
Lesion Detection by Efficiently Bridging 3D
Context

Zhishuai Zhang1,Yuyin Zhou1,Wei Shen1,Elliot Fishman2,Alan Yuille1

1The Johns Hopkins University, Baltimore, MD 21218, USA
2The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA

Abstract. Lesion detection in CT (computed tomography) scan images
is an important yet challenging task due to the low contrast of soft tissues
and similar appearance between lesion and the background. Exploiting
3D context information has been studied extensively to improve detec-
tion accuracy. However, previous methods either use a 3D CNN which
usually requires a sliding window strategy to inference and only acts on
local patches; or simply concatenate feature maps of independent 2D
CNNs to obtain 3D context information, which is less effective to cap-
ture 3D knowledge. To address these issues, we design a hybrid detector
to combine benefits from both of the above methods. We propose to
build several light-weighted 3D CNNs as subnets to bridge 2D CNNs’
intermediate features, so that 2D CNNs are connected with each other
which interchange 3D context information while feed-forwarding. Com-
prehensive experiments in DeepLesion dataset show that our method can
combine 3D knowledge effectively and provide higher quality backbone
features. Our detector surpasses the current state-of-the-art by a large
margin with comparable speed and GPU memory consumption.

1 Introduction

Lesion detection is an essential task for clinical applications such as computer-
aided diagnosis. With the emergence of modern CNNs, object detection in 2D
natural images has been developed quickly and achieves promising performance [1,
5–7]. However, it is still unclear how to adapt these algorithms into CT scans
effectively. The main gap is how to efficiently involve 3D context information
into these detectors. This problem has attracted many research attentions [2, 4,
10], due to its importance for the success of lesion detection.

Current solutions come in two folds. One uses fully 3D connected CNNs,
which can directly exploit 3D knowledge, for detection and classification. How-
ever, due to GPU memory limit, it can only be performed on small patches in
a sliding-window fashion [4] or on small-patch candidates generated by a 2D
detector [2], leading to high time complexity. It is also unable to make use of
ImageNet pretraining, thus only achieves inferior lesion detection accuracy as
reported in [10]. To alleviate the issues of 3D CNNs, other studies are explor-
ing how to combine 2D CNN features from consecutive CT slices for classifi-
cation and regression, so as to better utilize the 3D context information. [10]
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followed R-FCN [1] which used a Region Proposal Network (RPN) to predict
suspicious regions and a Region Classification Network (RCN) to further clas-
sify and regress those suspicious regions. [10] proposed to concatenate backbone
feature maps from neighboring CT slices to feed into RCN, in order to gather
3D information in the RCN subnet. Under this pipeline, a backbone network
can take the whole CT scans as input which can be trained in an end-to-end
manner, from ImageNet pretrained weights. However, the backbone networks are
still independent 2D CNNs, and no 3D information can be aggregated until the
final backbone features are computed. Another problem is that the central CT
slice and the contextual CT slices share the same 2D CNN weights, which may
be less optimal since we expect to distill different and complementary knowledge
from those different slices.

We propose a hybrid detector combining advantages of fully 3D connected
CNN detectors (strong knowledge of 3D context) [2, 4] and 2D CNN concate-
nated detectors (efficiency and ability to use ImageNet pretrained weights) [10].
Similar to [10], we use 2D CNNs for CT slices at different axial locations as our
backbone. However, as discussed before, this is less optimal since these isolated
2D CNNs cannot extract and exploit 3D context information. To address this
problem, we propose light-weighted 3D CNN subnets named 3D Fusion Modules
(3DFMs) to bridge those 2D CNNs, allowing information flow from different
slices. These subnets connect the internal layers of 2D CNNs, so that each 2D
CNN can distill knowledge from its neighbor 2D CNNs, to exploit 3D informa-
tion and focus on different knowledge. The main difference between [10] and our
method is that in [10], the 3D context information is not exploited in the layers
before the RCN, and the RCN cannot fully utilize 3D context since the its input
features only have high-level semantics without low-level details, and the RCN
has a very shallow structure which is incapable of learning rich 3D informa-
tion; on the contrary, in our method, the 3D information is exploited gradually
throughout our backbone CNNs, and 3DFMs learn 3D information at low-level,
mid-level and high-level layers. Our design breaks the isolation among 2D CNNs,
and enables them to distill different knowledge from different input slices, thus
the backbone provides stronger features with richer 3D context encoded.

3DFMs introduce few parameters and small computation overhead, while
greatly improving the detection accuracy. Experiments on DeepLesion [11] show
our hybrid detector significantly improves the sensitivities at every false positive
(FP) rate and on every lesion type. With 27 CT scan slices as input, hybrid
detector improves the average sensitivities by 1.4 and the sensitivity at 1

8 FP
per image by 2.7. Our method surpasses [10] and achieves a new state-of-the-art.

2 Approach

2.1 Overview Pipeline of Our Detector

The backbone of our detector is shown in Figure 1. Following [10], to make use of
ImageNet pretrained weights, we combine 3 adjacent CT slices into a 3-channel
image like a natural image, to feed to VGG16 [9], which serves as the backbone
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Fig. 1: Backbone of our hybrid lesion detector. Different rows illustrate different 2D
CNNs for the corresponding images. The ground-truth boxes are labelled in the central
image (with red boundary) and other 3-channel images (with yellow boundary) are
served as 3D context. The central conv5 3 feature (marked in green) is used in RPN
and the fused feature (marked in blue) is used in RCN. Best view in color.
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Fig. 2: RPN (in the top row) and RCN
(in the bottom row) sub-networks.
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Fig. 3: 3D Fusion Module. K is 5 in this
example. See Subsection 2.2 for details.

2D CNN of our detector. When considering more 3D context, we combine context
slices into 3-channel images and feed them to different VGG16 branches. Each
VGG16 branch takes a 3-channel image as input, and generates a conv5 3 feature
map as output. The conv5 3 feature from the central slice (marked in green) is
used in the Region Proposal Network (RPN) to generate proposals, and the
concatenation of conv5 3 features from all slices (marked in blue) is used in the
Region Classification Network (RCN) to classify and regress proposals. However,
unlike [10], where 2D CNNs feed-forward isolatedly, we use a novel and efficient
3D Fusion Module (3DFM) to bridge internal features from different 2D CNNs
to build a hybrid backbone. The hybrid detector backbone can better exploit 3D
context and make different 2D CNNs to learn different patterns, while utilizing
ImageNet pretrained weights. Details of 3DFM are discussed in Subsection 2.2.

Given the backbone of our hybrid lesion detector, we follow [7] to employ an
RPN and an RCN to generate and classify proposals. As Figure 2 shows, we use
the conv5 3 feature of the central branch (marked in green) to generate propos-
als, and use ROIAlign [3] to generate features from the concatenated feature of
different branches (marked in blue), for each proposal. Finally, those features are
used to classify and regress the proposals, and generate lesion detection results.

2.2 3D Fusion Module

3D context has been shown to be extremely important to detect objects in CT
scan images [2, 4, 10]. However, existing methods to utilize 3D information are
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either memory expensive and only able to process small 3D patches, or inefficient
which naively concatenate features from different slices. In this paper, we propose
an efficient and computation cheap 3D Fusion Module (3DFM), as shown in
Figure 3, to combine 3D context information in the backbone 2D CNNs.

3DFM takes internal features (Ai 2 RC×H×W , C, H and W are the channel,
height and width of the feature map) from the backbone CNNs as inputs, as
shown in the first column in Figure 3. Given K input images, there will be
K intermediate features, and each of them is generated from a 3-channel CT
image as shown in Figure 1. We first concatenate them to build a 4D tensor
A 2 RK×C×H×W , and transpose it make the channel to be the first dimension
(B 2 RC×K×H×W ), as shown in the second column in Figure 3. A 3D convolution
is used to gather 3D context information to generate a 3D fused feature map
C 2 RC×K×H×W . The kernel size is 3�1�1 corresponding to the K, H and W
dimensions, so we are utilizing the context along the axial direction by convolving
across neighbor slices. We use 3� 1� 1 instead of 3� 3� 3 because the context
along the other two directions is already considered in the 2D convolutions in the
backbone CNN, and thus we only need to consider the axial direction to reduce
computation/memory overhead. Finally C is transposed backed to K�C�H�W
as D, and the sum of A and D (noted as E) is split to K feature maps with shape
C �H �W , which are used in the backbone 2D CNNs for future processing.

3DFM is flexible and can be inserted anywhere in the backbone CNNs to fuse
the 3D information. In our detector, we insert 3DFMs in a sparse manner: only at
the pool3 and conv4 3 layers in VGG16, as in Figure 1. These 3DFMs will com-
bine those independent 2D VGG16 branches into a sparsely bridged 3D CNN,
which will serve as the backbone CNN of our detector. Extensive experiments
show our design is light-weighted and takes very little computation/memory
overhead, while effectively exploiting 3D context knowledge and improving the
accuracy significantly.

3 Experiments

3.1 Implementation Details

Our hybrid detector is implemented with Tensorflow. We use VGG16 as our
backbone CNN, and remove the pool4 layer to keep the output resolution to be
1
8 of the input image. We take the same CT scan image preprocessing as in [10],
which rescales the CT intensity to 0-255, resizes the images and clips the black
border. We use the horizontal flip data augmentation which is very common for
object detection. For each sample, we take adjacent 3, 9, 15, 21 or 27 CT slices
to generate 1, 3, 5, 7 or 9 input images with 3 channels each, to evaluate the
efficacy of hybrid detector at different 3D context richness levels, and to make
a fair comparison with the state-of-the-art 3DCE [10]. For the training, we use
a batch size of 2, and train the hybrid detector for 120k iterations. The initial
learning rate is 10−3 and is reduced to 10−4 after the first 90k iterations. We
take the official train/test subsets to train and report accuracy. Comprehensive
experiments and ablation studies are reported in the following subsections.



Lesion Detection by Efficiently Bridging 3D Context 5

Table 1: Performance (%) on the official test split for DeepLesion dataset.
0:125; 0:25; · · · ; 16 represent the number of FPs per image.

Settings 0.125 0.25 0.5 1 2 4 8 16 AVG@ 1
8
:8

Baseline - 3 slices 31.52 43.95 57.19 68.51 77.47 83.59 87.77 90.66 64.28

3DCE [10] - 9 slices - - 59.32 70.68 79.09 84.34 87.81 89.62 -
Baseline - 9 slices 35.48 48.84 62.42 73.06 80.73 85.82 89.22 91.21 67.94
Hybrid - 9 slices 38.25 50.66 62.97 73.20 80.66 85.80 89.04 91.21 68.65

Baseline - 15 slices 37.53 51.23 63.97 74.53 81.39 86.15 89.37 91.28 69.17
Hybrid - 15 slices 40.33 53.01 65.26 75.78 82.44 86.84 89.76 91.69 70.49

Baseline - 21 slices 38.81 52.32 64.93 75.25 82.19 86.61 89.44 91.25 69.93
Hybrid - 21 slices 40.74 53.80 66.06 75.66 82.60 86.88 89.79 91.62 70.79

3DCE [10] - 27 slices - - 62.48 73.37 80.70 85.65 89.09 91.06 -
Baseline - 27 slices 38.43 52.09 65.03 75.10 81.88 86.05 89.10 91.05 69.67
Hybrid - 27 slices 41.12 53.83 66.32 76.27 82.89 87.01 89.84 91.69 71.04

3.2 Experimental Results

To evaluate the efficacy of our method, we conduct extensive experiments on
DeepLesion [11]. Following the metric used in LUNA challenge [8], we compute
the sensitivity at 7 pre-defined false positive (FP) per image rates: 1

8 , 1
4 , 1

2 , 1, 2,
4 and 8 FPs per sample, as well as the average sensitivity at these 7 pre-defined
FP rates. We also compute the sensitivity at the FP per image rate of 16, to
compare with the 3DCE [10]. For all our baselines and hybrid detectors, we train
and evaluate for four times, and report the average performance, to alleviate the
randomness caused by initialization and training data shuffling.

The results on the official test set are shown in Table 1. We also compare
with 3DCE which is the current state-of-the-art and already surpasses fully 3D
connected detectors. ‘Baseline’ in the table is a Faster-RCNN [7] based detector
with feature concatenation after the backbone CNN, and ‘Hybrid’ is ‘Baseline’
equipped with 3DFMs illustrated in Figure 3. We also plot the free-response
receiver operating characteristic curves for our baseline and hybrid detectors in
Figure 4. In the table and figure, we find that our hybrid detector with 3DFM is
very effective in improving the detection quality. The sensitivity consistently goes
up at all FP rate levels significantly with 27 slices as input, especially in the high
precision case (i.e. fewer FPs per image). Our hybrid detector surpasses 3DCE
greatly with the same train/test sets and achieves a new state-of-the-art.

3.3 Ablation Studies

Inference Speed and Memory Overhead Our 3D Fusion Modules (3DFM)
efficiently combine 3D context information in the backbone. To quantitatively
evaluate the computation/memory overhead, we run all our baselines and de-
tectors on a machine with a single nVIDIA Titan Xp GPU. We report the total
runtime for the official test set (4817 samples) and the max GPU memory con-
sumed for inference. Results are shown in Table 2. Our 3DFMs introduce very
small computation overhead and negligible GPU memory overhead. This verifies
the efficiency of our method, which may be applied to more complex datasets.



6 Z. Zhang et al.

0.125 0.25 0.5 1 2 4 8 16
Number of FPs

0.3

0.4

0.5

0.6

0.7

0.8

0.9

S
en

si
ti

vi
ty

Baseline - 15 slices
Hybrid - 15 slices
Baseline - 21 slices
Hybrid - 21 slices
Baseline - 27 slices
Hybrid - 27 slices

Fig. 4: FROCs of Baseline and Baseline+3DFM (Hybrid). Best view in color.

Table 2: Performance on the official test split for DeepLesion dataset.

Settings AVG@ 1
8
:8 Runtime (s) FPS Inference GPU memory (GB)

Baseline - 9 slices 67.94 246 19.58 0.455
Hybrid - 9 slices 68.65 256 18.82 0.459

Baseline - 15 slices 69.17 345 13.96 0.693
Hybrid - 15 slices 70.49 369 13.05 0.696

Baseline - 21 slices 69.93 452 10.66 0.930
Hybrid - 21 slices 70.79 479 10.06 0.934

Baseline - 27 slices 69.67 564 8.54 1.167
Hybrid - 27 slices 71.04 608 7.92 1.171

Architecture of 3DFM In this subsection, we compare our 3D Fusion Module
with some other potential architectures combining 3D context information:

{ Without Skip Connection: the 3D context information bridging module is
the same as 3DFM (see Figure 3), but does not have the skip connection to
combine the original backbone features with the 3D fused features.

{ Without 3D Conv: the 3D context information bridging module concatenates
the K backbone features with size of C �H �W to a thicker tensor KC �
H �W , and takes a 1� 1 2D Conv to fuse information from different slices.

All experiments are conducted on the 27-slice inputs, and results are shown in
Table 3. Both architectures described above achieve inferior performance: with-
out skip connection, it has lower sensitivities at high FP levels even compared
with our baseline detector; and using 2D Conv on a concatenated feature map
leads to inferior sensitivities at all FP levels.

Number of 3DFMs 3DFMs can bridge the 3D context information in the 2D
CNN backbones, and can be inserted anywhere in the 2D CNNs. In our detector,
we insert 3DFMs at the pool3 and conv4 3 layers in VGG16 as in Figure 1.
We also conduct diagnostic experiments by 1) inserting 3DFM at only conv4 3

layer and 2) inserting 3DFMs at pool2, pool3 and conv4 3 layers. Results are
shown in ‘3DFM@4’ and ‘3DFM@234’ of Table 3. Compared with ‘3DFM@4’,
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Table 3: Ablation of 3DFM architecture.

Setting 0.125 0.25 0.5 1 2 4 8 16 AVG@ 1
8
:8

Baseline 38.43 52.09 65.03 75.10 81.88 86.06 89.10 91.05 69.67
Hybrid (Ours) 41.12 53.83 66.32 76.27 82.89 87.01 89.84 91.69 71.04

W/O Skip Connection 42.10 54.22 66.29 75.15 81.79 86.11 88.93 90.78 70.66
W/O 3D Conv 39.96 53.46 65.66 75.36 81.96 86.72 89.71 91.56 70.40

3DFM@4 40.56 53.37 65.62 75.91 82.49 86.77 89.56 91.57 70.62
3DFM@234 40.87 54.27 66.45 76.35 82.90 87.18 90.15 92.00 71.17

Table 4: Sensitivities of different types of lesion at 4 false positive per image. Our
detector outperforms baseline on all 8 types.

Type BN AB ME LV LU KD ST PV

Baseline 72.69 84.07 87.27 90.04 89.70 85.73 76.99 83.50
Hybrid (Ours) 73.84 84.63 88.43 91.14 90.50 86.16 77.91 85.64

Fig. 5: Detection examples of eight types. Yellow and blue boxes are for ground-truth
and detection result. All examples are detected by our hybrid detector while missed by
our baseline detector.

adding another 3DFM at pool3 significantly improve the performance from 70.62
to 71.04. However, adding an extra 3DFM at pool2 will only give a marginal
performance gain. For simplicity, we use only two 3DFMs in our final detector.

3.4 Analysis on di�erent lesion types

We test our hybrid detector on different lesion types in DeepLesion [11]. There
are 8 types of lesion labelled in the dataset, and the abbreviations are in the
parentheses: bone (BN), abdomen (AB), mediastinum (ME), liver (LV), lung
(LU), kidney (KD), soft tissue (ST) and pelvis (PV). In Table 4, we evaluate
the sensitivities of our baseline detector and our hybrid detector equipped with
3DFM, at 4 FPs per image (27 slices). The results further confirms that our
hybrid detector can improve the detection quality under all 8 lesion types, thus
it is very general with consistent gains. We also show some qualitative results in
Figure 5, where our baseline detector fails to detect the lesion, but the 3DFM
equipped hybrid detector detects them with scores greater than 0.9 at 4 FP per
image threshold. We observe that our detector is able to find difficult lesions
such as small or low-contrast lesions.


