazing results on some real world tasks and, in

academic settings, they almost always outperform al-
ternative approaches on benchmark datasets. But, on

the other hand, we are conscious of their current limita-

tions, aware of papers (Darwiche, 2018; Marcus, 2018)

which criticize them from the perspectives of machine

reasoning and cognitive science respectively, and are

concerned about the hype that sometimes surrounds

them. The nature of our research means that we in-

teract with research faculty in many disciplines (cog-

nitive science, computer science, applied mathematics,

neuroscience, engineering, physics, and radiology) and

Deep Nets are a frequent topic of conversation. We

find ourselves spending half the time criticizing Deep

Nets for their limitations and the other half praising

them and defending them against their critics. Not in-

frequently we are confidently told that “Deep Nets can

never do such and such” (e.g., estimate 3D depth, clas-

sify objects in PASCAL without pre-training) when

we already know that they have been shown to do so

on benchmark datasets. This opinion paper attempts

to provide a balanced viewpoint on the strengths and
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weaknesses of Deep Nets for studying vision, but the

views expressed are our own and may not be representa-

tive of the computer vision community. Moreover, given

the vast literature, the references are intended only as

entry points into the literature and are far from being

exhaustive. Our fundamental concern, as vision scien-

tists and not as neural network researchers, is whether

Deep Nets in their current form are sufficient to perform

the vast set of visual tasks faced with the combinatorial

complexity of natural images and, as we will argue, in

light of the current limitations of how the community

benchmarks performance.

First recall, that the purpose of vision is to know

what is where by looking and can be formulated as an

inverse inference problem. From the patterns of light

rays that enter our eyes we can estimate many prop-

erties of the three-dimensional world. As the authors

write these words, we can look round the room and see

multiple objects (chairs, pictures, books, a robot dog,

carpets, clothes, a sleeping cat, an empty wine glass, a

projector, an exercise machine, and many others). For

all of them, we can estimate their shape, their position

in the world, and the positions and shapes of their parts.

We can also describe their properties and attributes,

like the age of the carpet and how recently it has been

cleaned. Humans can solve this inverse inference prob-

lem apparently effortlessly (we just open our eyes and

see) but this disguises the incredible difficulty of the

problem and the amount of neural resources which our

brains dedicate to it. Roughly half the neurons in the

human cortex are involved in visual perception, which

has been called human’s superpower (Changizi, 2010)

because of its ability to extract information about the

world at a large range of distances varying from a frac-

tion of an inch to millions of light years. The difficulty of

vision became appreciated as AI researchers tried to de-

sign algorithms to mimic human visual abilities. A few

vision researchers proposed bold speculative conceptual

theories of vision (Gibson, 1986; Gregory, 1973; Marr,

1982) but most researchers in computer vision followed

a more pragmatic engineering strategy, where individ-

ual visual tasks (e.g., edge detection, binocular stereo,

object recognition) were studied separately. This strat-

egy enabled computer vision researchers to make grad-

ual progress by becoming familiar with the challenges

of the specific tasks and by borrowing and adapting

mathematical and computational techniques from other

disciplines (e.g., mathematics, computer science, engi-

neering, etc). A major innovation (which started slowly

in the late 1980s but accelerated rapidly after 2000)

was the development of benchmark annotated datasets.

These served two purposes. Firstly, they allowed re-

searchers to quantify their algorithms and compare per-

formance. Secondly they enabled the use of learning al-

gorithms and led to a symbiotic relationship with the

rapidly developing field of machine learning. Computer

vision mostly converged to a standard paradigm where

learning-based algorithms were compared on annotated

benchmark datasets. But we will argue that, in light of

the combinatorial complexity of natural images, that

the standard methods for benchmarking vision algo-

rithms (Deep Nets and others) are inadequate and can

yield misleading impressions about their strengths (“an

algorithm is only as good as the dataset it is evaluated

on and the performance measures used”) and so tougher

and more challenging performance measures should be

developed. This is particularly important as these al-

gorithms are applied to real world problems and hence

have real world consequences.

The organization of this article is as follows. In Sec-

tion 2 we discuss the history of neural networks and

its tendency to cycles of boom and bust. Section 3 de-

scribes a few of the successes of Deep Nets while also

mentioning some caveats. In Section 4 we discuss the

limited understanding of the internal workings of Deep

Nets. Section 5 surveys their potential for helping to

construct theories of biological visual systems, but also

their limited relationships to real neurons and neural

circuits. In Section 6 we discuss the challenges that

Deep Nets are now grappling with. Section 7 is more

speculative and argues that as vision researchers at-

tempt to model increasingly complex visual tasks they

will face a combinatorial explosion which Deep Nets

may be unable to overcome and which may require com-

puter vision researchers to revise the ways they evaluate

vision algorithms. In Section 8 we briefly point out that

the issues in this paper, in particular performance eval-
uations and dataset bias, matter outside academia and

failure to address them properly risks leading to bad

societal consequences.

2 Some History

We are in the third wave of neural network approaches.

The first two waves — 1950s–1960s and 1980s–1990s

— generated considerable excitement but slowly ran

out of steam. Despite a few exceptions, the overall per-

formance of neural networks was disappointing for ma-

chines (artificial intelligence, machine learning) and for

understanding biological vision systems (neuroscience,

cognitive science, psychology). But the third wave —

2000s–present — stands out because of the dramatic

success of Deep Nets on many large benchmark prob-

lems and their growing use for industrial application

to real world tasks (e.g., face recognition). It should
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be acknowledged that many of the currently success-

ful neural networks, such as convolutional neural net-

works (LeCun et al., 1989) and recurrent neural net-

works (Rumelhart et al., 1986) were developed during

the second wave. But their strengths were not appreci-

ated until the availability of big datasets and the ubiq-

uity of powerful computers (e.g., GPUs) which only be-

came available after 2000 and which fueled the third

wave.

The rise and fall of these neural network waves re-

flect changes in intellectual fashion and the varying

popularity of other approaches. The second wave of

neural networks was partly driven by the perceived limi-

tations of classic artificial intelligence where disappoint-

ing results led to an AI winter in the mid-1980s (the

first author observed this first hand as a researcher in

the AI lab at MIT). In turn, the decline of the second

wave corresponded to the rise of support vector ma-

chines, kernel methods, and related approaches. Credit

is due to those neural network researchers who carried

on despite discouragement through the troughs of the

waves when it was sometimes hard to publish neural

network papers. The pendulum has now swung again

and it sometimes seems hard to publish anything that

is not neural network related. We believe progress would

be faster if researchers resisted the attraction of fash-

ions and instead pursued a diversity of approaches and

techniques. It is also unfortunate that students may

not learn older techniques, like GrabCut (Rother et al.,

2004), Superpixels (Achanta et al., 2012), and Belief

Propagation (Pearl, 1989), and may not want to use

them even if they do. For example, the first author is

involved in a medical imaging project where a collabo-

rator from the Medical School had to implement a su-

perpixel algorithm because his own graduate students

(in computer science) lacked the necessary expertise or

motivation.

3 The Initial Successes, With Some Caveats

The computer vision community was skeptical about

Deep Nets until the impressive performance of AlexNet

(Krizhevsky et al., 2012) for classifying objects in Ima-

geNet (Deng et al., 2009)1. This classification task as-

sumes there is a foreground object which is surrounded

by a limited background region, so the input is similar

to one of the red boxes of the bottom right image in

1 The first author remembers that in the mid 1990s and
early 2000s the term “neural network” in the title of a sub-
mission to a computer vision conference was sadly a good pre-
dictor for rejection and recalls sympathizing with researchers
who were pursuing such unfashionable ideas.

Input Boundaries

Surface Normals Saliency

Semantic Segmentation Semantic Boundaries

Human Parts Detection

Fig. 1 A wide variety of vision tasks can be performed by
Deep Nets. These include: boundary detection, semantic seg-
mentation, semantic boundaries, surface normals, saliency,
human parts, and object detection. Figure taken from Kokki-
nos (2017), which illustrated one model for multi-task learn-
ing.

Figure 1. AlexNet’s success stimulated the vision com-

munity leading to a variety of Deep Net architectures

with increasingly better performance on object classifi-

cation, first designed by human experts (Simonyan and

Zisserman, 2015; He et al., 2016), then assisted by ma-

chines (Zoph and Le, 2017; Liu et al., 2018). We will

elaborate on the latter approach — known as Neural

Architecture Search — in Section 6.3.

Deep Nets were also rapidly adapted to other visual

tasks such as object detection, where the image con-

tains one or more objects and the background is much

larger, e.g., the PASCAL challenge (Everingham et al.,

2010). For this task, Deep Nets were augmented by an

initial stage which made proposals for possible posi-
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tions and sizes of the objects and then applied Deep

Nets to classify the proposals (Girshick et al., 2014)

(current methods train the proposals and objects to-

gether in what is called “end-to-end”). These meth-

ods outperformed the previous best methods, the De-

formable Part Models (Felzenszwalb et al., 2010), for

the PASCAL object detection challenge (PASCAL was

the main object detection and classification challenge

before ImageNet). Other Deep Net architectures also

gave enormous performance jumps in other classic tasks

like edge detection (Xie and Tu, 2015), semantic seg-

mentation (Long et al., 2015; Chen et al., 2018), occlu-

sion detection (Wang and Yuille, 2016) (edge detection

with border-ownership), symmetry axis detection (Shen

et al., 2017a). Major increases also happened for hu-

man joint detection (Chen and Yuille, 2014, 2015), hu-

man part segmentation (Xia et al., 2016), binocular

stereo (Zbontar and LeCun, 2015; Mayer et al., 2016),

3D depth estimation from single images (Eigen et al.,

2014), and scene classification (Zhou et al., 2014). Sev-

eral of these tasks are illustrated in Figure 1.

But although Deep Nets are very effective, almost

always outperforming alternative techniques when eval-

uated on benchmark datasets, they are not general pur-

pose and their successes come with the following three

restrictions.

Firstly, like almost all machine learning algorithms

Deep Nets are designed for specific visual tasks. Most

are designed for single tasks and a Deep Net designed

for one task will not be well-suited for another. For ex-

ample, a Deep Net designed for object classification on

ImageNet cannot perform human parsing (i.e. the de-

tection of human joints) on the Leeds Sports Dataset
(LSD). There are, however, some exceptions and trans-

fer learning sometimes makes it possible to adapt Deep

Nets trained on one task to a closely related task pro-

vided annotated data is available for that task (see Sec-

tion 6.1). Intuitively this happens because the features

learned by the Deep Net captures image structures that

are useful for both tasks. In addition, researchers have

recently developed Deep Nets which can perform mul-

tiple tasks. UberNet (Kokkinos, 2017) is an example

which also gives an introduction to the literature. But,

in general, there has been a growing zoo of different

Deep Net architectures designed for specific tasks which

include cascades of networks and supervision at several

different levels of the network although the recent intro-

duction of Neural Architecture Search, see Section 6.3,

offers the promise of a more principled way of exploring

this zoo and perhaps even discovering universal Deep

Net features.

Secondly, Deep Nets which perform well on bench-

mark datasets may fail badly on real world images out-

Fig. 2 Figure taken from Qiu and Yuille (2016). Unre-
alCV allows vision researchers to easily manipulate synthetic
scenes, e.g. by changing the viewpoint of the sofa. We found
that the Average Precision (AP) of Faster-RCNN (Ren et al.,
2015) detection of the sofa varies from 0.1 to 1.0, showing ex-
treme sensitivity to viewpoint. This is perhaps because the
biases in the training cause Faster-RCNN to favor specific
viewpoints.

side the dataset. A Deep Net is only as good as the

dataset it has been evaluated on (and the performance

measures used). This is because the set of real world im-

ages is infinitely large and so it is hard for any dataset,

no matter how big, to be representative of the com-

plexity of the real world. This is an important issue

which we will return to in Section 7. For now, we sim-

ply remark that all datasets have biases. These biases

were particularly blatant in the early vision datasets

and researchers rapidly learned to take advantage of

them for example by exploiting the background con-

text (e.g., detecting fish in Caltech101 was easy because

they were the only objects whose backgrounds were wa-

ter). Comparative studies showed that methods which

performed well on some datasets often failed to gener-

alize to others (Torralba and Efros, 2011). These prob-

lems are reduced, but still remain, despite the use of big

datasets and Deep Nets. For example, background con-

text remains problematic even for ImageNet as shown

by work where the target object is masked out but can

be predicted with reasonable accuracy from the con-

text (Zhu et al., 2017). Biases also occur if the dataset

contain objects from limited viewing conditions, e.g.,

as shown in Figure 2, a Deep Net trained to detect so-

fas on ImageNet can fail to detect them if shown from

viewpoints which were underrepresented in the train-

ing dataset. In particular, Deep Nets are biased against

“rare events” which occur infrequently in the datasets.

But in real world applications, these biases are partic-

ularly problematic since they may correspond to sit-

uations where failures of a vision system can lead to

terrible consequences, e.g., datasets used to train au-

tonomous vehicles almost never contain babies sitting in

the road. Similarly, datasets may under-represent (and
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certainly fail to annotate) the hazardous factors which

are known to cause algorithm to fail, such as specular-

ity for binocular stereo. We will return to this example

in Section 6.4.

Thirdly, almost all Deep Nets require annotated data

for training and testing. This has the effect of bias-

ing vision researchers to work on visual tasks for which

annotation is easy instead of on problems which are

important. For example, annotation for object detec-

tion merely requires specifying a tight bounding box

around an object which is fairly straightforward to do.

But for other vision tasks, such as detecting the joint of

a human of per-pixel annotation of objects, annotation

is much harder and for some tasks such as estimating

3D depth it is almost impossible. There are methods

which reduce the need for supervision as discussed in

Section 6.1, and there is also the possibility of using

synthetic stimuli (generated by computer graphics en-

gines) which enables groundtruth to be available for all

visual tasks. But realistic synthetic stimuli are limited

and so the computer vision community is only gradu-

ally, and somewhat reluctantly, starting to use it.

In summary, Deep Nets are a set of tools which are

constantly being refined and developed according to the

needs of specific visual tasks. The greatest successes of

Deep Nets have relied heavily on fully supervised data,

though there are growing advances using less super-

vision which we will discuss in Section 6. Their per-

formance can fail to generalize to images outside the

dataset they have been trained on and, as we will dis-

cuss in Section 7, this is particularly problematic due

to the infinite complexity of real world images.

4 Towards Understanding Deep Nets

It is difficult to characterize what Deep Nets can do

and to understanding their inner workings. Theoretical

results show that multi-layer perceptrons, and hence

Deep Nets, can represent any input output function

provided there are a sufficient number of hidden units

(Cybenko, 1989; Hornik et al., 1989). But, as the first

author can testify from personal experience (Xu et al.,

1994), theoretical results which hold in the asymptotic

limit are of limited utility. Much more valuable would

be results which hold for limited numbers of hidden

units and limited training data, but it is hard to see

what meaningful theoretical results could be obtained

for systems as complicated as Deep Nets.

At a more intuitive level it seems possible to get

some rough understanding of Deep Nets at least when

applied to visual tasks. The hierarchical structure of

Deep Nets is similar to classical models of the visual cor-

tex such as the NeoCognition (Fukushima and Miyake,

1982) and HMax (Riesenhuber and Poggio, 1999) and

captures many of the intuitions which motivated these

models. Deep Nets contain feature representations where

those at lower levels have receptive fields of limited

sizes and which are sensitive to the precise positions

of patterns. But as we ascend the hierarchy the recep-

tive fields become larger and more sensitive to specific

patterns, while being less concerned about their exact

locations.

This can be partially understood by studying the

activities of the internal filters/features of the convo-

lutional levels of Deep Nets (Zeiler and Fergus, 2014;

Yosinski et al., 2015). In particular, if Deep Nets are

trained for scene classification then some convolutional

layer filters roughly correspond to objects which ap-

pear frequently in the scene, while if the Deep Nets are

trained for object detection, then some features roughly

correspond to parts of the objects (Zhou et al., 2015).

Detailed studies of feature properties for a restricted

class of objects (e.g., vehicles) and with fixed object

scales show that clusters of feature responses are often

interpretable and correspond to subparts of the objects

(Wang et al., 2015).2 But we acknowledge that while

these studies are encouraging they remain mostly im-

pressionistic and lack the precision of true understand-

ing (e.g., these studies have not yet enabled researchers

to learn models of objects and object-parts in an unsu-

pervised manner).

This suggests the following rough conceptual pic-

ture of Deep Nets. The convolutional levels represent

the manifold of intensity patterns at different levels

of abstraction. The lowest levels represent local image

patterns while the high levels represent larger patterns
which are invariant to the details of the intensity pat-

terns. From a related perspective, the weight vectors

represent a dictionary of templates of image patterns.

The final “decision layers” of the Deep Net are usually

harder to interpret but it is plausible that they make de-

cisions based on the templates represented by the lower

layers.3 This “dictionary of templates” interpretation

of Deep Nets suggests they are very efficient to learn

and represent an enormous variety of image patterns,

and interpolate between them, but cannot extrapolate

much beyond the patterns they have seen in their train-

2 In addition to visualization, training a small neural net-
work (also known as readout functions) on top of deep fea-
tures is another popular technique of assessing how much
they encode some particular properties, which is now widely
adopted in the self-supervised learning literature (Noroozi
and Favaro, 2016; Zhang et al., 2016).

3 Admittedly in ResNets (He et al., 2016), there is only
one “decision layer”, and the analogy to “template matching”
also weakens at higher layers due to presence of the residual
connection.
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ing dataset. Other studies suggest that Deep Nets are

less effective at modeling visual properties which are

specified purely by geometry, particularly if the input

consists of binary valued patterns corresponding to the

presence or absence of boundary edges. It is an open

issue whether Deep Nets can learn features that “fac-

torize” different visual properties which, as we will ar-

gue later in Section 7, will ultimately be necessary for

dealing with the full complexity of real images.

5 Deep Nets and Biological Vision

Deep Nets have much to offer for studying biological

vision systems and, in particular, disciplines like cogni-

tive science, neuroscience and psychology which aim at

understanding the mind and the brain. They can help

develop and test computational theories by exploiting

the availability of big data while raising the possibil-

ity of understanding the brain by relating the artificial

neurons in Deep Nets to real neurons in the brain. In

turn, studies of biological vision show that human in-

fants acquire visual abilities in ways that are very dif-

ferent from current machine learning algorithms, which

may suggest alternative learning strategies. In addition,

real biological neurons and neural circuits are very dif-

ferent from those in artificial neural networks, which

suggests new neural architectures to explore.

5.1 Exploiting Big Data

The use of Deep Nets, and other machine learning tech-

niques, can help develop theories of mind and brain

which exploit big data. This can be done in roughly

three ways. Firstly, Deep Nets can motivate biological

vision researchers to extend their theories beyond sim-

plified stimuli and deal with the enormous complexity

of real world images. Secondly, they can be used to

partially learn the knowledge about the visual world

that humans and other animals obtain through devel-

opment and experience. Thirdly, they enable theories

to be tested on complex stimuli and compared to al-

ternative theories. We will now address these issues in

turn.

Historically, studies of biological visual systems have

largely relied on simple synthesized stimuli, such as

Julesz random dot stereograms (Julesz, 1971), or si-

nusoidal gratings, or Gabor functions: see (Arbib and

Bonaiuto, 2016, Chapter 12) for more background on

these examples. These studies have led to many impor-

tant findings and were historically necessary because

the complexity of natural image stimuli means that it

is extremely hard to perform controlled scientific ex-

periments by systematically varying the experimental

parameters. This also follows the well established sci-

entific strategy of divide and conquer which aims at un-

derstanding by breaking down complex phenomena into

more easily understandable chunks. But studying vision

on simplified stimuli has limitations which Deep Nets

and big data can help address. As researchers in com-

puter vision discovered in the 1980s, findings on sim-

plified synthetic stimuli such as blocks world (Guzmán,

1968) — though sometimes providing motivations and

good starting points — typically required enormous

modifications before they could be extended to real-

istic stimuli if they could be extended at all. Computer

vision researchers had to leave their comfort zone of

synthetic stimuli and address the fundamental chal-

lenge of vision: namely how visual systems deal with

the complexity and ambiguity of real world images and

achieve the superpower (Changizi, 2010) of converting

the light rays that enter the eye, or a camera, into

an interpretation (both geometric and semantic) of the

three-dimensional physical world. Driven by the need

to address these issues, computer vision researchers de-

veloped a large set of mathematical and computational

techniques and increasingly realized the importance of

learning theories from data using tools like Deep Nets,

which required large annotated datasets. The same tech-

niques can be directly applied to studying biological

vision by predicting experimental responses to visual

stimuli, e.g., human performance in behavioral experi-

ments, the responses of neurons, or fMRI activity.

Big data, and learning methods for mining the data,

are particularly important for vision because, as lead-

ing vision scientists like Gregory (Gregory, 1973), Gib-

son (Gibson, 1986) and Marr (Marr, 1982) have argued,

visual systems require knowledge of the world in the

form of natural and ecological constraints. In Gregory’s

words “perception is not just a passive acceptance of

stimuli, but an active process involving memory and

other internal processes”. In other words, the visual

systems of humans, and other animals, exploit a large

amount of knowledge which has been acquired through

development and experience (Arterberry and Kellman,

2016). Big data methods, like Deep Nets, gives a sur-

rogate way for vision scientists to partially learn this

knowledge by studying properties of real world images.

Finally, the use of big datasets are also very impor-

tant for testing visual theories because they enabled

detailed comparisons with alternative theories. They

make it easy to reject “toy theories” that exploit the

biases inherent in small datasets and simplified stimuli.

In summary, the use of Deep Nets and big data enable

biological vision researchers to develop and test theories
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that can work in realistic visual domains and address

the fundamental challenge of vision.

5.2 Real Neurons and Neural Circuits

From the neuroscience perspective, Deep Nets have been

used to predict brain activity, such as fMRI and other

non-invasive measurements, and there are a growing

number of examples (Cichy et al., 2016; Wen et al.,

2017). They have also been applied to predicting neu-

ral responses as measured by electrophysiology such as

predicting the response of neurons in the ventral stream

(Yamins et al., 2014). These are examples where Deep

Nets’ ability to learn from data and to deal with the

complexity of real stimuli really pays off. But in terms

of understanding the neuroscience of the primate ven-

tral stream, this is best thought of as a starting point.

The ventral stream of primates is very complex and

there is evidence that it estimates the three-dimensional

structure of objects and parts (Yamane et al., 2008),

possibly relating to the classic theory of object recogni-

tion by component (Biederman, 1987). More generally,

the primate visual systems must perform all the visual

tasks listed in Section 3, namely edge detection, binocu-

lar stereo, semantic segmentation, object classification,

scene classification, and 3D depth estimation. The vi-

sion community has developed a range of different Deep

Nets for these tasks so it is extremely unlikely, for ex-

ample, that a Deep Net trained for object classification

on ImageNet would be able to account for the richness

of the primate visual systems though, as discussed ear-

lier, the low-level features may be similar for networks

which perform different visual tasks.

It should also be emphasized that while Deep Nets

perform computations bottom-up in a feedforward man-

ner there is considerable evidence of top-down process-

ing in the brain (Lee and Mumford, 2003), particularly

driven by top-down attention (Gregoriou et al., 2014).

Researchers have also identified cortical circuits (Mc-

Manus et al., 2011) which implement spatial interac-

tions (though possibly in a bottom-up and top-down

manner). These types of phenomena require other fami-

lies of mathematical models, perhaps the compositional

models described in Section 7.

But, more fundamentally, it must be acknowledged

that there are big differences between the artificial neu-

rons used in Deep Nets and real neurons in the brain.

Artificial models of neurons are, at best, great simplifi-

cations of realistic neurons as shown by studies of real

neurons in vitro (Poirazi and Mel, 2001). Neuroscien-

tists have found that there are over one hundred dif-

ferent types of neurons, and there are enormous mor-

phological differences which may be exploited to enable

computation (Seung, 2012). There is also lack of de-

tailed understanding of neural circuits. For example,

the wiring diagram of C-elegans has been known for

over thirty years but there is still only limited under-

standing of how it functions as a neural circuit. As

stated by O. Hobert the wiring diagram “is like a road

map that tells you where cars can drive, but does not

tell you when or where cars are actually driving” (Jabr,

2012). Understanding real neurons and real neural cir-

cuits is a fascinating scientific challenge and exciting

new engineering techniques, e.g., (Boyden et al., 2005),

combined with the availability of huge datasets and the

tools to analyze them suggest that we may be close

to gaining insight into biological neural networks that

can be used to develop more advanced artificial neural

networks.

5.3 Cognitive Abilities: Deep Nets and Scientific

Understanding

Deep Nets, and other machine learning techniques, are

very helpful tools for modeling human visual cognition.

But the human visual system is, in general, much su-

perior to current state-of-the-art computer vision algo-

rithms and outperforms them in multiple dimensions.

Firstly, as discussed in the introduction, it performs a

multitude of visual tasks at the same time (e.g., de-

tect objects, parse them into parts, find their bound-

aries, and estimate their 3D configurations). Secondly,

humans can learn very efficiently from small numbers

of examples presumably by exploiting prior knowledge

and physical properties of the world. Thirdly, the hu-

man visual system is robust to viewpoint changes, to

novel contexts, to partial occlusion (including overlap-

ping objects as in CAPTCHAs as will be discussed in

Section 7), and to pixel-level adversarial image attacks.

Fourthly, humans can learn on one image domain, e.g.,

real images, line drawing, or visual arts, and effortlessly

transfer to new domains (often with no supervision).

In general, studies of cognitive science show that hu-

man visual systems can work at levels of abstraction

which current Deep Nets cannot match. This can be

illustrated by human’s ability at visual analogies: some

of which depend only on visual similarity but others de-

pend on the notion of parts and subparts, while others

include the idea of function. From another perspective,

it can also be argued that the goal of vision science

is to discover underlying principles. From this perspec-

tive, a model that explains phenomena in terms of an

uninterpretable Deep Net would not be very satisfying.

This is a debatable issue on which reasonable people

can disagree. But we suspect that progress in AI will
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also require interpretable models partly for the prag-

matic engineering principle, that this is necessary for

debugging and for performance and safety guarantees.

Studies also suggest that humans learn vision in

ways that are very different from current machine learn-

ing approaches. Human infants learn vision without di-

rect supervision. There is an enormous literature on

how infants learn vision and different visual abilities

arise at different times in a stereotyped sequence (Arter-

berry and Kellman, 2016). Infants learn by actively

interacting with and exploring the world and are not

merely passive acceptors of stimuli (Gregory, 1973). They

are more like tiny scientists who understand the world

by performing experiments and seeking causal explana-

tions for phenomena (Gopnik et al., 1999).

Some researchers have argued that Deep Nets have

superhuman powers. But these claims rarely survive

careful inspection and can be due to Deep Nets fitting

the biases in the datasets on which the studies are per-

formed, as discussed earlier (Zhu et al., 2017). The few

exceptions where Deep Nets can potentially outperform

humans are in situations for which evolution and expe-

rience put humans at a disadvantage. For example, AI

systems can outperform humans by recognizing hun-

dreds of millions of faces provided they are seen from

front-on under reasonable lighting conditions and with

limited occlusion, but until recently most humans never

saw more than a few thousand people in their whole

lifetime. There are, however, serious concerns that the

results of these AI systems can be affected by dataset

bias causing problems for some ethnic minorities (see

Section 8). It is also possible that AI systems could per-

form better than the average radiologists when reading

computer tomography (CT) images, because even the

most expert radiologists have only seen a fairly small

number of CT scans and AI systems can directly access

the three-dimensional data in CT scans, while radiol-

ogists can only view two-dimensional slices. In each of

these cases, humans are at a disadvantage because they

do not have access to, and hence cannot exploit, the

enormous amounts of annotated big data which enable

Deep Nets to do so well on these tasks. It should be

mentioned that the human visual system suffers from

visual illusions, but these are often for impoverished

stimuli where there are several possible interpretations

and humans often appear to be performing a sensible

strategy.4 Other examples where humans make errors

can be considered as accidental alignments, for example

a woman standing on a beach towel appears to be on

a flying carpet because of a shadow that appears to be

cast by the towel but is really cast by a flagpole out-

side the image (Arbib and Bonaiuto, 2016, Chapter 12).

4 https://michaelbach.de/ot/

There are other aspects of the human visual system

such as change blindness (Rensink et al., 1997) and fail-

ure to see a gorilla (Simons and Chabris, 1999) which

computer vision systems would not want to mimic and

should be able to avoid.

Recent work (Firestone, 2020) proposes studying

the differences between human and machine percep-

tion using Chomsky’s distinction between performance

and competence (Chomsky, 2014). Are comparisons be-

tween Deep Nets and humans fair and do they take into

account the different underlying capabilities of human

and machine computational resources? Can we distin-

guish between visual tasks that humans can do and

deep networks are incapable of without taking the com-

petence versus performance distinction into account?

There may be certain tasks that deep networks are fun-

damentally unable to do, similar to those tasks which

distinguish human cognitive abilities from those of other

animals (Penn et al., 2008), but can we identify them

without thinking carefully about these issues? Perhaps

deep networks trained with enough annotations, bet-

ter loss functions, and more data would be sufficient

to overcome some, or perhaps even all, of their current

limitations with respect to human vision? Our opin-

ion is that this is unlikely, without requiring modifi-

cations to the algorithms which are so significant that

they should probably be renamed, but we cannot say

for sure. Nevertheless (Firestone, 2020) quotes exam-

ples showing there are a lot of similarities between deep

networks and humans, e.g., despite deep network’s vul-

nerability to adversarial attacks it can be shown that

the “human subjects correctly anticipated the machines

preferred label over relevant foils” (Zhou and Firestone,

2019).

From the perspective of the study of human percep-

tion it is, however, not surprising that there are situ-

ations where machines can outperform humans. Ideal

observer theory, see Geisler (2011); Tjan et al. (1995);

Liu et al. (1995), is a classical perceptual science tech-

nique (Green and Swets, 1966) which compares per-

formance of human observers against an ideal observer

for specific visual tasks. The ideal observer is assumed

to know the probability models that generate the data

and hence is able to make the optimal bayesian pre-

diction. Not surprisingly, humans generally do much

worse than the ideal observers, sometimes by orders

of magnitude. For example, in a study of motion per-

ception, Barlow and Tripathy (1997) showed that hu-

man performance was badly degraded compared to an

ideal observer model where approximations were made

to simply computation. In follow up work, Lu and Yuille

(2005) showed that if the true ideal observer was cal-

culated then it outperformed human observers by or-
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ders of magnitude not only on the original experiments

reported in Barlow and Tripathy (1997) but also on

additional related experiments. Lu and Yuille (2005)

also showed that human performance was much better

predicted by a generic motion model which, unlike an

ideal observer, had no knowledge of the experimental

stimuli. In general, ideal observer analysis has always

focused on highly constrained tasks where the genera-

tive process is narrowly specified so that the optimal

bayesian prediction can be found by the ideal observer,

and the human observer has the same well-defined task.

But the task does not necessarily match what humans

are good at doing. Perhaps, more generally, both deep

nets and ideal observers can do better than humans not

only because they can exploit properties of the stimulus

humans cannot (because the stimuli are a subset of the

much bigger set of stimuli that can occur in the real

world) but also because they are doing a task that may

have low priority for humans. A computer vision app

can identify the hundreds of plants in the first author’s

garden much better than the first author can, but a

plant expert can surely outperform it.

In summary, Deep Nets, and other techniques which

exploit big data, are a tool that mind and brain re-

searchers should know how to use and not misuse. At

present, Deep Nets fail to capture some of the most

interesting phenomena such as human’s ability to per-

form abstractions and perform analogical reasoning (al-

though Deep Nets might be useful as building blocks to

construct such a theory). Nevertheless a closer relation-

ship between biological and artificial models of vision

would be beneficial to both disciplines. Researchers in

AI have developed a large set of technical tools, like
Deep Nets, which can allow their models to be applied

to the complexity of natural images and tested under

rigorous realistic conditions. Vision scientists can chal-

lenge computer vision researchers to develop algorithms

which can perform as well as, or better than humans, in

challenging situations while using orders of magnitude

less power than current computers.

6 The Frontiers and Challenges

This section describes some of the current frontiers and

challenges of Deep Nets and the attempts to address

them. Some of these challenges are gradually being over-

come while others, such the sensitivity to non-local at-

tacks, may require more fundamental changes as we

speculate in Section 7.

6.1 Relaxing the Need for Full Supervision

A disadvantage of Deep Nets is that they typically need

a very large amount of annotated training data, which

restricts their use to situations where big data is avail-

able. But this is not always the case. In particular,

transfer learning shows that the features of Deep Nets

learned on annotated datasets for certain visual tasks

can sometimes be transferred to novel datasets and re-

lated tasks, thereby enabling learning with much less

data and sometimes with less supervision. For exam-

ple, as mentioned earlier, Deep Nets were first success-

ful for object classification on ImageNet but had pre-

viously failed on object detection on the smaller PAS-

CAL dataset. This was presumably because PASCAL

was not sufficiently large for training a Deep Net, while

ImageNet was almost two orders of magnitude larger

than PASCAL. But researchers quickly realized that it

was possible to train a Deep Net for object detection

and semantic segmentation on PASCAL by initializing

the weights of the Deep Net by the weights of a Deep

Net trained on ImageNet (Girshick et al., 2014; Long

et al., 2015; Chen et al., 2018). This also introduced a

mechanism for generating proposals, see Figure 1 (bot-

tom right). It wasn’t until a few years later when re-

searchers developed specialized architectures to train

on PASCAL without the need for pre-training (Jégou

et al., 2017; Shen et al., 2017b).

This ability to transfer Deep Net knowledge learned

on another domain relates intuitively to the way chil-

dren learn. A child initially learns rather slowly com-

pared to other young animals but at critical periods

the child’s learning accelerates very rapidly (Smith and
Gasser, 2005). From the “dictionary of templates” per-

spective, this could happen because after a child has

learned to recognize enough objects he/she may have

enough building blocks (i.e. deep network filters) to be

able to represent new objects in terms of a dictionary of

existing templates. If so, only a few examples of the new

object may be needed in order to do few-shot learning.

Few-shot learning of novel object categories has been

shown for Deep Nets provided they have first been trained

on a large set of object categories (Mao et al., 2015;

Vinyals et al., 2016; Qiao et al., 2018). Another strategy

is to train a Deep Net (technically a Siamese network)

to learn similarity on the set of object categories, hence

obtaining a similarity measure for the new objects. For

example, Lin et al. (2017) trained a Siamese network to

learn similarity for objects in ShapeNet (Chang et al.,

2015) and then this similarity measure was used to clus-

ter objects in the Tufa dataset (Salakhutdinov et al.,

2012). Other few-shot learning tasks can also be done
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by using features from Deep Nets trained for some other

tasks as ways to model the visual patterns of objects.

More recently, there has been work on unsupervised

learning which shows that optical flow and structure

from motion can be learned without requiring detailed

supervision but only an energy function model (Ren

et al., 2017; Zhou et al., 2017). Like many neural nets in

the third wave some of the ideas can be found in obscure

papers from the second wave (Smirnakis and Yuille,

1995). In some cases, this can even be bootstrapped

to learning depth from single images. Other forms of

unsupervised learning show that Deep Net features can

be learned by tracking an object over time (Wang and

Gupta, 2015), or by distinguishing between scrambled

and unscrambled images (Doersch et al., 2015; Noroozi

and Favaro, 2016), or by contrastive learning which dis-

tinguishes between parts or views of the same image and

those of a different image (Wu et al., 2018; He et al.,

2019). Recently this last line of research has received

considerable attention in the computer vision commu-

nity.

Other studies show that Deep Nets can exploit large

numbers of unsupervised, or weakly supervised, data

provided they have sufficient annotated data to start

with. For example, to train object detection using im-

ages where only the names of the objects in the im-

age are known but their locations and sizes are un-

known. This is known as weakly supervised learning

and it can be treated as missing/hidden data problem

which can be addressed by methods such as Multiple

Instance Learning (MIL) or Expectation-Maximization

(EM). Performance of these types of methods is often

improved by using a small amount of fully supervised

training data which helps the EM or MIL algorithms

converge to good solutions, e.g., see Papandreou et al.

(2015).

6.2 Defending Against Adversarial Examples

Another limitation of Deep Nets comes from studies

showing they can be successfully attacked by imper-

ceptible modifications of the images which neverthe-

less cause the Deep Nets to make major mistakes for

object classification (Szegedy et al., 2014), object de-

tection, and semantic segmentation (Xie et al., 2017)

(see Figure 3 and Figure 4). This problem partly arises

because the datasets are finite and contain only an in-

finitesimal fraction of all possible images. Hence there

are infinitely many images arbitrarily close to the train-

ing images and so there is a reasonable chance that the

Deep Net will misclassify some of them. Researchers

have shown that they can find such images either by

white box attacks, where the details of the Deep Net

king penguin adversarial perturbation chihuahua

Fig. 3 Figure taken from Xie et al. (2018). A deep network
can correctly classify the left image as king penguin. The mid-
dle image is the adversarial noise magnified by 10 and shifted
by 128, and on the right is the adversarial example misclas-
sified as chihuahua.

Fig. 4 Figure taken from Xie et al. (2017). The top row
is the input (adversarial perturbation already added) to the
segmentation network, and the bottom row is the output. The
red, blue and black regions are predicted as airplane, bus and
background, respectively.

are known, or by black box attacks, when they are not.

But there are now strategies which defend against these

attacks. One idea is to introduce small random pertur-

bations into the images (Xie et al., 2018), exploiting

the assumption that the “attack images” are very un-

stable so small random perturbation will defend against

them. Admittedly, Athalye et al. (2018); Uesato et al.

(2018) have shown that defenses of this nature can be

circumvented if the attacker is aware that such defenses

might be present. Another strategy is to treat these “at-

tack images” as extra training data, known as “adver-

sarial training” (Goodfellow et al., 2015; Madry et al.,

2017). This studies show that adversarial images should

be considered a “feature not a bug” because they act

as a sophisticated form of data augmentation which

can result in more robust Deep Net features which are

also more interpretable (Tsipras et al., 2019). It should

also be acknowledged that adversarial attacks can be

mounted against any vision algorithm and it would be

much easier to successfully attack most other vision al-

gorithms (Biggio et al., 2013).
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Fig. 5 Figure taken from Wang et al. (2018). Adding occluders cause deep network to fail. Left: The occluding motorbike
turns a monkey into a human. Center: The occluding bicycle turns a monkey into a human and the jungle turns the bicycle
handle into a bird. Right: The occluding guitar turns the monkey into a human and the jungle turns the guitar into a bird.

6.3 Finding Better Architectures

We are now nearly a decade into the third wave of neu-

ral network approaches. Looking back, the most im-

portant ideas that bring nontrivial improvements to

neural network performances almost exclusively belong

to the “architecture” category, and examples include

AlexNet (Krizhevsky et al., 2012), Batch Normaliza-

tion (Ioffe and Szegedy, 2015), residual connections (He

et al., 2016), self-attention (Vaswani et al., 2017), cap-

sules (Sabour et al., 2017) etc. Given this progression

history, it is certainly possible that a better neural ar-

chitecture can by itself overcome many of the current

limitations.

But what exactly is “architecture”, anyway? One

notable advantage of Deep Nets is that they free re-

searchers from feature engineering, a practice where re-

searchers are responsible for extracting features from

the input, and the model is (only) responsible for learn-
ing the mapping from the feature to the output. Deep

Nets learn layers of feature extractions automatically, so

humans can no longer inject their understanding of the

problem into the feature extraction process. Instead,

the “architecture” becomes how humans inject the in-

ductive bias, e.g., by using convolutional nets for im-

ages, and recurrent nets for sequence data.

But can Deep Nets learn the architecture as well,

by constantly self-improving and making adjustments?

This corresponds to an active field of research named

Neural Architecture Search. This problem is most nat-

urally solved by reinforcement learning (Zoph and Le,

2017) or evolutionary algorithms (Xie and Yuille, 2017),

but approximations are often needed to reduce the over-

all cost (Liu et al., 2018; Pham et al., 2018). In relation

to Section 6.1, there is also recent evidence (Liu et al.,

2020) that this process is insensitive to supervision. But

overall, we are yet to see truly revolutionary architec-

tures coming out of this process, and as a result, the

issues discussed in this paper are still very much rele-

vant.

6.4 Addressing Over-Sensitivity to Context

A more serious challenge to Deep Nets is their over-

sensitivity to context. Figure 5 shows the effect of pho-

toshopping a guitar into a picture of a monkey in the

jungle. This causes the Deep Net to misidentify the

monkey as a human and also misinterpret the guitar

as a bird, presumably because monkeys are less likely

than humans to carry a guitar and birds are more likely

than guitars to be in a jungle near a monkey (Wang

et al., 2018). Recent work gives many examples of the

over-sensitivity of Deep Nets to context, such as putting

an elephant in a room (Rosenfeld et al., 2018). Exper-

imental studies show that Deep Nets are less effective

than humans when performing object classification on

heavily occluded objects (Zhu et al., 2019; Kortylewski

et al., 2020b).5

This over-sensitivity to context can also be traced

back to the limited size of datasets. For any object only

a limited number of contexts will occur in the dataset

and so the Deep Net will be biased towards them. For

example, in early image captioning datasets it was ob-

served that giraffes only occurred with trees and so the

generated captions failed to mention giraffes in images

without trees even if they were the most dominant ob-

ject (Zitnick et al., 2016).

Observe that the limited size of datasets is a com-

mon theme when we consider the current limitations of

Deep Nets. Recall that we already mentioned how syn-

thetic data could be used, see Figure 2, to show that

5 This issue we are describing is in general related to how
Deep Nets can take unintended, “shortcut” solutions, for ex-
ample the chromatic aberration noticed in Doersch et al.
(2015), or the low level statistics and edge continuity no-
ticed in Noroozi and Favaro (2016). In this paper we highlight
“over-sensitivity to context” as the representative example,
for both familiarity and keeping the discussion contained.
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Non-Lambertian surfaces Textureless regions Transparency Disparity Jumps

Fig. 6 Hazardous factors for stereo vision, as identified in Zendel et al. (2015). These challenging scenarios may not occur in
real world datasets, and if they do they are not annotated, so relying on synthetic data is a promising alternative.

Deep Nets trained on ImageNet could not recognize ob-

jects from some viewpoints. An advantage of synthetic

data is that it enables us to generate, in principle, an

infinite amount of images and hence to systematically

explore the effect of varying factors like viewpoint and

material properties, e.g., see Qiu and Yuille (2016); Al-

corn et al. (2019). Similarly synthetic data can be used

to systematically vary hazardous factors for stereo vi-

sion (those factors like specularity which are known to

cause stereo algorithms to fail; see Figure 6) enabling

researchers to characterize the sensitivity of stereo al-

gorithms to these factors (Zhang et al., 2018). Hence

synthetic datasets offer the possibility of generating as

much data as is required to systematically study the

sensitivity of Deep Nets to the nuisance factors, like

viewpoint and radiosity, which arrive in reality (pro-

vided the synthetic datasets are realistic enough to ac-

curately represent real world images).

The difficulty of capturing the enormous varieties of

context, as well as the need to explore the large range of

nuisance factors, is highly problematic for data driven

methods like Deep Nets. It seems that ensuring that

the networks can deal with all these issues will require

datasets that are arbitrarily big, which raises enormous

challenges for both training and testing datasets. We

will discuss these issues next.

7 The Combinatorial Explosion: When Big

Datasets Are Not Enough

Deep Nets are trained and evaluated on large datasets

which are intended to be representative of the real world.

But, as discussed earlier, datasets are biased and Deep

Nets can fail to generalize to images outside the datasets

they were trained on, can make mistakes on rare events

that occur rarely within the datasets (but which may

have disastrous consequences, such as running over a

baby or failure to detect a cancerous tumor), and are

also sensitive to adversarial attacks and changes in con-

text. None of these problems are necessarily deal-breakers

for the success of Deep Nets and they can certainly be

overcome for certain visual domains and tasks. But we

argue that these are early warning signs of a problem

that will arise as vision researchers attempt to use Deep

Nets to address increasingly complex visual tasks in

unconstrained domains. Namely, that in order to deal

with the combinatorial complexity of real world images

the datasets would have to become exponentially large,

which is clearly impractical. This forces us to address

two new problems: (I) How can we efficiently test these

algorithms to ensure that they work in these enormous

datasets if we can only test them on a finite subset? (II)

How can we train algorithms on finite sized datasets

so that they can perform well on the truly enormous

datasets required to capture the combinatorial com-

plexity of the real world?

7.1 The Combinatorial Explosion

We now take a step backward and reconsider the prob-
lem of vision and the underlying assumptions of our

current paradigm for evaluating performance of vision

algorithms. As mentioned earlier, in the late 1990s and

early 2000s the computer vision community converged

on a paradigm where: fixed datasets are collected to ap-

proximate the data (and label) distribution; algorithms

are trained and tested on this same distribution. This

had many advantages since, for the first time it was

possible to evaluate and compare the performance of

different algorithms. This paradigm provided a seem-

ingly objective method for evaluating algorithms and to

benchmark the progress of the vision community. It also

had rigorous mathematical foundations, such as Prob-

ably Approximately Correct (PAC) theory (also known

as VC theory) but since computer vision is largely a

pragmatic engineering field it is doubtful how much vi-

sion researchers are influenced by this theory (or have

studied the underlying theorems and the assumptions

that they are based on). We argue that it is time to

rethink this paradigm. The basic assumptions are that



Deep Nets: What have they ever done for Vision? 13

Camera Pose(4):
azimuth
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tilt
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Lighting(4):
# of light sources
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Fig. 7 An illustration of combinatorial explosion. We consider the (already simplified) rendering process of one object. It
involves choosing the camera pose, lighting condition, object texture, etc: a total of (merely) 13 parameters. If we allow 1,000
different values for each parameter, then we obtain a total of 1039 different images. This is way beyond the size of any dataset,
as well as the number of images humans see per year.

the datasets contain representative, and randomly dis-

tributed, samples from the underlying problem domain.

For computer vision, due to the infinite space of im-

ages, the different image domains, and most fundamen-

tally combinatorial complexity of visual scenes, these

assumptions may be too ideal.

So what do we mean by combinatorial complexity?

We argue that the most fundamental challenge of vision

is that visual scenes, and hence images, can be con-

structed in a combinatorial number of different ways.

It helps to consider this from the perspective of using

computer graphics to render the image of a single ob-

ject. It is straightforward (see Figure 7) to specify a

computer program with 13 parameters that can render

images of a single object from different viewpoints, un-

der different illuminations, and in a limited number of

background scenes. If we allow 1,000 different values for

each parameter we obtain a total of 1039 different im-

ages, 1030 times larger than any existing dataset. But

this is for a single object. Imagine constructing a vi-

sual scene by selecting objects from an object dictionary

and placing them in different configurations. This can

clearly be done in an exponential number of ways. If we

take occlusion into account, we can even obtain combi-

natorial complexity for images of a single object since it

can be partially occluded in an exponential number of

ways. The situation becomes even worse if we consider

video sequences where objects can move and appear or

disappear.

An image corresponds to one combination out of a

combinatorial number of possibilities. Since computer

vision can be understood as inverse graphics, the out-

put space of computer vision problems is, therefore,

also combinatorially large. In practice though, differ-

ent visual tasks can be viewed as reducing and sim-

plifying this output space. For example, if we restrict

ourselves to object classification, the set of classes is

estimated at 20,000 which seems manageable. But for

many real world tasks we would have to detect object

parts, parse objects in their parts, estimate the 3D po-

sition of objects, and do this along the temporal dimen-

sion. This soon goes back to the combinatorially large

output space. The images in our benchmark datasets

(which should now seem very small) are like “random

seeds” that we throw into this space: it is clear that they

will only cover an extremely small fraction of “bins”.

This raises the issue of whether the datasets can

ever be large enough to be representative of the real

world domain on which the algorithms are ultimately

intended to run. We will ignore the obvious concerns

about dataset bias for the moment and consider the
case of a finite-sized unbiased dataset. As the “seeds”

are too sparse and the number of “covered bins” is too

small, it is easy for the model to latch on to acciden-

tal, spurious associations (Guu et al., 2017; Kaushik

et al., 2020) and settle on a decision boundary that is

different from ours (and sometimes considered a “short-

cut”). This could help explain the adversarial example

phenomenon, in that the number of training images is

too small with respect to the entire image space, so

that the majority of the volume (including the ε ball

around every training image) is unlabeled. As a result,

the decision boundary usually decides to “cut through”

this ε ball, resulting in adversarial examples. The min-

max formulation in adversarial training (Madry et al.,

2017) essentially attempts to enlarge the labeled exam-

ples from covering N points to covering N ε balls, now

with volume Nεd where d is the dimension of the image.

But limitations remain. Firstly, there is no guarantee

that the algorithm will find all the adversaries within

the ε ball. Secondly, this volume is still an infinitesimal
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fraction of the true space of images and hence results

on the dataset may not apply to the real world.

Dataset bias is, of course, a concern that has existed

ever since the first datasets were created. Images in the

datasets were typically drawn from photographs which

alone causes biases since photographers usually pose

their shots and align their cameras carefully.6 More

generally, however, the datasets often have biased con-

tent, because the world we live in has biased content!

To revisit an example earlier, early image captioning

datasets only contained giraffes next to trees (Zitnick

et al., 2016), because after all, giraffes are much more

likely to be near trees than airplanes. The tendency for

datasets to be biased can encourage the algorithms to

fit the dataset biases, for example by overfitting to the

background context, as illustrated in Lyu et al. (2019).

Although soccer is often played on a soccer field, there

are many situations where people are on a soccer field

but are not playing soccer. Conversely, as the first au-

thor can testify, soccer can be played in the street, in a

backgarden, on a beach, or even on a muddy island in

the middle of the Amazon rainforest.

Another concern regarding dataset bias is that typ-

ically datasets do not all try to capture the entire input

space. Instead, they often correspond to different do-

mains (subspaces) which may have very different prop-

erties and hence algorithms trained on on dataset may

perform badly on another. For example, the first two

datasets for edge detection, Sowerby7 and South Florida

(Bowyer et al., 1999), corresponded to images of the En-

glish countryside and indoor images in Florida. Recall

that the task of edge detection is to detect targets, e.g.,

the boundaries of objects and other salient edge struc-

tures, in the presence of background. Edge detection

was fairly simple for South Florida, because the back-

ground contained almost no texture and so classical

edge detectors like Canny (Canny, 1986) were very ef-

fective. On the other hand, the background in Sowerby

contained highly complex texture and so edge detection

was considerably harder. It was found (Konishi et al.,

1999, 2003) that learning-based methods were highly

effective on both datasets separately, but algorithms

trained on one dataset gave poor performance on the

other (interestingly Konishi et al. (2003) was able to

solve domain transfer for these two datasets because it

used a bayesian formulation instead of simply learning a

6 The first author remembers that when studying text de-
tection for the visually impaired we were so concerned about
dataset biases that we recruited blind subjects who would
walk the streets of San Francisco taking images automati-
cally (but found the main difference from regular images was
that there was a greater variety of angles).

7 Available from Sowerby Research Centre, British
Aerospace

classifier). More generally, we can extend the idea of do-

main transfer to include real images, computer graph-

ics images, line drawings, and clip art images. There

are algorithms which are able to transfer between these

domains (Mu et al., 2019) and, it should be noted, that

humans are extremely good at domain transfer.

7.2 Testing Models When Data Is Combinatorial

How can we evaluate the performance of visual algo-

rithms in light of the issues raised in the previous sec-

tion? The standard paradigm of training and testing on

a finite number of randomly drawn samples has made a

huge contribution to the subject and will still be useful

when used sensibly, but we argue that it is no longer suf-

ficient and needs to be replaced by other performance

measures that take into account the infinite space of

images and their combinatorial complexity. In this sec-

tion, we sketch a range of complementary strategies for

achieving this.

One strategy is to keep the same evaluation paradigm

but create a much larger set of benchmark challenges.

These challenges could be inspired by the abilities of

the human visual system which, as discussed earlier is

superior to current computer vision systems in many

respects. Firstly, it performs a multitude of visual tasks

at the same time (e.g., detect objects, parse them into

parts, find their boundaries, and estimate their 3D con-

figurations). Secondly, humans can learn very efficiently

from small numbers of examples presumably by ex-

ploiting prior knowledge and physical properties of the

world. Thirdly, the human visual system is robust to

viewpoint changes, to novel contexts, partial occlusion

(including overlapping objects as in CAPTCHAs), and

to pixel-level adversarial image attacks. Fourthly, hu-

mans can learn on one image domain, e.g., real im-

ages, line drawing, or visual arts, and effortlessly trans-

fer to new domains (often with no supervision). This

is already being pursued by, for example, requiring al-

gorithms to transfer between different domains (Ko-

rtylewski et al., 2020a) and to test on out-of-distribution

data (Xia et al., 2020), but there is much more to be

done.

Another strategy is to try to identify the types of

stimuli which are difficult for the algorithm and in-

clude performance measures which paid attention to

the hardest cases. This involves the notion of hard neg-

ative mining and error analysis. For example, for object

detection on PASCAL it was known that algorithms

like deformable part models (Felzenszwalb et al., 2010)

performed very well except on small objects (Hoiem

et al., 2012). It is well known that semantic segmen-

tation algorithms are rewarded based on the number
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of pixels they classify correctly so they are biased to-

wards detecting large regions and typically perform less

well on smaller regions. More recently work on face

detection can identify the most challenging cases and

develop algorithms that perform well on them (Zhang

et al., 2020). In some cases, the structure of the visual

task makes it possible to identify which types of stim-

uli would most challenge the algorithms. For example,

as mentioned earlier in Section 6.4, researchers have

isolated the hazardous factors which cause stereo algo-

rithms to fail which include specularities and texture-

less regions. In such cases it is possible to exploit com-

puter graphics to systematically vary these hazardous

factors to determine which algorithms are resistant to

them (Zhang et al., 2018). In general, if we under-

stand characteristics of the visual task we could design

datasets that target the difficult and challenging cases.

But this requires that the challenging cases are, in some

sense, low-dimensional so that they can be systemati-

cally explored.

But we argue that even more radical changes in eval-

uating performance will be needed to deal with combi-

natorial complexity and the infinite space of images. To

obtain computer vision systems that work reliably in

the real world we would need to evaluate performance

on a large range of tasks and over an infinite set of im-

ages. We also need to use alternative measures, such

as worst case, instead of relying on average case. This

makes sense if the goal is to develop visual algorithms

for self-driving cars, or diagnosing cancer in medical im-

ages, where failures of the algorithms can have major

consequences. Firstly, we generalize the notion of at-

tacks to emphasize the worst case. Secondly, we leverage

computer graphics to overcome the limitation of a fixed

dataset of limited image samples (or create additional

images at run time by generalizing adversarial methods

(Yang et al., 2020)). Thirdly, we adapt the test cases

based on the test history, which “personalizes” the test-

ing experience and improves sample efficiency (as differ-

ent models have different weaknesses). This Adversarial

Examiner approach is illustrated in Shu et al. (2020).

In other words, the images are systematically chosen

to probe for the weaknesses of the trained model. This

requires, of course, overcoming the challenging problem

of how to define strategies which efficiently search over

the huge space of images. In Shu et al. (2020) we used

reinforcement learning and Bayesian optimization, to

learn a policy for selecting the sequence of test images.

7.3 Methods for Overcoming Combinatorial

Complexity

What types of algorithms will be able to deal with

combinatorial complexity and perform well on the new

types of benchmark challenges that we describe in the

previous section?

It is possible that current Deep Nets, or advanced

variants of them, will be sufficient to deal with the

challenges. Perhaps some of the apparent limitations

of current Deep Nets are because they are smart at

taking shortcuts to exploit the limitations of the cur-

rent datasets and, if faced with harder challenges, they

would rise to the occasion? After all, Deep Nets are a

rapidly developing and innovating research field. And,

given their past successes, this would be a sensible strat-

egy to pursue. But we suspect that simply extending

current methods will not be enough. As our ultimate

goal is to match or surpass our own biological vision, it

is natural to get inspiration from studies of it. Humans

see at most roughly 109 images every year (assuming 30

images per second) which is big, but not combinatorial,

and humans certainly learn without detailed supervi-

sion. Instead they acquire visual skills over a period of

years in a stereotyped sequence where different skills

develop at different times (Arterberry and Kellman,

2016) and are not passive observers but instead inter-

act with the world behaving like “baby scientists” who

seek to understand the causal structure of the world

(Gopnik et al., 2004). Human learning appears to be

analogous to, but infinitely better than, classic AI sys-

tems which systematically build up knowledge represen-

tations about the world (Russell and Norvig, 2010) and

solve new problems by exploiting this knowledge, e.g.,

a human could learn the structure of a new car from

a brief glance because of previously acquired knowl-

edge about cars. In addition, humans can perform a

huge range of visual tasks and have other properties:

see Section 5.

What will computer vision systems need in order to

achieve these abilities? It has long been speculated that

they will need generative models which have the capa-

bility of synthesizing real world images from represen-

tations of the world and perform analysis by synthesis

(Grenander, 1993; Mumford, 1994; Tu et al., 2003; Zhu

and Mumford, 2006; Mumford and Desolneux, 2010).

This can be seen as mathematical instantiation of the

ideas expressed by Gregory (Gregory, 1973) and can be

given a Bayesian formulation in terms of priors and like-

lihood functions. These priors, which can be extended

to include knowledge about intuitive physics (Battaglia

et al., 2013) enable humans to imagine and predict.

Generative models moreover offer the potential to ad-
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Fig. 8 Figure taken from Yuille and Kersten (2006). From (a) to (b) to (c), an increasing level of variability and occlusion is
used, yet humans can still do inference and correctly interpret the image.

dress many of the challenges discussed earlier. The suc-

cess and maturity of computer graphics shows that we

now have the tools for synthesizing increasingly realistic

images from a representation of the three-dimensional

world. Computer vision, however, is faced with the much

harder task of inverse inference where, given an image,

we have to decide which is the most likely state of the

world. In view of the combinatorial complexity of visual

scenes this is an extremely challenging problem.

One attractive strategy is develop generative models

which are compositional. Compositionality is a general

principle which can be described poetically as “an em-

bodiment of faith that the world is knowable, that one

can tease things apart, comprehend them, and men-

tally recompose them at will”. The key assumption is

that structures are composed hierarchically from more

elementary substructures following a set of grammati-

cal rules. This suggests that the substructures and the

grammars can be learned from finite amounts of data
but will generalize to combinatorial situations. Compo-

sitional models require structured representations which

make explicit their structures and substructures which

enables them to do multiple tasks (e.g., detecting ob-

jects, object parts, and object boundaries) with the

same underlying representation (Chen et al., 2007). Com-

positional models offer the ability to extrapolate be-

yond data they have seen, to reason about the system,

intervene, do diagnostics, and to answer many differ-

ent questions based on the same underlying knowledge

structure (Pearl, 2009). To quote Stuart Geman “the

world is compositional or God exists”, since otherwise

it would seem necessary for God to handwire human

intelligence (Geman, 2007).

We can illustrate these ideas by some toy-world ex-

amples, shown in Figure 8, where images are created in

terms of basic vocabularies of elementary components

(these examples were developed in Yuille and Kersten

(2006)). The three panels show microworlds of increas-

ing complexity from left to right. For each microworld

there is a grammar which specifies the possible images

as constructed by compositions of the elementary com-

ponents. In the left panel the elementary components

are letters which do not overlap, and so interpreting the

image is easy. The center and right panels are generated

by more complicated grammars – letters of different

fonts, bars, and fragments which can heavily occlude

each other. Interpreting these images is much harder

and seems to require the notion that letters are com-

posed of elementary parts, that they can occur in a

variety of fonts, and the notion of “explaining away”

(to explain that parts of a letter are missing because

they have been occluded by another letter).

The third microworld in Figure 8 is an example of

a combinatorially large dataset since images are con-

structed by selecting objects from a dictionary and plac-

ing them at random while allowing for occlusion. This

microworld is essentially the same as CAPTCHAs which

can be used to distinguish between humans and robots.
Interestingly, work on CAPTCHAs (George et al., 2017)

show that compositional models which represent ob-

jects in terms of compositions of elementary tokens and

factorize geometry and appearances can perform well

on these types of datasets (note that this method was

applied only to text and digits and has not been ex-

tended to objects in natural images and has not been

tested on standard datasets). Their inference algorithm

involves bottom-up and top-down processing (Tu et al.,

2003) which enables the algorithm to “explain away”

missing parts of the letters and to impose “global con-

sistency” of the interpretation to remove ambiguities.

Intuitively, part detectors make bottom-up proposals

for letters which can be validated or rejected in the top-

down stage. By contrast, Deep Nets performed much

worse on these datasets. Presumably because, unlike

compositional models, they cannot capture the under-

lying generative structure of the domain and extrapo-

late outside their training dataset. Since the microworld

is combinatorially large, it will not be possible to train




