Deep Differentiable Random Forests for Age Estimation

Wei Shen[®], Yilu Guo, Yan Wang, Kai Zhao, Bo Wang, and Alan Yuille, *Fellow, IEEE*

Abstract—Age estimation from facial images is typically cast as a label distribution learning or regression problem, since aging is a gradual progress. Its main challenge is the facial feature space w.r.t. ages is inhomogeneous, due to the large variation in facial appearance across different persons of the same age and the non-stationary property of aging. In this paper, we propose two Deep Differentiable Random Forests methods, Deep Label Distribution Learning Forest (DLDLF) and Deep Regression Forest (DRF), for age estimation. Both of them connect split nodes to the top layer of convolutional neural networks (CNNs) and deal with inhomogeneous data by jointly learning input-dependent data partitions at the split nodes and age distributions at the leaf nodes. This joint learning follows an alternating strategy: (1) Fixing the leaf nodes and optimizing the split nodes and the CNN parameters by Back-propagation; (2) Fixing the split nodes and optimizing the leaf nodes by Variational Bounding. Two Deterministic Annealing processes are introduced into the learning of the split and leaf nodes, respectively, to avoid poor local optima and obtain better estimates of tree parameters free of initial values. Experimental results show that DLDLF and DRF achieve state-of-the-art performance on three age estimation datasets.

Index Terms—Age estimation, random forest, regression, label distribution learning, deterministic annealing

1 Introduction

20

21

24

25

26

27

28

29

There has been a growing interest in age estimation from facial images, driven by the increasing demands for a variety of potential applications in forensic research [1], security control [2], human-computer interaction (HCI) [2] and social media [3]. In this paper, we focus on estimating the precise chronological age (i.e., not age group estimation [4]). Although considerable progress has been made recently [5], [6], [7], estimating ages accurately and reliably from facial images is still a challenging problem.

To address age estimation, the characteristics of this task should be considered. First, aging is a slow and gradual progress, thus there is a strong correlation between close ages of the same individual, e.g., a person's facial images taken at close ages are similar. Due to this fact, age estimation is usually formulated as a label distribution learning (LDL) [8], [9], [10] or regression [11], [12], [13] problem rather than a classification problem, because in a classification problem, class

labels are uncorrelated. Unlike classification, LDL assigns a 34 distribution over the set of labels to an instance, which can be 35 obtained by fitting a Gaussian or Triangle distribution whose 36 peak is the label of this instance and represents the relative 37 importance of each label involved in the description of an 38 instance; by contrast, regression considers labels as continuous numerical values. Therefore, LDL and regression can 40 explicitly and implicitly model cross age correlations of the 41 same individual, respectively.

Second, learning the mapping between facial image fea- 43 tures and ages is challenging. The main difficulty is the facial 44 feature space w.r.t. ages is inhomogeneous, due to two factors: 45 1) there is a large variation in facial appearance across differ- 46 ent persons of the same age (Fig. 1a); 2) the human face 47 matures in different ways at different ages, e.g., bone growth 48 in childhood and skin wrinkles in adulthood [14] (Fig. 1b). 49 This inhomogeneity suggests applying divide-and-conquer 50 models, such as Random Forests [15], [16], [17], to partition 51 the data space and learn multiple local age estimators [18]. 52 However, traditional Random Forests make hard data parti- 53 tions based on heuristics, such as using a greedy algorithm 54 where locally-optimal hard decisions are made at each split 55 node [15], thus have limitations in representation learning, 56 e.g., they can not learn deep facial features to perform data 57 partition in an end-to-end manner.

To address this issue, we propose two Deep Differentiable 59 Random Forests for age estimation, where one is an LDL 60 model, named by Deep Label Distribution Learning Forest 61 (DLDLF), the other is a regression model, named by Deep 62 Regression Forest (DRF). Our Deep Differentiable Random 63 Forests are inspired by [19], which introduced differentiable 64 decision classification trees and integrated them with CNNs 65 by connecting the split nodes in trees to a fully connected 66 layer of a CNN. We extend the differentiable trees to deal 67

Manuscript received 24 Aug. 2018; revised 22 July 2019; accepted 20 Aug. 2019. Date of publication 0 . 0000; date of current version 0 . 0000. (Corresponding author: Yan Wang.)

Recommended for acceptance by G. Wang.

For information on obtaining reprints of this article, please send e-mail to: reprints@ieee.org, and reference the Digital Object Identifier below. Digital Object Identifier no. 10.1109/TPAMI.2019.2937294

W. Shen, Y. Wang, and A. Yuille are with the Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218-2608.
 E-mail: {shenwei1231, wyanny.9, alan.l.yuille}@gmail.com.

Y. Guo is with the School of Communication and Information Engineering, Shanghai University, Shanghai 200444, China.
 E-mail: gyl.luan0@gmail.com.

[•] K. Zhao is with the College of Computer and Control Engineering, Nankai University, Tianjin 300071, China. E-mail: zhaok1206@gmail.com.

B. Wang is with Vector Institute and Peter Munk Cardiac Center of University Health Network, Toronto, ON, Canada.
 E-mail: bowang@vectorinstitute.ai.

71

73

74

75

76

77

78

80

85

86

87

88

91

95

97

99

100

101

102

104

106

107

108

109

110

111

112

113

114

115

Fig. 1. (a) The large variation in facial appearance across different persons of the same age. (b) Facial images of a person from childhood to adulthood. Note that, Facial aging effects appear as changes in the shape of the face during childhood and changes in skin texture during adulthood, respectively.

with LDL and regression problems, which is non-trivial (see the discussion in Section 2). Differentiable trees perform soft data partition at split nodes, so that an input-dependent partition function can be learned to handle inhomogeneous data. In addition, the deep facial features at split nodes (input feature space) and the age distributions at leaf nodes (local estimators) can be learned jointly, which ensures that the local input-output correlation is homogeneous at the leaf node.

To jointly learn the deep facial features at split nodes and the age distributions at leaf nodes in our Deep Differentiable Random Forests, we apply an alternating optimization strategy: first we fix the leaf nodes parameters and optimize split node parameters as well as the CNN parameters (feature learning) by Back-propagation. Then, we fix split node parameters and optimize the age distributions at leaf nodes by Variational Bounding [20], [21]. These two learning steps are alternatively performed to jointly optimize feature learning and estimator modeling for age estimation. Additionally, these two learning steps are non-convex optimization problems (except for optimizing the age distributions at leaf nodes in DLDLFs), thus both Gradient Descent and Variational Bounding require "good" parameter initializations to avoid converging to poor local minimal. To address this problem, we introduce two Deterministic Annealing (DA) processes [22], [23], [24] into these two learning steps, respectively, which can avoid many poor local optima during optimization and obtain better estimates of tree parameters free of initializations. Finally, to learn the ensemble of multiple trees (forest), we explicitly define the forest loss as the average of the losses of all the individual trees and allow the split nodes from different trees to be connected to the same output unit of the feature learning function. In this way, the split node parameters of all the individual trees can be learned jointly. Fig. 2 illustrates a sketch chart of our DLDLF and DRF, where each forest consists of two trees is shown.

We evaluate our algorithms on three standard datasets for real age estimation methods: MORPH [25], FG-NET [26] and the Cross-Age Celebrity Dataset (CACD) [27]. Experimental results demonstrate that our algorithms outperform several state-of-the-art methods on these three datasets.

The contributions of this paper are five folds:

- We propose Deep Label Distribution Learning Forest and Deep Regression Forest, two end-to-end models, to deal with inhomogeneous data by jointly learning input-dependent data partition at split nodes and age distribution at leaf nodes.
- Based on Variational Bounding, the convergences of our update rules for leaf nodes in DLDLFs and DRFs are mathematically guaranteed.

- 3) We introduce Deterministic Annealing processes 117 into the learning of DLDLFs and DRFs, which can 118 avoid many poor local optima during optimization 119 and obtain better estimates of tree parameters free of 120 initial parameter values.
- We propose a strategy to learn the ensemble of multiple trees, which is different from [19], but we show it is effective.
- We apply DLDLFs and DRFs to three standard age 125
 estimation benchmarks, and achieve state-of-the-art 126
 results.

This paper summarizes two of our preliminary works [28], 128 [29] into a unified optimization framework, i.e., alternatively 129 learning split nodes by Back-propagation and learning leaf 130 nodes by Variational Bounding and has following extensions: 131 First, we introduce two methodological improvements, i.e., 132 the two Deterministic Annealing processes introduced into 133 the learning of split and leaf nodes, respectively, to avoid 134 poor local optima and obtain better estimates of tree parameters free of initial parameter values. Second, we provide more 136 experimental results and discussions, such as ablation experinents to study the influence of different designs and variants 138 of our methods and updated state-of-the-art results on the 139 three age estimation datasets.

2 RELATED WORK

Age Estimation. One way to tackle precise facial age estima- 142 tion is to search for a kernel-based global non-linear map- 143 ping, like kernel support vector regression [30] or kernel 144 partial least squares regression [11]. The basic idea is to 145 learn a low-dimensional embedding of the aging manifold 146 [31]. However, global non-linear mapping algorithms may 147 be biased [13], due to the inhomogeneous properties of the 148 input data. Another way is to adopt divide-and-conquer 149 approaches, which partition the data space and learn multi- 150 ple local regressors. But hierarchical regression [18] or tree 151 based regression [32] approaches made hard partitions 152 according to ages, which is problematic because the subsets 153 of facial images may not be homogeneous for learning local 154 regressors. Huang et al. [13] proposed Soft-margin Mixture 155 of Regressions (SMMR) to address this issue, which found 156 homogeneous partitions in the joint input-output space, 157 and learned a local regressor for each partition. But their 158 regression model cannot be integrated with any deep net- 159 works as an end-to-end model.

Several researchers formulated age estimation as an ordinal regression problem [5], [12], [33], because the relative 162 order among the age labels is also important information. 163 They trained a series of binary classifiers to partition the 164 samples according to ages, and estimated ages by summing 165 over the classifier outputs. Thus, ordinal regression is limited by its lack of scalability [13]. Some other researchers formulated age estimation as a label distribution learning 168 problem [34], which paid attention to modeling the crossinger correlations, based on the observation that faces at close 170 ages look similar. LDL based age estimation methods [8], 171 [9], [35] achieved promising results, but these LDL methods 172 assume that a label distribution should be represented by a 173 maximum entropy model [36], where the exponential part 174 of this model restricts the generality of the distribution 175

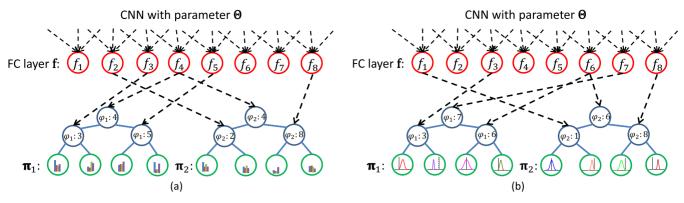


Fig. 2. Illustration of (a) a deep label distribution learning forest (DLDLF) and (b) a deep regression forest (DRF). Each forest consists of two trees. The top red circles denote the output units of the function f parameterized by Θ . Here, they are the units of a fully-connected (FC) layer in a CNN. The blue and green circles are split nodes and leaf nodes, respectively. in each forest, two index functions φ_1 and φ_2 are randomly assigned to the two trees respectively before training and then fixed. The black dash arrows indicate the correspondence between the split nodes of the two trees and the output units of the FC layer. Note that, one output unit may correspond to the split nodes belonging to different trees. Each tree has independent leaf node distribution π (denoted by distribution histograms and curves in the leaf nodes of the DLDLF and the DRF, respectively). The output of the forest is a mixture of the tree predictions. $f(\cdot; \Theta)$ and π are learned jointly in an end-to-end manner.

form. On the contrary, our method, DLDLF, expresses a label distribution by a linear combination of the label distributions of training data, and thus have no restrictions on the distributions (e.g., no requirement of the maximum entropy model).

176

177

178

179

180

181

182

183

184

185

187

188

189

190

191

192

193

194

196

197

198

199

200

201

202

203

204

205

207

209

211

213

214

With the rapid development of deep networks, more and more end-to-end CNN based age estimation methods [3], [6], [7], [12], [37] have been proposed to address this non-linear regression problem. But how to deal with inhomogeneous data is still an open issue.

Random Forests. Random Forests or randomized decision trees [15], [16], [17], [38], are a popular ensemble predictive model suitable for many machine learning tasks, such as supervised learning [16], semi-supervised learning [39] and multiple instance learning [40]. Each decision tree consists of several split nodes and leaf nodes. Tree growing is usually based on greedy algorithms which make locallyoptimal hard data partition decisions at each split node. Thus, this makes it intractable to integrate decision trees with deep networks in an end-to-end learning manner. Some efforts have been made to combine these two worlds [19], [41], [42]. The newly proposed Deep Neural Decision Forests (DNDFs) [19] overcame this problem by introducing a soft differentiable decision function at the split nodes and a global loss function defined on a tree, which ensured that the split node parameters can be learned by back-propagation and leaf node predictions can be updated by a discrete itera-

Our methods are inspired by Deep Neural Decision Forests [19], but differ in their objectives (label distribution learning/regression vs classification). Extending differentiable decision trees to deal with label distribution learning/regression is non-trivial, since there are some technical difficulties in learning leaf node predictions. Although a stepsize free update function was given in DNDFs to update leaf node predictions, it was only proved to converge for a classification loss. Consequently, it is unclear how to obtain such an update function for other objectives, especially for regression, since the distribution of the output space for regression is continuous, but the distribution of the output space for classification is discrete. We show that the update

functions for both the LDL loss and the regression loss can 217 be derived from Variational Bounding and the one given 218 in [19] is also a special case of Variational Bounding. In 219 addition, we introduce two DA processes into the optimiza- 220 tion of our Deep Differentiable Random Forests, which lead 221 to better estimates of tree parameters free of initial parame- 222 ter values. Last but not least, the strategies used in our deep 223 Random Forests and DNDFs to learn the ensemble of multi- 224 ple trees (forests) are different: We explicitly define a loss 225 function for a forest, which allows the split nodes from dif- 226 ferent trees to be connected to the same output unit of the 227 feature learning function (See Fig. 2) and enables that all 228 trees in a DLDLF or a DRF can be learned jointly; while only 229 the loss function for a single tree is defined in DNDFs, 230 which only allows trees in a DNDF to be learned alterna- 231 tively. As shown in our experiments (Section 6.4.3), our 232 ensemble strategy can get better results by using more trees, 233 but by using the ensemble strategy proposed in DNDFs, the 234 results of forests are even worse than those for a single tree. 235

One recent work proposed Neural Regression Forest 236 (NRF) [43] for depth estimation, which is similar to our 237 DRF, but there are two main differences between an NRF 238 and a DRF. The first difference is all the split nodes in a 239 DRF are connected to the top layer of a single CNN, but 240 every split node in an NRF is connected to a distinct CNN. 241 Therefore, an NRF can be only connected to very shallow 242 CNNs (as they did in their experiments), otherwise, the 243 computational cost is extremely high. But, the representation learning ability of these shallow CNNs is limited. The 245 second difference is the convergence of our update rule for 246 leaf nodes is mathematically guaranteed by Variational 247 Bounding, but the convergence of the update rule for leaf 248 nodes used in the NRF was not guaranteed.

3 DIFFERENTIAL DECISION TREES

Since both DLDLFs and DRFs are based on differential decision trees [19], we introduce this tree model first in this 252 section. 253

Let $\mathcal X$ and $\mathcal Y$ denote the input and output spaces, respectively. A differential decision tree $\mathcal T$ consists of a set of split 255

257

259

260

261

263

265

266

267

268

269

270

274

275

276

277

278

279

280

281

282

283

285

287

288

290

291

292

293

294

295

296

297

Fig. 3. The subtree rooted at node n: \mathcal{T}_n and its left and right subtrees: \mathcal{T}_n and \mathcal{T}_{n-} .

nodes \mathcal{N} and a set of leaf nodes \mathcal{L} . Each split node $n \in \mathcal{N}$ defines a split function $s_n(\cdot; \mathbf{\Theta}) : \mathcal{X} \to [0, 1]$ parameterized by Θ to determine whether a sample is sent to the left or right subtree. Each leaf node $\ell \in \mathcal{L}$ holds a distribution π_{ℓ} over Y. Following [19], we use a soft split function $s_n(\mathbf{x}; \mathbf{\Theta}) = \sigma(f_{\varphi(n)}(\mathbf{x}; \mathbf{\Theta}))$, where $\sigma(\cdot)$ is a sigmoid function, $\mathbf{x} \in \mathcal{X}$ and $\mathbf{f} : \mathbf{x} \to \mathbb{R}^M$ is a real-valued feature learning function depending on the sample x and the parameter Θ . f can take any forms. In our DLDLFs and DRFs, it is a CNN and Θ is the network parameter. $\varphi(\cdot)$ is an index function to specify the correspondence between the split nodes and output units of f, which is randomly assigned before tree learning and then fixed. An example to demonstrate $\varphi(\cdot)$ is shown in Fig. 2 (There are two trees with index functions in each forest, φ_1 and φ_2 for each). Then, the probability of the sample x falling into leaf node ℓ is given by

$$P(\ell|\mathbf{x};\mathbf{\Theta}) = \prod_{n \in \mathcal{N}} s_n(\mathbf{x};\mathbf{\Theta})^{\mathbf{1}(\ell \in \mathcal{L}_{n_l})} (1 - s_n(\mathbf{x};\mathbf{\Theta}))^{\mathbf{1}(\ell \in \mathcal{L}_{n_r})}, \tag{1}$$

where $\mathbf{1}(\cdot)$ is an indicator function and \mathcal{L}_{n_l} and \mathcal{L}_{n_r} denote the sets of leaf nodes held by the subtrees \mathcal{T}_{n_l} , \mathcal{T}_{n_r} rooted at the left and right children n_l , n_r of node n (shown in Fig. 3), respectively.

Note that, there are two parameters introduced in this tree model: 1) the split node parameter Θ and 2) the distributions π held by the leaf nodes. Tree learning requires the estimation of these two parameters. Let $\mathcal S$ be a training set and $R(\pi,\Theta;\mathcal S)$ be an objective function for an arbitrary learning task, e.g., classification, label distribution learning or regression, then the best parameters (Θ^*,π^*) are determined by solving

$$(\mathbf{\Theta}^*, \boldsymbol{\pi}^*) = \arg\min_{\mathbf{\Theta}} R(\boldsymbol{\pi}, \mathbf{\Theta}; \mathcal{S}). \tag{2}$$

To solve Eq. (2), we consider an alternating optimization strategy: First, we fix π and optimize Θ by Back-propagation; Then, we fix Θ and optimize π by Variational Bounding [20], [21]. These two learning steps are performed alternatively, until convergence or a maximum number of iterations is reached (as described in the experiments). We show that this optimization framework is unified for learning both DLDLFs and DRFs in Sections 4 and 5, respectively, as well as for learning the tree models for classification [19] in the Appendix, which can be found on the Computer Society Digital Library at http://doi.ieeecomputersociety.org/10.1109/TPAMI.2019.2937294.

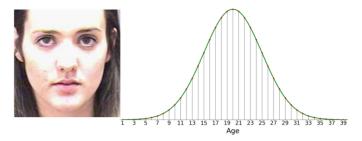


Fig. 4. Generated label distribution for a facial image at the chronological age of 20 ($\alpha=20$).

300

4 AGE ESTIMATION BY DEEP LABEL DISTRIBUTION FORESTS

In this section, we describe Deep Label Distribution Learn- 302 ing Forests (DLDLFs) for age estimation. Since a forest is an 303 ensemble of decision trees, We first introduce how to learn 304 a single decision tree by label distribution learning, then 305 describe the learning of a forest.

4.1 Problem Formulation

We formulate age estimation as an LDL problem: Let $\mathcal{X} = \mathbb{R}^m$ 308 denote the input facial image space and $\mathcal{Y} = \{y_1, y_2, \dots, y_C\}$ 309 denote the complete and order set of age labels, where C is the 310 number of possible age values. For a facial image $\mathbf{x} \in \mathcal{X}$, its 311 chronological age value is $y \in \mathcal{Y}$. To generate a proper label 312 distribution $\mathbf{d} = (d_{\mathbf{x}}^{y_1}, d_{\mathbf{x}}^{y_2}, \dots, d_{\mathbf{x}}^{y_C})^{\top} \in \mathbb{R}^C$, where $d_{\mathbf{x}}^{y_C} \in [0, 1]$ 313 and $\sum_{c=1}^C d_{\mathbf{x}}^{y_c} = 1$, for this facial image \mathbf{x} , following [9], [37], 314 we use a Gaussian distribution whose mean is the chronologiscal age y:

$$d_{\mathbf{x}}^{y_c} = \frac{p_{\mathcal{N}}(y_c; y, \alpha)}{\sum_{k=1}^{C} p_{\mathcal{N}}(y_k; y, \alpha)},$$
 (3)

where $p_{\mathcal{N}}(y_c;y,\alpha)=\frac{1}{\sqrt{2\pi\alpha}}\exp(-\frac{(y_c-y)^2}{2\alpha^2})$ and α is a pre-defined 319 standard deviation. Fig. 4 illustrates an example of such a 320 label distribution generated for a facial image at the chronological age of 20 ($\alpha=10$). Observed that, this label distribution explicitly model the cross age correlations, since both the chronological age 20 and the neighboring ages 19 and 21 can be used to describe the appearance of this 20-year-old face, due to the appearance similarity of the neighboring

We have formulated age estimation as an LDL problem, 321 then our goal is to learn a mapping function $\mathbf{g}: \mathbf{x} \to \mathbf{d}$ 322 between an facial image \mathbf{x} and its corresponding label distribution \mathbf{d} by a decision tree based model \mathcal{T} described in Section 3. 324 Since our target, label distribution, is a discrete distribution, 325 accordingly each leaf node $\ell \in \mathcal{L}$ in the LDL tree \mathcal{T} holds a 326 probability mass distribution $\pi_{\ell} = (\pi_{\ell_1}, \pi_{\ell_2}, \dots, \pi_{\ell_C})^{\mathrm{T}}$ over \mathcal{Y} , 327 i.e., $\pi_{\ell_c} \in [0,1]$ and $\sum_{c=1}^{C} \pi_{\ell_c} = 1$. Then the output of the tree \mathcal{T} 328 w.r.t. \mathbf{x} , i.e., the mapping function g, is given by

$$\mathbf{g}(\mathbf{x}; \mathbf{\Theta}, \mathcal{T}) = \sum_{\ell \in \mathcal{L}} P(\ell | \mathbf{x}; \mathbf{\Theta}) \pi_{\ell}. \tag{4}$$

4.2 Tree Optimization

Given a training set $S = \{(\mathbf{x}_i, \mathbf{d}_i)\}_{i=1}^N$, our goal is to learn a 334 LDL tree T described in in Section 4.1 which can output a dis-335 tribution $\mathbf{g}(\mathbf{x}_i; \mathbf{\Theta}, T)$ similar to \mathbf{d}_i for each sample \mathbf{x}_i . To this 336

end, a straightforward way is to minimize the Kullback-Leibler (K-L) divergence between each $\mathbf{g}(\mathbf{x}_i; \mathbf{\Theta}, \mathcal{T})$ and \mathbf{d}_i , or equivalently to minimize the following cross-entropy loss:

338

342

343 344

345

346

347

349

350 351

352

353

354

355

356

357

358

359

361

365

367

368

369

370

371

372

373

374

375 376

377

378

379

380

381

382

383

384

$$R(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathcal{S}) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} d_{\mathbf{x}_{i}}^{y_{c}} \log (g_{c}(\mathbf{x}_{i}; \boldsymbol{\Theta}, \mathcal{T}))$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} d_{\mathbf{x}_{i}}^{y_{c}} \log \left(\sum_{\ell \in \mathcal{L}} P(\ell | \mathbf{x}_{i}; \boldsymbol{\Theta}) \pi_{\ell_{c}} \right), \quad (5)$$

where π denotes the distributions held by all the leaf nodes \mathcal{L} and $g_c(\mathbf{x}_i; \mathbf{\Theta}, \mathcal{T})$ is the cth output unit of $\mathbf{g}(\mathbf{x}_i; \mathbf{\Theta}, \mathcal{T})$.

Learning the tree \mathcal{T} requires the estimation of two parameters: 1) the split node parameter Θ and 2) the distributions π held by the leaf nodes. Next we introduce the optimization process in detail following the framework described in Section 3.

4.2.1 Learning Split Nodes w/ Deterministic Annealing by Gradient Descent

In this section, we describe how to learn the parameter Θ for split nodes, when the distributions held by the leaf nodes π are fixed. We found that, empirically (also shown in [19]) minimization of $R(\pi,\Theta;\mathcal{S})$ w.r.t. Θ would gradually produce almost hard data partitions, i.e., $P(\ell|\mathbf{x}_i;\Theta)$ approaches 0 or 1. But it is better to enforce $P(\ell|\mathbf{x}_i;\Theta)$ to be uniform for all $\ell \in \mathcal{L}$, i.e., maintain more uncertainty, at the beginning of minimization. Inspired by [22], we introduce a Deterministic Annealing process into this optimization, which minimizes $R(\pi,\Theta;\mathcal{S})$ subject to a specified level of uncertainty. The level of uncertainty is measured by the Shannon entropy

$$H(\mathbf{\Theta}; \mathcal{S}) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{\ell \in \mathcal{L}} P(\ell | \mathbf{x}_i; \mathbf{\Theta}) \log P(\ell | \mathbf{x}_i; \mathbf{\Theta}).$$
 (6)

Then we reformulate the original loss function Eq. (5) to be

$$E(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathcal{S}, T) = R(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathcal{S}) - TH(\boldsymbol{\Theta}; \mathcal{S}), \tag{7}$$

where T is the temperature parameter. During the DA process, $E(\pi, \Theta; S, T)$ is then gradually deformed to its original form, i.e., $R(\pi, \Theta; S)$, by decreasing the temperature $T \to 0$. From the DA viewpoint, minimization the original loss function corresponds to a "zero temperature" system, where each input sample must make a hard decision about which leaf node it would fall into. This is hard at the beginning of the minimization. On the other hand, starting at high T smoothes the loss function $E(\pi, \Theta; \mathcal{S}, T)$ making it easier to get a good minimum, which can be traced by slowly decreasing T ("cooling" the system). By introducing this DA process, we start with each input sample equally influencing all leaf nodes and gradually localize the influence. This gives us some intuition as to how the system searches for a better optimum [22]. We use a simple cooling schedule to decrease T during optimization: $T \leftarrow \eta T$, where η is a constant less than 1.

We compute the gradient of the loss $E(\pi,\Theta;\mathcal{S},T)$ w.r.t. Θ by the chain rule

$$\frac{\partial E(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathcal{S}, T)}{\partial \boldsymbol{\Theta}} = \sum_{i=1}^{N} \sum_{n \in \mathcal{N}} \frac{\partial E(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathcal{S}, T)}{\partial f_{\varphi(n)}(\mathbf{x}_i; \boldsymbol{\Theta})} \frac{\partial f_{\varphi(n)}(\mathbf{x}_i; \boldsymbol{\Theta})}{\partial \boldsymbol{\Theta}},$$

where only the first term depends on the tree. The second $_{90}$ term depends on the specific type of the function $f_{\varphi(n)}$. The $_{90}$ first term is given by

$$\frac{\partial E(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathcal{S}, T)}{\partial f_{\varphi(n)}(\mathbf{x}_i; \boldsymbol{\Theta})} = \frac{\partial R(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathcal{S})}{\partial f_{\varphi(n)}(\mathbf{x}_i; \boldsymbol{\Theta})} - T \frac{\partial H(\boldsymbol{\Theta}; \mathcal{S})}{\partial f_{\varphi(n)}(\mathbf{x}_i; \boldsymbol{\Theta})}$$

$$= \frac{1}{N} \Big(s_n(\mathbf{x}_i; \boldsymbol{\Theta}) \Big(D_i^{n_r} - TS_i^{n_r} \Big) - \Big(1 - s_n(\mathbf{x}_i; \boldsymbol{\Theta}) \Big) \Big(D_i^{n_l} - TS_i^{n_l} \Big) \Big), \tag{9}$$

where for a generic node $n \in \mathcal{N}$

$$D_{i}^{n} = \sum_{c=1}^{C} d_{\mathbf{x}_{i}}^{y_{c}} \frac{g_{c}(\mathbf{x}_{i}; \mathbf{\Theta}, \mathcal{T}_{n})}{g_{c}(\mathbf{x}_{i}; \mathbf{\Theta}, \mathcal{T})} = \sum_{c=1}^{C} d_{\mathbf{x}_{i}}^{y_{c}} \frac{\sum_{\ell \in \mathcal{L}_{n}} P(\ell | \mathbf{x}_{i}; \mathbf{\Theta}) \pi_{\ell_{c}}}{\sum_{\ell \in \mathcal{L}} P(\ell | \mathbf{x}_{i}; \mathbf{\Theta}) \pi_{\ell_{c}}},$$
(10)

and

$$S_i^n = \sum_{\ell \in \mathcal{L}_n} \Big(P(\ell | \mathbf{x}_i; \mathbf{\Theta}) + P(\ell | \mathbf{x}_i; \mathbf{\Theta}) \log P(\ell | \mathbf{x}_i; \mathbf{\Theta}) \Big).$$
(11)

Both D_i^n and S_i^n can be efficiently computed for all nodes n 400 in the tree $\mathcal T$ by a single pass over the tree. Observing that 401 $D_i^n = D_i^{n_l} + D_i^{n_r}$ and $S_i^n = S_i^{n_l} + S_i^{n_r}$, the computation for D_i^n 402 and S_i^n can be started at the leaf nodes and conducted in a 403 bottom-up manner. Following Eq. (9), the split node parameters $\mathbf \Theta$ can be learned by standard Back-propagation.

4.2.2 Learning Leaf Nodes by Variational Bounding

Note that, since the entropy term introduced in Eq. (7) is $_{407}$ constant w.r.t. to π , thus it does not influence the learning of $_{408}$ leaf nodes. By fixing the parameter Θ , we show how to learn $_{409}$ the distributions at the leaf nodes π , which is a constrained $_{410}$ convex optimization problem

$$\min_{\boldsymbol{\pi}} R(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathcal{S}), \mathbf{s.t.}, \forall \ell, \sum_{c=1}^{C} \pi_{\ell_c} = 1.$$
 (12)

We address this constrained convex optimization problem 414 by Variational Bounding [20], [21]. In Variational Bounding, 415 the original objective function to be minimized gets replaced 416 by tight upper bounds in an iterative manner. A tight upper 417 bound for the loss function $R(\pi, \Theta; \mathcal{S})$ can be obtained by 418 Jensen's inequality 419

$$R(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathcal{S}) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} d_{\mathbf{x}_{i}}^{y_{c}} \log \left(\sum_{\ell \in \mathcal{L}} P(\ell | \mathbf{x}_{i}; \boldsymbol{\Theta}) \pi_{\ell_{c}} \right)$$

$$\leq -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} d_{\mathbf{x}_{i}}^{y_{c}} \sum_{\ell \in \mathcal{L}} \rho(\ell | \bar{\pi}_{\ell_{c}}, \mathbf{x}_{i}) \log \left(\frac{P(\ell | \mathbf{x}_{i}; \boldsymbol{\Theta}) \pi_{\ell_{c}}}{\rho(\ell | \bar{\pi}_{\ell_{c}}, \mathbf{x}_{i})} \right),$$

$$(13)$$

where $\rho(\ell|\pi_{\ell_c},\mathbf{x}_i) = \frac{P(\ell|\mathbf{x}_i;\mathbf{\Theta})\pi_{\ell_c}}{g_c(\mathbf{x}_i;\mathbf{\Theta},\mathcal{T})}$ and it has the property that 422 $\rho(\ell|\pi_{\ell_c},\mathbf{x}_i) \in [0,1]$ and $\sum_{\ell \in \mathcal{L}} \rho(\ell|\pi_{\ell_c},\mathbf{x}_i) = 1$. Note that when 423 $\pi = \bar{\pi}$, the equality holds, which indicates this upper bound is tight. We define

425

426

427

428

429

430

431

433

435

436

440

442

444

445

446

447

448

449

451

453

456

457

459

463

464

$$\phi(\boldsymbol{\pi}, \bar{\boldsymbol{\pi}}) = -\frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} d_{\mathbf{x}_{i}}^{y_{c}} \sum_{\ell \in \mathcal{L}} \rho(\ell | \bar{\boldsymbol{\pi}}_{\ell_{c}}, \mathbf{x}_{i}) \log \left(\frac{P(\ell | \mathbf{x}_{i}; \boldsymbol{\Theta}) \boldsymbol{\pi}_{\ell_{c}}}{\rho(\ell | \bar{\boldsymbol{\pi}}_{\ell_{c}}, \mathbf{x}_{i})} \right).$$
(1)

Then $\phi(\pi, \bar{\pi})$ is a tight upper bound for $R(\pi, \Theta; \mathcal{S})$, which has the properties that for any π and $\bar{\pi}$, $\phi(\pi, \bar{\pi}) \geq \phi(\pi, \pi) = R(\pi, \Theta; \mathcal{S})$ and $\phi(\bar{\pi}, \bar{\pi}) = R(\bar{\pi}, \Theta; \mathcal{S})$. These two properties hold the conditions for Variational Bounding.

Assume that we are at a point $\pi^{(t)}$ corresponding to the tth iteration, then $\phi(\pi, \pi^{(t)})$ is a tight upper bound for $R(\pi, \Theta; \mathcal{S})$. In the next iteration, $\pi^{(t+1)}$ is chosen such that $\phi(\pi^{(t+1)}, \pi^{(t)}) \leq R(\pi^{(t)}, \Theta; \mathcal{S})$, which implies $R(\pi^{(t+1)}, \Theta; \mathcal{S}) \leq R(\pi^{(t)}, \Theta; \mathcal{S})$. Consequently, we can minimize $\phi(\pi, \bar{\pi})$ instead of $R(\pi, \Theta; \mathcal{S})$ after ensuring that $R(\pi^{(t)}, \Theta; \mathcal{S}) = \phi(\pi^{(t)}, \bar{\pi})$, i.e., $\bar{\pi} = \pi^{(t)}$. So we have

$$\boldsymbol{\pi}^{(t+1)} = \arg\min_{\boldsymbol{\pi}} \boldsymbol{\phi}(\boldsymbol{\pi}, \boldsymbol{\pi}^{(t)}), \mathbf{s.t.}, \forall \ell, \sum_{c=1}^{C} \pi_{\ell_c} = 1,$$
 (15)

which leads to minimizing the Lagrangian defined by

$$\varphi(\boldsymbol{\pi}, \boldsymbol{\pi}^{(t)}) = \phi(\boldsymbol{\pi}, \boldsymbol{\pi}^{(t)}) + \sum_{\ell \in \mathcal{L}} \lambda_{\ell} \left(\sum_{c=1}^{C} \pi_{\ell_{c}} - 1 \right), \tag{16}$$

where λ_ℓ is the Lagrange multiplier. By setting $\frac{\partial \varphi(\pi,\pi^{(t)})}{\partial \pi_{\ell_c}}=0$, we have

$$\lambda_{\ell} = \frac{1}{N} \sum_{i=1}^{N} \sum_{c=1}^{C} d_{\mathbf{x}_{i}}^{y_{c}} \rho(\ell | \pi_{\ell_{c}}^{(t)}, \mathbf{x}_{i}),$$

$$\pi_{\ell_{c}}^{(t+1)} = \frac{\sum_{i=1}^{N} d_{\mathbf{x}_{i}}^{y_{c}} \rho(\ell | \pi_{\ell_{c}}^{(t)}, \mathbf{x}_{i})}{\sum_{c=1}^{C} \sum_{i=1}^{N} d_{\mathbf{x}_{i}}^{y_{c}} \rho(\ell | \pi_{\ell_{c}}^{(t)}, \mathbf{x}_{i})}.$$
(17)

Note that, $\pi_{\ell_c}^{(t+1)}$ satisfies that $\pi_{\ell_c}^{(t+1)} \in [0,1]$ and $\sum_{c=1}^C \pi_{\ell_c}^{(t+1)} = 1$. Eq. (17) is the update scheme for distributions held by the leaf nodes. The starting point $\pi_\ell^{(0)}$ can be simply initialized by the uniform distribution: $\pi_{\ell_c}^{(0)} = \frac{1}{C}$.

4.3 Learning an LDL Forest

An LDL forest is an ensemble of LDL decision trees $\mathcal{F} = \{\mathcal{T}^1, \dots, \mathcal{T}^K\}$. In the training stage, all trees in the forest \mathcal{F} use the same parameters $\mathbf{\Theta}$ for feature learning function $\mathbf{f}(\cdot;\mathbf{\Theta})$ (but correspond to different output units of \mathbf{f} assigned by φ , see Fig. 2), but each tree has independent leaf node predictions π . The loss function for a forest is given by averaging the loss functions for all individual trees

$$E_{\mathcal{F}} = \frac{1}{K} \sum_{k=1}^{K} E_{\mathcal{T}^k},$$
 (18)

where $E_{\mathcal{T}^k}$ is the loss function for tree \mathcal{T}^k defined by Eq. (7). To learn Θ by fixing the leaf node predictions π of all the trees in the forest \mathcal{F} , based on the derivation in Section 4.2 and referring to Fig. 2, we have

$$\frac{\partial E_{\mathcal{F}}}{\partial \mathbf{\Theta}} = \frac{1}{K} \sum_{i=1}^{N} \sum_{k=1}^{K} \sum_{n \in \mathcal{N}_{k}} \frac{\partial E_{\mathcal{T}^{k}}}{\partial f_{\varphi_{k}(n)}(\mathbf{x}_{i}; \mathbf{\Theta})} \frac{\partial f_{\varphi_{k}(n)}(\mathbf{x}_{i}; \mathbf{\Theta})}{\partial \mathbf{\Theta}}, \tag{19}$$

where \mathcal{N}_k and $\varphi_k(\cdot)$ are the split node set and the index function of \mathcal{T}^k , respectively, and the first term of the right side $\frac{\partial E_{\mathcal{T}^k}}{\partial f_{\varphi_k(n)}(\mathbf{x}_i;\Theta)}$ is computed by Eq. (9). Note that, the index

function $\varphi_k(\cdot)$ for each tree is randomly assigned before tree learning, and thus split nodes correspond to a subset of output units of \mathbf{f} . This strategy is similar to the random subspace method [44], which increases the randomness in training to reduce the risk of over-fitting. For the temperature parameter T introduced in each E_{T^k} , we initialize it as a large value T_0 ($T_0>0$) and decrease it by the simple cooling schedule described in Section 4.2.1: $T\leftarrow \eta T$, where η is a constant cooling factor less than 1.

As for π , since each tree in the forest \mathcal{F} has its own leaf 466 node predictions π , we can update them independently by 467 Eq. (17). For implementational convenience, we do not con-468 duct this update scheme on the whole dataset \mathcal{S} but on a set 469 of mini-batches \mathcal{B} . The training procedure of an LDLF is 470 shown in Algorithm. 1.

Algorithm 1. The Training Procedure of a DLDLF

```
Require: S: training set
Require: n_B: the number of mini-batches to update \pi,
                                                                                  474
Require: T_0: a starting temperature parameter
                                                                                  475
Require: \eta: a constant cooling factor
                                                                                   476
  Initialize \Theta randomly and \pi uniformly
  Set \mathcal{B} = \{\emptyset\} and T = T_0
                                                                                  478
  while Not converge do
                                                                                  479
     while |\mathcal{B}| < n_B do
                                                                                   480
        Randomly select a mini-batch B from S
        Update \Theta by Gradient Descent (Eqs. (19), (9)) on B
                                                                                  482
        \mathcal{B} = \mathcal{B} \cup \mathcal{B}
                                                                                  483
     end while
                                                                                   484
     Update \pi by iterating Eq. (17) on \mathcal{B}
     \mathcal{B} = \{\emptyset\}
                                                                                  486
     if T > 0 then
                                                                                   487
        T \leftarrow \eta T
                                                                                   488
     end if
                                                                                  489
  end while
```

In the testing stage, the output of the forest \mathcal{F} is given by averaging the predictions from all the individual trees

$$\mathbf{g}(\mathbf{x}; \mathbf{\Theta}, \mathcal{F}) = \frac{1}{K} \sum_{k=1}^{K} \mathbf{g}(\mathbf{x}; \mathbf{\Theta}, \mathcal{T}^{k}).$$
 (20)

497

Then the predicted age value is given by $\hat{y} = y_{c^*}$, where $c^* = \arg\min_c g_c(\mathbf{x}; \mathbf{\Theta}, \mathcal{F})$.

5 AGE ESTIMATION BY DEEP REGRESSION FORESTS

In this section, we describe Deep Regression Forests (DRFs) 499 for age estimation. Similar to the previous section, we first 500 introduce how to learn a single differentiable regression 501 tree, then describe how to learn tree ensembles to form a 502 forest.

5.1 Problem Formulation

We formulate age estimation as a regression problem, 505 where we regard age as a continues numerical value: Let 506 $\mathcal{X} = \mathbb{R}^m$ denote the input facial image space and $\mathcal{Y} = \mathbb{R}$ 507 denote the output age space. For a facial image $\mathbf{x} \in \mathcal{X}$, its 508 chronological age value is $y \in \mathcal{Y}$. The objective of regression 509 is to find a mapping function $g: \mathbf{x} \to y$ between an input 510

sample **x** and its output target y. A standard way to address this problem is to model the conditional probability function $p(y|\mathbf{x})$, so that the mapping is given by

$$\hat{y} = \mathbf{g}(\mathbf{x}) = \int y p(y|\mathbf{x}) dy. \tag{21}$$

We propose to model this conditional probability by a decision tree based structure \mathcal{T} described in Section 3. Each leaf node $\ell \in \mathcal{L}$ in the regression tree \mathcal{T} holds a probability density distribution $\pi_{\ell}(y)$ over \mathcal{Y} , i.e, $\int \pi_{\ell}(y)dy = 1$. The conditional probability function $p(y|\mathbf{x};\mathcal{T})$ given by the tree \mathcal{T} is

$$p(y|\mathbf{x};\mathcal{T}) = \sum_{\ell \in \mathcal{L}} P(\ell|\mathbf{x};\mathbf{\Theta}) \pi_{\ell}(y).$$
 (22)

Then the mapping between \mathbf{x} and y modeled by tree \mathcal{T} is given by $\hat{y} = \mathbf{g}(\mathbf{x}; \mathcal{T}) = \int yp(y|\mathbf{x}; \mathcal{T})dy$.

5.2 Tree Optimization

Given a training set $S = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$, learning a regression tree \mathcal{T} leads to minimizing the following negative log likelihood loss:

$$R(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathcal{S}) = -\frac{1}{N} \sum_{i=1}^{N} \log \left(p(y_i | \mathbf{x}_i, \mathcal{T}) \right)$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \log \left(\sum_{\ell \in \mathcal{L}} P(\ell | \mathbf{x}_i; \boldsymbol{\Theta}) \pi_{\ell}(y_i) \right),$$
(23)

where π denotes the density distributions contained by all the leaf nodes \mathcal{L} . To optimize $R(\pi,\Theta;\mathcal{S})$ w.r.t. the split node parameter Θ and the density distributions π held by leaf nodes, we also follow the optimization framework described in Section 3, i.e., alternating the following two steps: (1) fixing π and optimizing Θ ; (2) fixing Θ and optimizing π , until convergence or a maximum number of iterations is reached.

5.2.1 Learning Split Nodes w/ Deterministic Annealing by Gradient Descent

Now, we discuss how to learn the parameter Θ for split nodes, when the density distributions held by the leaf nodes π are fixed. We introduce the same DA process described in Section 4.2.1 into the optimization for split node parameter Θ , which reformulates the original regression loss Eq. (23) as the same form as Eq. (7), i.e., $E(\pi, \Theta; \mathcal{S}, T) = R(\pi, \Theta; \mathcal{S}) - TH(\Theta; \mathcal{S})$. We use the same cooling schedule in Section 4.2.1 to decrease T during optimization: $T \leftarrow \eta T$. Similarly, we compute the gradient $\frac{\partial E(\pi, \Theta; \mathcal{S}, T)}{\partial \Theta}$ by the chain rule, and we have

$$\frac{\partial E(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathcal{S}, T)}{\partial f_{\varphi(n)}(\mathbf{x}_i; \boldsymbol{\Theta})} = \frac{\partial R(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathcal{S})}{\partial f_{\varphi(n)}(\mathbf{x}_i; \boldsymbol{\Theta})} - T \frac{\partial H(\boldsymbol{\Theta}; \mathcal{S})}{\partial f_{\varphi(n)}(\mathbf{x}_i; \boldsymbol{\Theta})}$$

$$= \frac{1}{N} \left(s_n(\mathbf{x}_i; \boldsymbol{\Theta}) \left(\Gamma_i^{n_r} - T S_i^{n_r} \right) - (1 - s_n(\mathbf{x}_i; \boldsymbol{\Theta})) \left(\Gamma_i^{n_l} - T S_i^{n_l} \right) \right), \tag{24}$$

where for a generic node $n \in \mathcal{N}$

$$\Gamma_i^n = \frac{p(y_i|\mathbf{x}_i; \mathcal{T}_n)}{p(y_i|\mathbf{x}_i; \mathcal{T})} = \frac{\sum_{\ell \in \mathcal{L}_n} P(\ell|\mathbf{x}_i; \mathbf{\Theta}) \pi_{\ell}(y_i)}{p(y_i|\mathbf{x}_i; \mathcal{T})},$$
(25)

and S_i^n is computed by Eq. (11). Γ_i^n can be also efficiently 555 computed for all nodes n in the tree $\mathcal T$ by a single pass over 556 the tree. Observing that $\Gamma_n^i = \Gamma_{n_l}^i + \Gamma_{n_r}^i$, the computation for 557 Γ_n^i can be started at the leaf nodes and conducted in a 558 bottom-up manner. Based on Eq. (24), the split node parameters Θ can be learned by standard Back-propagation.

5.2.2 Learning Leaf Nodes by Variational Bounding

By fixing the split node parameters Θ , learning the leaf 562 nodes parameters π becomes a constrained optimization 563 problem

$$\min_{\boldsymbol{\pi}} R(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathcal{S}), \mathbf{s.t.}, \forall \ell, \int \pi_{\ell}(y) dy = 1.$$
 (26)

For efficient computation, we represent each density distri- 567 bution $\pi_{\ell}(y)$ by a parametric model. Since ideally each leaf 568 node corresponds to a compact homogeneous subset, we 569 assume that the density distribution $\pi_{\ell}(y)$ in each leaf node 570 is a Gaussian distribution, i.e.,

$$\pi_{\ell}(y) = \frac{1}{\sqrt{2\pi}\sigma_{\ell}} \exp\left(-\frac{(y - \mu_{\ell})^2}{2\sigma_{\ell}^2}\right),\tag{27}$$

where μ_{ℓ} and σ_{ℓ} are the mean and the covariance matrix 574 of the Gaussian distribution. Based on this assumption, 575 Eq. (26) is equivalent to minimizing $R(\pi, \Theta; \mathcal{S})$ w.r.t. μ_{ℓ} and 576 σ_{ℓ} . We also propose to address this optimization problem 577 by Variational Bounding [20], [21]. To obtain a tight upper 578 bound of $R(\pi, \Theta; \mathcal{S})$, we apply Jensen's inequality to it

$$R(\boldsymbol{\pi}, \boldsymbol{\Theta}; \mathcal{S}) = -\frac{1}{N} \sum_{i=1}^{N} \log \left(\sum_{\ell \in \mathcal{L}} P(\ell | \mathbf{x}_{i}; \boldsymbol{\Theta}) \pi_{\ell}(y_{i}) \right)$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \log \left(\sum_{\ell \in \mathcal{L}} \rho(\ell | \bar{\boldsymbol{\pi}}, y_{i}, \mathbf{x}_{i}) \frac{P(\ell | \mathbf{x}_{i}; \boldsymbol{\Theta}) \pi_{\ell}(y_{i})}{\rho(\ell | \bar{\boldsymbol{\pi}}, y_{i}, \mathbf{x}_{i})} \right)$$

$$\leq -\frac{1}{N} \sum_{i=1}^{N} \sum_{\ell \in \mathcal{L}} \rho(\ell | \bar{\boldsymbol{\pi}}, y_{i}, \mathbf{x}_{i}) \log \left(\frac{P(\ell | \mathbf{x}_{i}; \boldsymbol{\Theta}) \pi_{\ell}(y_{i})}{\rho(\ell | \bar{\boldsymbol{\pi}}, y_{i}, \mathbf{x}_{i})} \right)$$

$$= R(\bar{\boldsymbol{\pi}}, \boldsymbol{\Theta}; \mathcal{S}) - \frac{1}{N} \sum_{i=1}^{N} \sum_{\ell \in \mathcal{L}} \rho(\ell | \bar{\boldsymbol{\pi}}, y_{i}, \mathbf{x}_{i}) \log \left(\frac{\pi_{\ell}(y_{i})}{\bar{\pi}_{\ell}(y_{i})} \right),$$
(28)

where $\rho(\ell|\pi,y_i,\mathbf{x}_i)=\frac{P(\ell|\mathbf{x}_i;\mathbf{\Theta})\pi_\ell(y_i)}{p(y_i|\mathbf{x}_i;T)}$ and it has the property that 582 $\rho(\ell|\pi,y_i,\mathbf{x}_i)\in[0,1]$ and $\sum_{\ell\in\mathcal{L}}\rho(\ell|\pi,y_i,\mathbf{x}_i)=1$. Note that, 583 when $\pi=\bar{\pi}$, the equality holds, which indicates this upper bound is tight. Let us define

$$\phi(\boldsymbol{\pi}, \bar{\boldsymbol{\pi}}) = R(\bar{\boldsymbol{\pi}}, \boldsymbol{\Theta}; \mathcal{S}) - \frac{1}{N} \sum_{i=1}^{N} \sum_{\ell \in \mathcal{L}} \rho(\ell | \bar{\boldsymbol{\pi}}, y_i, \mathbf{x}_i) \log \left(\frac{\pi_{\ell}(y_i)}{\bar{\pi}_{\ell}(y_i)} \right).$$
(29)

Then $\phi(\pi, \bar{\pi})$ is a tight upper bound for $R(\pi, \Theta; \mathcal{S})$, which has the properties that for any π and $\bar{\pi}$, $\phi(\pi, \bar{\pi}) \geq \phi(\pi, \pi) = R(\pi, \Theta; \mathcal{S})$ and $\phi(\bar{\pi}, \bar{\pi}) = R(\bar{\pi}, \Theta; \mathcal{S})$. These two properties give the conditions for Variational Bounding.

Recall that we parameterize $\pi_{\ell}(\mathbf{y})$ by two parameters: the 584 mean μ_{ℓ} and the covariance matrix σ_{ℓ} . Let μ and σ denote 585 these two parameters held by all the leaf nodes \mathcal{L} . We define 586 $\psi(\mu, \bar{\mu}) = \phi(\pi, \bar{\pi})$, then $\psi(\mu, \bar{\mu}) \geq \phi(\pi, \pi) = \psi(\mu, \mu) = R(\pi, 587)$

591

593

598

603

604

612

614

615

616

617

618

619

620

621

622

623

624

626

627

628

629

 $\Theta; \mathcal{S})$, which indicates that $\psi(\mu, \bar{\mu})$ is also a tight upper bound for $R(\pi, \Theta; \mathcal{S})$. Assume that we are at a point $\mu^{(t)}$ corresponding to the tth iteration, then $\psi(\mu, \mu^{(t)})$ is a tight upper bound for $R(\pi, \Theta; \mathcal{S})$. In the next iteration, $\mu^{(t+1)}$ is chosen such that $\psi(\mu^{(t+1)}, \mu) \leq R(\pi^{(t)}, \Theta; \mathcal{S})$, which implies $R(\pi^{(t+1)}, \Theta; \mathcal{S}) \leq R(\pi^{(t)}, \Theta; \mathcal{S})$. Therefore, we can minimize $\psi(\mu, \bar{\mu})$ instead of $R(\pi, \Theta; \mathcal{S})$ after ensuring that $R(\pi^{(t)}, \Theta; \mathcal{S}) = \psi(\mu^{(t)}, \bar{\mu})$, i.e., $\bar{\mu} = \mu^{(t)}$. Thus, we have

$$\boldsymbol{\mu}^{(t+1)} = \arg\min_{\boldsymbol{\mu}} \psi(\boldsymbol{\mu}, \boldsymbol{\mu}^{(t)}). \tag{30}$$

The partial derivative of $\psi(\mu, \mu^{(t)})$ w.r.t. μ_{ℓ} is computed by

$$\frac{\partial \psi(\boldsymbol{\mu}, \boldsymbol{\mu}^{(t)})}{\partial \mu_{\ell}} = \frac{\partial \phi(\boldsymbol{\pi}, \boldsymbol{\pi}^{(t)})}{\partial \boldsymbol{\mu}_{\ell}}$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \rho(\ell | \boldsymbol{\pi}^{(t)}, y_i, \mathbf{x}_i) \sigma_{\ell}^{-1}(y_i - \mu_{\ell}).$$
(31)

By setting $\frac{\partial \psi(\mu, \mu^{(t)})}{\partial \mu_{\ell}} = 0$, we have

$$\mu_{\ell}^{(t+1)} = \frac{\sum_{i=1}^{N} \rho(\ell | \boldsymbol{\pi}^{(t)}, y_i, \mathbf{x}_i) y_i}{\sum_{i=1}^{N} \rho(\ell | \boldsymbol{\pi}^{(t)}, y_i, \mathbf{x}_i)}.$$
 (32)

Similarly, we define $\nu(\sigma, \bar{\sigma}) = \phi(\pi, \bar{\pi})$, then

$$\boldsymbol{\sigma}^{(t+1)} = \arg\min_{\boldsymbol{\sigma}} \nu(\boldsymbol{\sigma}, \boldsymbol{\sigma}^{(t)}). \tag{33}$$

The partial derivative of $v(\boldsymbol{\sigma}, \boldsymbol{\sigma}^{(t)})$ w.r.t. σ_{ℓ} is obtained by

$$\frac{\partial \nu(\boldsymbol{\sigma}, \boldsymbol{\sigma}^{(t)})}{\partial \sigma_{\ell}} = \frac{\partial \boldsymbol{\phi}(\boldsymbol{\pi}, \boldsymbol{\pi}^{(t)})}{\partial \sigma_{\ell}}$$

$$= -\frac{1}{N} \sum_{i=1}^{N} \rho(\ell | \boldsymbol{\pi}^{(t)}, y_i, \mathbf{x}_i) \left[-\frac{1}{2} \sigma_{\ell}^{-1} + \frac{1}{2} \sigma_{\ell}^{-2} (y_i - \mu_{\ell}^{(t+1)})^2 \right].$$
(34)

By Setting $\frac{\partial \nu(\boldsymbol{\sigma}, \boldsymbol{\sigma}^{(t)})}{\partial \sigma_{\ell}} = 0$, we have

$$\sigma_{\ell}^{(t+1)} = \frac{\sum_{i=1}^{N} \rho(\ell | \boldsymbol{\pi}^{(t)}, y_i, \mathbf{x}_i) (y_i - \mu_{\ell}^{(t+1)})^2}{\sum_{i=1}^{N} \rho(\ell | \boldsymbol{\pi}^{(t)}, y_i, \mathbf{x}_i)}.$$
 (35)

Eqs. (32) and (35) are the update functions for the density distribution π held by all leaf nodes, which are step-size free and fast-converged.

5.2.3 Learning Leaf Nodes w/ Deterministic Annealing w/o Initialization

One issue remained is how to initialize the starting point $\mu^{(0)}$ and $\sigma^{(0)}$. Note that $R(\pi,\Theta;\mathcal{S})$ is convex w.r.t. π , but is non-convex w.r.t. μ and σ . Consequently, based on the update functions Eqs. (32) and (35), $R(\pi,\Theta;\mathcal{S})$ may converge to a poor local minimum, if $\mu^{(0)}$ and $\sigma^{(0)}$ are not well initialized. In our previous work [29], we did k-means clustering on $\{y_i\}_{i=1}^N$ to obtain $|\mathcal{L}|$ subsets, then initialized $\mu^{(0)}$ and $\sigma^{(0)}$ according to cluster assignment. Here, inspired by [23], [24] we propose a deterministic annealing algorithm for the above optimization problem, which leads to an initialization free solution to avoid poor local minimum. In [23], [24], a deterministic annealing Expectation-Maximization (EM) algorithm was presented for Maximum Likelihood Estimation (MLE) problems to obtain better estimates free

of the initial parameter values, in which a new posterior 632 parameterized by "temperature" is derived by using the 633 principle of maximum entropy and is used for controlling 634 the annealing process. To apply this strategy to our optimi- 635 zation problem, we first rewrite Eq. (28) in the form of Neal 636 and Hinton's free energy [45]

$$J(\rho, \boldsymbol{\pi}) = -\frac{1}{N} \sum_{i=1}^{N} \left(\mathbb{E}_{\rho} \left[\log \left(P(\ell | \mathbf{x}_{i}; \boldsymbol{\Theta}) \pi_{\ell}(y_{i}) \right) \right] - \mathbb{E}_{\rho} [\log \rho] \right),$$
(36)

where $\mathbb{E}_{\rho}[\cdot]$ denotes the expectation w.r.t. conditional probability $\rho(\ell|\pi,y_i,\mathbf{x}_i)$. For a fixed π , when $\rho(\ell|\pi,y_i,\mathbf{x}_i)=641$ $\frac{P(\ell|\mathbf{x}_i;\Theta)\pi_{\ell}(y_i)}{p(y_i|\mathbf{x}_i;T)}$, $J(\rho,\pi)$ achieves its minimum, i.e., $J(\rho,\pi)\equiv642$ $R(\pi,\Theta;\mathcal{S})$. $\rho(\ell|\pi,y_i,\mathbf{x}_i)$ is the posterior in this MLE problem, 643 which plays an important role in the optimization (see 644 Eqs. (32) and (35)). However, since initial values $\mu^{(0)}$ and $\sigma^{(0)}$ 645 are not guaranteed to be near the true ones, $\rho(\ell|\pi,y_i,\mathbf{x}_i)$ may 646 be unreliable at early stages of optimization. Ideally, the influence of this conditional probability should be weakened at the 648 beginning, and as the optimization proceeds, the effect should 649 be strengthened. To this ends, we want to seek another conditional probability $\varrho(\ell|\pi,y_i,\mathbf{x}_i)$ to replace $\rho(\ell|\pi,y_i,\mathbf{x}_i)$ by 651 extending Eq. (36) to a deterministic annealing variant

$$J'(\varrho, \boldsymbol{\pi}, \tau) = -\frac{1}{N} \sum_{i=1}^{N} \left(\mathbb{E}_{\varrho} \left[\log \left(P(\ell | \mathbf{x}_{i}; \boldsymbol{\Theta}) \boldsymbol{\pi}_{\ell}(y_{i}) \right) \right] - \frac{1}{\tau} \mathbb{E}_{\varrho} [\log \varrho] \right),$$
(37)

where $\frac{1}{\tau}$ is the temperature parameter. Note that, when 655 $\tau=1,\ J'\equiv J$. According to Neal and Hinton's theory [45], 656 the minimization of $J'(\varrho,\pi,\tau)$ can be performed by the fol- 657 lowing Coordinate Descent iterations:

• Set $\varrho^{(t+1)}$ to ϱ that minimizes $J'(\varrho, \pi^{(t)}, \tau)$ 659

• Set $\pi^{(t+1)}$ to π that minimizes $J'(\varrho^{(t+1)}, \pi, \tau)$ Given $\pi^{(t)}$, $\varrho^{(t+1)}$ is obtained by minimizing $J'(\varrho, \pi^{(t)}, \tau)$ w.r.t. ϱ under the constraint $\sum_{\ell \in \Gamma} \varrho = 1$

$$\frac{\partial J'(\varrho, \boldsymbol{\pi}^{(t)}, \tau)}{\partial \varrho} = \tag{38}$$

$$-\log\left(P(\ell|\mathbf{x}_i;\boldsymbol{\Theta})\pi_{\ell}^{(t)}(y_i)\right) + \frac{1}{\tau}(\log\varrho + 1) + \lambda = 0,$$

where λ is a Lagrange multiplier. Thus, we have

$$\varrho^{(t+1)}(\ell|\boldsymbol{\pi}^{(t)}, y_i, \mathbf{x}_i) = \frac{\left(P(\ell|\mathbf{x}_i; \boldsymbol{\Theta})\boldsymbol{\pi}_{\ell}^{(t)}(y_i)\right)^{\tau}}{\sum_{\ell \in \mathcal{L}} \left(P(\ell|\mathbf{x}_i; \boldsymbol{\Theta})\boldsymbol{\pi}_{\ell}^{(t)}(y_i)\right)^{\tau}}.$$
 (39)

Then, by fixing $\varrho(\ell|\boldsymbol{\pi}^{(t)},y_i,\mathbf{x}_i)=\varrho^{(t+1)}(\ell|\boldsymbol{\pi}^{(t)},y_i,\mathbf{x}_i)$, minimizing $J'(\varrho^{(t+1)},\boldsymbol{\pi},\tau)$ w.r.t. $\boldsymbol{\pi}$ leads to

$$\mu_{\ell}^{(t+1)} = \frac{\sum_{i=1}^{N} \varrho(\ell | \boldsymbol{\pi}^{(t)}, y_i, \mathbf{x}_i) y_i}{\sum_{i=1}^{N} \varrho(\ell | \boldsymbol{\pi}^{(t)}, y_i, \mathbf{x}_i)},$$
(40)

665

and

$$\sigma_{\ell}^{(t+1)} = \frac{\sum_{i=1}^{N} \varrho(\ell | \boldsymbol{\pi}^{(t)}, y_i, \mathbf{x}_i) (y_i - \mu_{\ell}^{(t+1)})^2}{\sum_{i=1}^{N} \varrho(\ell | \boldsymbol{\pi}^{(t)}, y_i, \mathbf{x}_i)}.$$
 (41)

Comparing the two groups of update functions for leaf 675 nodes, i.e., Eq. (32) versus Eq. (40) and Eq. (35) versus Eq. (41), 676

the only difference between them is that the posterior is changed from $\rho(\ell|\pi,y_i,\mathbf{x}_i)$ to $\varrho(\ell|\pi,y_i,\mathbf{x}_i)$. When $\tau\to 0$, the posterior $\varrho(\ell|\pi,y_i,\mathbf{x}_i)$ becomes uniform distribution, i.e., $\varrho(\ell|\pi,y_i,\mathbf{x}_i)\leftarrow\frac{1}{|\mathcal{L}|}$. Thus, for a small enough τ , no matter how $\boldsymbol{\mu}^{(0)}$ and $\boldsymbol{\sigma}^{(0)}$ are initialized, $\varrho(\ell|\pi,y_i,\mathbf{x}_i)$ does not influence the optimization, since $J'(\varrho,\pi,\tau)$ always has the minimum: $\mu_\ell=\frac{1}{N}\sum_{i=1}^N y_i, \ \sigma_\ell=\frac{1}{N}\sum_{i=1}^N (y_i-\mu_\ell)^2$. Then, by gradually increasing τ (decreasing the temperature), $\varrho(\ell|\pi,y_i,\mathbf{x}_i)$ gradually becomes nonuniform, and the influence of $\varrho(\ell|\pi,y_i,\mathbf{x}_i)$ in the optimization is increasedly strengthened. In this annealing process, we also start with each input sample equally influencing all leaf nodes and gradually localize the influence, which is a well-known strategy to obtain better optima [22].

5.3 Learning a Regression Forest

678

679

682

683

684

685

686

687

689

690 691

692

693

694 695

696

697

698

700

701

702

703

704

705

706

707

708

709 710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

end if

end while

We use the same strategies in Section 4.3 to learn a regression forest. A regression forest is an ensemble of regression trees $\mathcal{F} = \{\mathcal{T}^1, \dots, \mathcal{T}^K\}$, where all trees can possibly share the same parameters in Θ , but each tree can have a different set of split functions (assigned by φ , as shown in Fig. 2), and independent leaf node distribution π . The loss function for a regression forest is also defined as the averaged loss functions of all individual trees (Eq. (18)). Learning the forest \mathcal{F} also follows the alternating optimization strategy described in Section 5.2. To learn Θ , we have the gradient of the forest loss given in Eq. (18), but the first term of the right side is computed by Eq. (24). For the temperature parameter Tintroduced when optimizing Θ , we use the same initialization and cooling schedule described in Section 4.3. The leaf node distribution π of each tree in the forest \mathcal{F} is updated independently according to Eqs. (40) and (41). For the temperature parameter τ introduced in optimizing π , we initialize it as a small value τ_0 (τ_0 < 1) and gradually increase it by $\tau \leftarrow \tau/\eta$ until $\tau = 1$, where η is a constant cooling factor less than 1. The training procedure of a DRF is shown in Algorithm 2.

Algorithm 2. The Training Procedure of a DRF

```
Require: S: training set
Require: n_B: the number of mini-batches to update \pi
Require: T_0, \tau_0: two starting temperature parameters
Require: \eta: a constant cooling factor
  Initialize \Theta and \pi randomly.
  Set \mathcal{B} = \{\emptyset\}, T = T_0 and \tau = \tau_0
   while Not converge do
     while |\mathcal{B}| < n_B \, \mathsf{do}
        Randomly select a mini-batch B from S
        Update \Theta by Gradient Descent (Eqs. (19), (24)) on B
        \mathcal{B} = \mathcal{B} \cup \mathcal{B}
      end while
      Update \pi by iterating Eqs. (40) and (41) on \mathcal{B}
      \mathcal{B} = \{\emptyset\}
     if T \geq 0 then
        T \leftarrow \eta T
      end if
     if \tau < 1 then
        \tau \leftarrow \tau/\eta
```

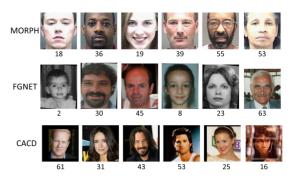


Fig. 5. Some examples of MORPH [25], FG-NET [26] and CACD [27]. The number below each image is the chronological age of each subject.

In the testing stage, the output of the forest \mathcal{F} is given by 726 averaging the predictions from all the individual trees 727

$$\hat{y} = \mathbf{g}(\mathbf{x}; \mathcal{F}) = \frac{1}{K} \sum_{k=1}^{K} \mathbf{g}(\mathbf{x}; \mathcal{T}^{k})$$

$$= \frac{1}{K} \sum_{k=1}^{K} \int y p(y|\mathbf{x}; \mathcal{T}^{k}) dy$$

$$= \frac{1}{K} \sum_{k=1}^{K} \int y \sum_{\ell \in \mathcal{L}^{k}} P(\ell|\mathbf{x}; \mathbf{\Theta}) \pi_{\ell}(y) dy$$

$$= \frac{1}{K} \sum_{k=1}^{K} \sum_{\ell \in \mathcal{L}^{k}} P(\ell|\mathbf{x}; \mathbf{\Theta}) \mu_{\ell},$$
(42)

where \mathcal{L}^k is the leaf node set of the kth tree. Here, we take 730 the fact that the expectation of the Gaussian distribution 731 $\pi_\ell(y)$ is μ_ℓ .

6 EXPERIMENTS

In this section, we first introduce our experimental setup 734 including the datasets, evaluation metrics, and implementa-735 tion details. Then we compare our results with others to 736 show the effectiveness of our algorithms. After that, we conduct elaborate ablation experiments to study the influence 738 of different designs and variants of our methods. Finally, 739 we discuss the comparison between our DLDLF and 740 DRF, visualizations of the learned leaf nodes, the hyper-741 parameters and performance variance brought by random 742 assignment $\varphi(\cdot)$.

6.1 Experimental Setup

6.1.1 Datasets

We conduct our experiments on three standard bench- 746 marks: MORPH [25], FG-NET [26] and the Cross-Age Celeb- 747 rity Dataset [27]. Some examples of these three datasets are 748 illustrated in Fig. 5.

MORPH. MORPH is the most popular dataset for age 750 estimation, which contains more than 55,000 images from 751 about 13,000 people of different races. Each of the facial 752 image is annotated with a chronological age. The ethnicity 753 of MORPH is very unbalanced, as more than 96 percent of 754 the facial images are from African or European people.

Existing methods adopted different experimental setups 756 on MORPH. The first setup (Setup I) is introduced in [3], [6], 757 [31], [33], [46], [47], [48], which selects 5,492 images of 758

Caucasian people from the original MORPH dataset, to reduce the cross-ethnicity effects. In Setup I, these 5,492 images are randomly partitioned into two subsets: 80 percent of the images are selected for training and others for testing. The random partition is repeated 5 times, and the final performance is averaged over these 5 different partitions.

The second setup (Setup II) is used in [8], [34], [37], under which all of the images in MORPH are randomly split into training/testing (80/20 percent) sets. The random splitting is performed 5 times repeatedly and the final performance is obtained by averaging the performances of these 5 different splits.

There are also several methods [11], [49], [50] using the third setup (Setup III), which randomly selected a subset (about 21,000 images) from MORPH and restricted the ratio between Black and White and the one between Female and Male are 1:1 and 1:3, respectively.

FG-NET. FG-NET [26] is also a widely used dataset for age estimation. It contains 1,002 facial images of 82 individuals, in which most of them are white people. Each individual in FG-NET has more than 10 photos taken at different ages. The images in FG-NET have a large variation in lighting conditions, poses and expressions.

Following the experimental setup used in [3], [31], [46], [51], [52], we perform "leave one out" cross validation on this dataset, i.e., we leave images of one person for testing and take the remaining images for training.

CACD. CACD [27] is a large dataset which has around 160,000 facial images of 2,000 celebrities collected from the Internet. These celebrities are divided into three subsets: the training set, the testing set and the validation set which consist of 1,800 celebrities, 120 celebrities and 80 celebrities, respectively. The validation and testing sets are clean but the training set is noisy.

For evaluation we adopt the setup used in [3]. They report results on the testing set obtained by using the models trained on the training set and the validation set, respectively.

6.1.2 Evaluation Metric

The performance of age estimation is evaluated in terms of mean absolute error (MAE) as well as Cumulative Score (CS). MAE is the average absolute error over the testing set, and the Cumulative Score is calculated by $\mathrm{CS}(l) = \frac{K_l}{K} \cdot 100\%$, where K is the total number of testing images and K_l is the number of testing facial images whose absolute error between the estimated age and the ground truth age is not greater than l years. Here, we set the same error level 5 as in [33], [46], [53], i.e., l=5. Note that, since not all the methods reported the Cumulative Score, we are only able to give CS values for some competitors.

6.1.3 Implementation Details

Our realizations of DLDLFs and DRFs are based on the public available "caffe" [54] framework. Following recent deep learning based age estimation methods [3], [6], [37], [48], we use the VGG-16 Net [55] as the CNN part of the proposed DLDLFs and DRFs.

Parameters Setting. The forest model related hyperparameters (and the default values we used) are: number of

TABLE 1
Performance Comparison on MORPH [25]
(Setup I)(*: The Value Is Read from the CS
Curve Shown in the Reference)

Method	MAE	CS
Human workers [18]	6.30	51.0 %*
AGES [58]	8.83	46.8 %*
MTWGP [59]	6.28	52.1%*
CA-SVR [46]	5.88	57.9%
SVR [31]	5.77	57.1%
DLA [47]	4.77	63.4 %*
Rank [60]	6.49	49.5%
Rothe [48]	3.45	N/A
DEX [3]	3.25	N/A
ARN [6]	3.00	N/A
DLDLF (ours)	2.94	84.7%
DRF (ours)	2.80	85.6%

trees (5), tree depth (6), number of output units produced 817 by the feature learning function (128), iterations to update 818 leaf-node predictions (20), number of mini-batches used to 819 update leaf node predictions (50). 820

The age distribution generation related hyper-parameter 821 (and the default value we used) is: the pre-defined standard 822 deviation α in Eq. (3) (2.0). 823

The network training related hyper-parameters (and the 824 values we used) are: initial learning rate (0.05), mini-batch 825 size (16), maximal iterations (30k). We decrease the learning 826 rate (\times 0.5) every 10k iterations.

We fixed the values for the temperature parameters introduced in our DA processes: $T_0 = 1$, $\tau_0 = 0.5$ and $\eta = 0.9$.

Preprocessing. Face alignment is a common preprocessing operation for age estimation [3], [5], [6], [12], [37], [50].

Following these previous methods, we perform face alignment to guarantee all eyeballs stay at the same position in the simage: Faces are first detected by using a standard face detection [56] and facial landmarks are localized by AAM [57].

6.2 Performance Comparison

In this section we compare our LDLF and DRF with other 837 state-of-the-art age estimation methods on the three stan-838 dard benchmarks: MORPH [25], FG-NET [26] and the 839 Cross-Age Celebrity Dataset [27].

MORPH. We first compare the proposed LDLF and DRF 841 with other state-of-the-art age estimation methods on 842 MORPH. As we described before, there are three experi-843 mental setups used on this dataset. For a fair comparison, 844 we test the proposed LDLF and DRF on MORPH under all 845 these three setups. The quantitative results of the three set-846 tings are summarized in Tables 1, 2 and 3, respectively. As 847 can be seen from these tables, our DRF and LDLF achieve 848 the best and the second best performance on all of the set-849 ups, respectively, and outperform the current state-of-the-850 arts with a clear margin. This result shows the effectiveness 851 of jointly learning input-dependent data partition and data 852 distributions in local partitions for age estimation.

FG-NET. We then conduct experiments on FG-NET [26]. 854 The quantitative comparisons on FG-NET dataset are 855 shown in Table 4. As can be seen, DRF and DLDLF outper- 856 form other methods significantly. Note that, they are the 857

TABLE 2
Performance Comparison on MORPH [25]
(Setup II)(*: The Value Is Read from the CS
Curve Shown in the Reference)

Method	MAE	CS
IIS-LDL [8]	5.67	71.2%*
CPNN [9]	4.87	N/A
Huerta [53]	4.25	71.2%
BFGS-LDL [34]	3.94	N/A
OHRank [33]	6.07	56.3%
OR-SVM [60]	4.21	68.1%*
CCA [61]	4.73	60.5%*
LSVR [30]	4.31	66.2%*
OR-CNN [12]	3.27	81.5%
SMMR [13]	3.24	N/A
Ranking-CNN [5]	2.96	85.2%
DLDL [37]	2.42	N/A
Mean-Variance Loss [7]	2.41	91.2%
DLDLF (ours)	2.19	93.0%
DRF (ours)	2.14	91.3%

only two methods that have a MAE below 4.0. The age distribution of FG-NET is strongly biased, moreover, the "leave one out" cross validation policy further aggravates the bias between the training set and the testing set. The ability of overcoming the bias between training and testing sets indicates that the proposed LDLF and DRF can handle inhomogeneous data well.

CACD. Finally, we conduct our experiments on CACD [27]. The detailed comparisons are shown in Table 5. The proposed DLDLF and DRF perform better than the competitor DEX [3], no matter which set they are trained on. It's worth noting that, the improvements of DLDLF and DRF to DEX are much more significant when they are trained on the validation set than the training set. This result can be explained as follow: As described earlier, the inhomogeneous data is the main challenge for training age estimation models. This challenge can be alleviated by enlarging the number of the training samples. Therefore, DEX, DLDLF and DRF achieve comparable results when they are trained on the training set. But when they are trained on the validation set, which is much smaller than the training set, DLDLF and DRF, especially DRF, outperform DEX significantly, because DLDLF and DRF directly address the inhomogeneity challenge. Therefore, DLDLF and DRF are capable of handling inhomogeneous data even when learned from a small set.

6.3 Ablation Study

We conduct some ablation experiments on the MORPH dataset (Setup I), to analyze the influence of different

TABLE 3
Performance Comparison on MORPH [25] (Setting III)

Method	MAE	CS
KPLS [11]	4.18	N/A
Guo and Mu [49]	3.92	N/A
CPLF [50]	3.63	N/A
DLDLF (ours)	2.99	85.6%
DRF (ours)	2.90	82.7%

TABLE 4
Performance Comparison on FG-NET [26](*: The Value Is Read from the CS Curve Shown in the Reference)

Method	MAE	CS
Human workers [18]	4.70	69.5%*
Rank [60]	5.79	66.5%*
DIF [18]	4.80	74.3%*
AGES [58]	6.77	64.1%*
IIS-LDL [8]	5.77	N/A
CPNN [9]	4.76	N/A
MTWGP [59]	4.83	72.3%*
CA-SVR [46]	4.67	74.5%
LARR [31]	5.07	68.9%*
OHRank [33]	4.48	74.4%
DLA [47]	4.26	N/A
CAM [62]	4.12	73.5%*
Rothe [48]	5.01	N/A
DEX [3]	4.63	N/A
Mean-Variance Loss [7]	4.10	78.5%*
DLDLF (Ours)	3.71	84,8%
DRF (Ours)	3.47	87.3%

designs and components for our methods. We want to 887 answer these questions from the ablation study: (1) Since 888 we argue that age estimation is usually formulated as an 889 LDL or regression problem rather than a classification problem, what the result would be if we addressed age estima- 891 tion by a deep classification forest model [19]? (2) Since we 892 argue that our forest structure is important for age estimation, what the result would be if we replaced our forest 894 structure by an ℓ_2 regression loss function? (3) Since we 895 argue that the convergence of the update functions for leaf 896 nodes used in NRF [43] is not guaranteed, what the result 897 would be if we changed our update functions in DRFs to 898 them? (4) What the result would be if the DA process for 899 learning split nodes was not used (T = 0)? (5) What would 900 the result be if the DA process for learning leaf nodes in 901 DRFs was not used ($\tau = 1$), especially when leaf nodes are 902 not initialized by kmeans clustering (w/o kmeans initializa-903 tion)? To answer these questions, we consider these variants 904 of our methods in the ablation experiments:

- DLDLF (T = 0): the DLDLF without the DA process 906 for learning split nodes, i.e., the baseline DLDLFs 907 proposed in our previous work [28].
- DLDLF (full model): the DLDLF with the DA process 909 for learning split nodes, i.e., the method described in 910 Section 4.
- DRF (T = 0, $\tau = 1$, w/ kmeans initialization): the 912 DRF without the two DA processes for learning split 913 and leaf nodes and with kmeans initialization for leaf 914 nodes, i.e., the baseline DRF proposed in our previous work [29].

TABLE 5
Performance Comparison on CACD (Measured by MAE) [27]

Trained on	Dex [3]	DLDLF (Ours)	DRF (Ours)
CACD (train) CACD (val)	4.785 6.521	4.679 6.162	4.610 5.630

884 885

859

860

861

862

863

864

865

866

867

868

870

871

872

873

874

875

876

877

878

879

880

881

882

883

918

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947 948

949

951

952

953

954

955

956

957

Method	MAE	CS
DNDF [19]	3.32	80.7%
Deep Regression	3.21	81.1%
DRF-NRF (w/ kmeans initialization) [43]	3.51	75.4%
DLDLF (T = 0)	3.02	81.3%
DLDLF (full model)	2.94	84.7%
DRF ($T = 0$, $\tau = 1$, w/ kmeans initialization)	2.91	82.9%
DRF ($T = 0, \tau = 1$)	6.91	47.8%
DRF ($\tau = 1$, w/ kmeans initialization)	2.85	83.9%
DRF(T=0)	2.85	84.1%
DRF (full model)	2.80	85.6%

- DRF (T = 0, $\tau = 1$): the DRF without the two DA processes for learning split and leaf nodes and also without kmeans initialization for leaf nodes.
- DRF (τ = 1, w/ kmeans initialization): the DRF with the DA process for learning split nodes, without the two DA processes for leaf nodes, and with kmeans initialization for leaf nodes.
- DRF (T = 0): the DRF without the DA process for learning split nodes, with the two DA processes for leaf nodes, and without kmeans initialization for leaf nodes.
- DRF (full model): the DRF with the two DA processes for learning split and leaf nodes and without kmeans initialization for leaf nodes, i.e., the method described in Section 5.

The results of the ablation experiments are summarized in Table 6.

6.3.1 Age Estimation by Classification

To formulate age estimation as a classification problem, we treat each age value as a class. We apply a deep classification forest model, deep neural decision forests [19], to address this problem. As shown in Table 6, the age estimation result obtained by DNDFs is much worse than the results obtained by our baseline DLDLF and DRF, i.e., DLDLF (T=0) and DRF (T=0, $\tau=1$, w/ kmeans initialization), which evidences that age estimation is not suitable to be formulated as a classification problem.

6.3.2 Age Estimation w/o Forest Structure

To verify whether our forest structure is important for age estimation, we replace our forest structure by an ℓ_2 norm (euclidean) loss function and denote this method by Deep Regression. As shown in Table 6, the age estimation result obtained by Deep Regression is even worse than the result obtained by our baseline DRF, i.e., DRF ($T=0, \tau=1, w/k$) kmeans initialization), which evidences the importance of our forest structure.

6.3.3 The Update Functions for Leaf Nodes

The method which replaces the update functions for leaf nodes in a NRF by those in a DRF is denoted by DRF-NRF. For fair comparison, we also initialize leaf node distributions in DRF-NRF by kmeans. As can be seen, using NRF's leaf node update functions leads to a much worse result

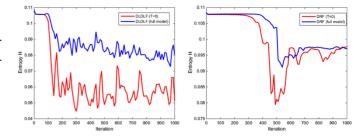


Fig. 6. The dynamics of the averaged entropy $H(\Theta;\mathcal{S})$ over the training set \mathcal{S} for DLDLFs (left) and DRFs (right) at the beginning of tree learning.

than our baseline DRF, i.e., DRF ($T=0, \tau=1, \text{ w/kmeans} 958 \text{ initialization}$), which agrees with our concern about the convergence of NRF's leaf node update rule.

6.3.4 The DA Process for Learning Split Nodes

By comparing DLDLF (full model), DRF (full model) and 962 DRF ($\tau=1$, w/ kmeans initialization) with DLDLF (T=0), 963 DRF (T=0) and DRF (T=0, $\tau=1$, w/ kmeans initializa-964 tion), respectively, we see that using the DA process for 965 learning split nodes always leads to better performances. 966 We also show the dynamics of the averaged entropy 967 $H(\Theta; \mathcal{S})$ over the training set \mathcal{S} at the beginning of tree 968 learning in Fig. 6, where we see for both DLDLF (full model) 969 and DRF (full model), the averaged entropies $H(\Theta; \mathcal{S})$ of 970 them are lager and decrease more slowly than those of 971 DLDLF (T=0) and DRF (T=0). This result is consistent 972 with our intuition about the DA process for learning split 973 nodes described in Section 4.2.1.

6.3.5 The DA Process for Learning Leaf Nodes

We first compare DRF (T=0, $\tau=1$, w/ kmeans initialization). The 977 result obtained by DRF (T=0, $\tau=1$, w/o kmeans initialization). The 977 result obtained by DRF (T=0, $\tau=1$, w/o kmeans initialization) is much worse than the one obtained by DRF (T=0, 979 $\tau=1$, w/ kmeans initialization). This comparison shows that 980 without the DA process for learning leaf nodes, the leaf node 981 update may converge to a poor local minimum, if the leaf 982 node parameters are not well initialized. We then compare 983 DRF (full model) with DRF ($\tau=1$, w/ kmeans initialization), 984 where we see that using the DA process for learning leaf 985 nodes, even without well initializing the leaf node parameters, 986 can lead to a better performance. This comparison indicates 987 that the proposed DA process for learning leaf nodes can 988 avoid poor local optima and obtain better estimates of tree 989 parameters free of initial parameter values.

6.4 Discussion

6.4.1 Comparison between DLDLFs and DRFs

Although DLDLFs and DRFs formulate age estimation as 993 different problems, both of them take the strong correlation 994 between close ages of the same individual into account. The 995 difference is DLDLFs explicitly model cross age correlations 996 of the same individual, while DRFs do this implicitly. The 997 experimental results in Section 6.2 show that DRFs always 998 achieve lower (better) MAE than DLDLFs. The reason might 999 be that DRFs directly approach the precise chronological 1000 ages. However, an interesting result is, for both Setup II and 1001

991

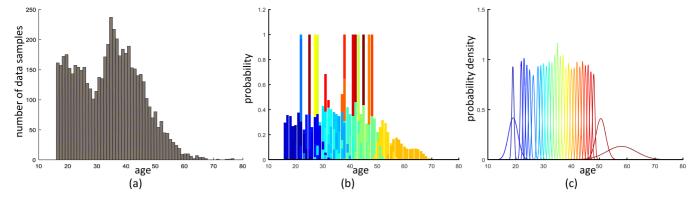


Fig. 7. (a) Histogram of data samples with respect to age on MORPH [25] (Setup I). (b) Visualization of the learned leaf node distributions in our DLDLF. (c) Visualization of the learned leaf node distributions in our DRF. The distributions held by different leaf nodes are in different (gradually varied) colors, which are best viewed in color.

Setup III of the MORPH dataset, that DLDLFs obtain a worse MAE than DRFs, but a better CS. This is because the CS metric tolerates small prediction errors, and DLDLFs learn an age distribution, which benefits fuzzy prediction. Another reason for the worse MAEs achieved by DLDLFs is that we generate age distributions by a fixed α for different individuals, which might be inflexible in adapting to complex face data domains with diverse cross-age correlations [10]. Our future work is to learn the age distributions adaptive to different individuals [7].

6.4.2 Visualization of Learned Leaf Nodes

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015 1016

1017 1018

1019 1020

1021 1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

To better understand DLDLF and DRF, we visualize the distributions at the leaf nodes learned on MORPH [25] (Setup I) in Figs. 7b and 7c, respectively. For reference, we also display the histogram of data samples (the vertical axis) with respect to age (the horizontal axis). Each leaf node in our DLDLF contains a discrete probability distribution, which is represented by a colored histogram in Fig. 7b. Each leaf node in our DRF contains a Gaussian distribution, as visualized in in Fig. 7c. The horizontal axes in both Figs. 7b and 7c represent age and the vertical axes in them represent probability and probability density, respectively (we rescale some very sharp distributions in Fig. 7c for better visualization, since the peak densities of them are too large). According to Fig. 7a, the age data in MORPH was sampled mostly below age 60, and densely concentrated around 20's and 40's. As shown in Figs. 7b and 7c, both of the distributions learned by DLDLF and DRF fit the age data well: The discrete distributions around 60 are more uniform than those spread in the interval between 20 and 50; The Gaussian distribution centered around 60 has much

larger variance than those centered in the interval between 20 1032 and 50, but has smaller probability density. Note that, 1033 although these learned distributions represent homogeneous 1034 local partitions, the number of samples is not necessarily uniformly distributed among partitions. Another phenomenon is 1036 these distributions are heavily overlapped, which accords 1037 with the fact that different people with the same age but have 1038 quite different facial appearances.

6.4.3 Sensitivity of Hyper-Parameters

Now we discuss three important hyper-parameters: the tree 1041 number, the tree depth and the standard deviation α in 1042 Eq. (3) used for age distribution generation. We vary each of 1043 them and fix the other one to the default value to see how 1044 the performance changes on MORPH (Setup I).

Tree Number. As we stated in Section 1, the ensemble 1046 strategy to learn a forest proposed in DNDFs [19] is different from ours. Therefore, it is necessary to see which ensemble strategy is better to learn a forest. Towards this end, we 1049 replace our ensemble strategy by the one used in DNDFs, 1050 and name the methods DLDLF-DNDF and DRF-DNDF, 1051 accordingly. As shown in Fig. 8a, our ensemble strategy can 1052 improve the performance by using more trees, as we 1053 expected, while the one used in DNDFs leads to an even 1054 worse performance than one for a single tree.

Tree Depth. Tree depth is another important parameter for 1056 decision trees. As shown in Fig. 8b, for both DLDLF and DRF, 1057 with the tree depth increase, the MAE first becomes lower 1058 and then stable. One concern about the tree depth is that a 1059 very deep tree may lead to underflow due to the continued 1060 product form of Eq. (1). However, this will not happen in 1061

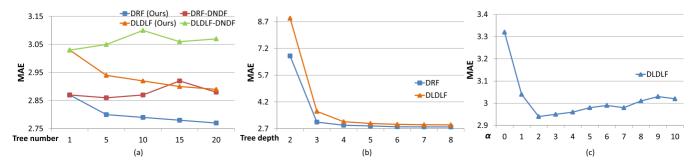


Fig. 8. Performance changes by varying (a) tree number, (b) tree depth and (c) standard deviation α on MORPH [25] (Setup I).

1063

1064

1065

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1113

1114

1116

1117

1118

1119

practice. First, according to Fig. 8b, the performance of our method becomes saturated when the tree depth is larger than 6, thus it is unnecessary to use very deep trees. Second, there is an implicit constraint between tree depth h and unit number m of the FC layer f: $m \ge 2^{h-1} - 1$. The maximum unit number of the FC layers in a typical CNN architecture, e.g., AlexNet [63] and VGG-16 Net [55], is 4096, which implies that the tree depth should not be larger than 13.

Standard Deviation α . Fig. 8c shows that how the MAE of our DLDLF changes by using Gaussian distributions with different standard deviation α to generate age distributions. Note that, when $\alpha = 0$, the generated age distributions are one-hot, i.e., the LDL problem becomes a standard classification problem, which leads to a significant performance reduction. When α is larger, the generated age distributions are dispersive, which also leads to performance decrease. This is consistent with our intuition that neighboring ages can help to describe the face appearance of a given age but should not change the priority of the original given age.

Performance Variance Brought by Random Assignment $\varphi(\cdot)$

In our forests, CNN features are randomly selected and assigned to split nodes for forest training, as defined by the function $\varphi(\cdot)$. In order to to check whether this randomness will seriously affect performance, we train 50 DRFs on MORPH (Setup I) and find that the standard derivation of the results obtained by the 50 DRFs is only 0.01 MAE. Therefore, the random feature selection and assignment process does not seriously affect the performance. This result is plausible, since CNN features are first initialized by the values computed by random weights, or weights from a pretrained model trained for classification on Imagenet, which is a very different task than age estimation, and then the selected CNN features used in the forest will be learned and optimized for age estimation during forest training.

CONCLUSION

We proposed two Deep Differentiable Random Forests, i.e., Deep Label Distribution Forest (DLDLF) and Deep Regression Forest for age estimation, which learn nonlinear mapping between inhomogeneous facial feature space and ages. In these two forests, by performing soft data partition at split nodes, the forests can be connected to a deep network and learned in an end-to-end manner, where data partition at split nodes is learned by Back-propagation and age distribution at leaf nodes is optimized by iterating a step-size free and fastconverged update rule derived from Variational Bounding. In addition, two Deterministic Annealing processes are introduced into the learning of split and leaf nodes, respectively, to avoid poor local optima and obtain better estimates of tree parameters free of initial parameter values. The end-to-end learning of split and leaf nodes ensures that partition function at each split node is input-dependent and the local input-output correlation at each leaf node is homogeneous. Experimental results showed that DLDLF and DRF achieved state-ofthe-art results on three age estimation benchmarks. Our Deep Differentiable Random Forests are also applicable to other problems with inhomogeneous data, which will be investigated in our future work.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural 1121 Science Foundation of China No. 61672336 and in part by 1122 ONR N00014-15-1-2356. The authors would like to thank Chenxi Liu, Siyuan Qiao and Zhishuai Zhang for instructive discussions.

REFERENCES

K. Alkass, B. A. Buchholz, S. Ohtani, T. Yamamoto, H. Druid, and 1127 K. L. Spalding, "Age estimation in forensic sciences: Application 1128 of combined aspartic acid racemization and radiocarbon analysis," Mol. Cellular Proteomics, vol. 9, pp. 1022-1030, 2010.

1126

1158

1167

1186

- H. Han, C. Otto, and A. K. Jain, "Age estimation from face images: 1131 Human vs. machine performance," in Proc. Int. Conf. Biometrics, 1132 2013, pp. 1–8. 1133
- R. Rothe, R. Timofte, and L. V. Gool, "Deep expectation of real and 1134 apparent age from a single image without facial landmarks," Int. J. 1135 Comput. Vis., vol. 126, pp. 144-157, 2018. 1136
- G. Levi and T. Hassner, "Age and gender classification using convolutional neural networks," in *Proc. IEEE Conf. Comput. Vis.* 1137 1138 Pattern Recognit. Workshops, 2015, pp. 34-42. 1139
- S. Chen, C. Zhang, M. Dong, J. Le, and M. Rao, "Using ranking-1140 CNN for age estimation," in Proc. IEEE Conf. Comput. Vis. Pattern 1141 Recognit., 2017, pp. 742–751.

 E. Agustsson, R. Timofte, and L. V. Gool, "Anchored regression 1143
- networks applied to age estimation and super resolution," in *Proc.* 1144 IEEE Int. Conf. Comput. Vis., 2017, pp. 1652-1661. 1145
- H. Pan, H. Han, S. Shan, and X. Chen, "Mean-variance loss for 1146 deep age estimation from a face," in Proc. IEEE/CVF Conf. Comput. 1147 Vis. Pattern Recognit., 2018, pp. 5285-5294. 1148
- X. Geng, K. Smith-Miles, and Z. Zhou, "Facial age estimation by 1149 learning from label distributions," in Proc. 24th AAAI Conf. Artif. 1150 Intell., 2010, pp. 451-456. 1151
- X. Geng, C. Yin, and Z. Zhou, "Facial age estimation by learning 1152 from label distributions," IEEE Trans. Pattern Anal. Mach. Intell., 1153 vol. 35, no. 10, pp. 2401-2412, Oct. 2013. 1154
- [10] Z. He, X. Li, Z. Zhang, F. Wu, X. Geng, Y. Zhang, M.-H. Yang, and 1155 Y. Zhuang, "Data-dependent label distribution learning for age estimation," *IEEE Trans. Image Process.*, vol. 26, no. 8, pp. 3846–3858, 1157 Aug. 2017.
- [11] G. Guo and G. Mu, "Simultaneous dimensionality reduction and 1159 human age estimation via kernel partial least squares regression," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2011, pp. 657–664. 1161
- [12] Z. Niu, M. Zhou, L. Wang, X. Gao, and G. Hua, "Ordinal regres-1162 sion with multiple output CNN for age estimation," in Proc. IEEE 1163 Conf. Comput. Vis. Pattern Recognit., 2016, pp. 4920-4928
- [13] D. Huang, L. Han, and F. D. la Torre, "Soft-margin mixture of 1165 regressions," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 1166 2017, pp. 4058-4066.
- N. Ramanathan, R. Chellappa, and S. Biswas, "Age progression 1168 in human faces: A survey," J. Visual Lang. Comput., vol. 15, 1169 pp. 3349-3361, 2009. 1170
- Y. Amit and D. Geman, "Shape quantization and recognition with randomized trees," Neural Comput., vol. 9, no. 7, pp. 1545-1588, 1172 1173
- [16] L. Breiman, "Random forests," Mach. Learn., vol. 45, no. 1, pp. 5–32, 1174 2001.
- 1175 A. Criminisi and J. Shotton, Decision Forests for Computer Vision and 1176 Medical Image Analysis. Berlin, Germany: Springer, 2013.
- [18] H. Han, C. Otto, X. Liu, and A. K. Jain, "Demographic estimation 1178 from face images: Human vs. machine performance," IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 6, pp. 1148–1161, Jun. 2015. 1180
- P. Kontschieder, M. Fiterau, A. Criminisi, and S. R. Bulò, "Deep neural decision forests," in Proc. IEEE Int. Conf. Comput. Vis., 2015, 1182
- M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, "An 1184 introduction to variational methods for graphical models," Mach. Learn., vol. 37, no. 2, pp. 183-233, 1999.
- [21] A. Yuille and A. Rangarajan, "The concave-convex procedure," Neural Comput., vol. 15, no. 4, pp. 915–936, 2003. 1188
- K. Rose, "Deterministic annealing for clustering, compression, classification, regression, and related optimization problems,' 1190 Proc. IEEE, vol. 86, no. 11, pp. 2210-2239, Nov. 1998.

[23] N. Ueda and R. Nakano, "Deterministic annealing variant of the EM algorithm," in Proc. 7th Int. Conf. Neural Inf. Process. Syst., 1994, pp. 545-552

1192 1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205 1206

1207

1208

1209

1210

1211

1212

1213 1214

1215

1216

1217 1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254 1255

1256

1257

1258 1259

1260

1261

1262

1263

1264

1265

1266 1267

1268

- [24] N. Ueda and R. Nakano, "Deterministic annealing EM algorithm," Neural Netw., vol. 11, no. 2, pp. 271-282, 1998.
- K. Ricanek and T. Tesafaye, "MORPH: A longitudinal image database of normal adult age-progression," in Proc. 7th Int. Conf. Autom. Face Gesture Recognit., 2006, pp. 341-345.
- [26] G. Panis, A. Lanitis, N. Tsapatsoulis, and T. F. Cootes, "Overview of research on facial ageing using the FG-NET ageing database," IET Biometrics, vol. 5, no. 2, pp. 37-46, 2016.
- [27] B. Chen, C. Chen, and W. H. Hsu, "Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset," IEEE Trans. Multimedia, vol. 17, no. 6, pp. 804-815, Jun. 2015.
- W. Shen, K. Zhao, Y. Guo, and A. Yuille, "Label distribution learning forests," in Proc. 31st Int. Conf. Neural Inf. Process. Syst., 2017, pp. 834-843.
- W. Shen, Y. Guo, Y. Wang, K. Zhao, B. Wang, and A. L. Yuille, "Deep regression forests for age estimation," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 2304-2313.
- [30] G. Guo, G. Mu, Y. Fu, and T. S. Huang, "Human age estimation using bio-inspired features," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 112-119.
- [31] G. Guo, Y. Fu, C. R. Dyer, and T. S. Huang, "Image-based human age estimation by manifold learning and locally adjusted robust regression," IEEE Trans. Image Process., vol. 17, no. 7, pp. 1178-1188,
- [32] A. Montillo and H. Ling, "Age regression from faces using random forests," in Proc. 16th IEEE Int. Conf. Image Process., 2009, pp. 2465-2468.
- K. Y. Chang, C. S. Chen, and Y. P. Hung, "Ordinal hyperplanes ranker with cost sensitivities for age estimation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2011, pp. 585-592.
- [34] X. Geng, "Label distribution learning," IEEE Trans. Knowl. Data Eng., vol. 28, no. 7, pp. 1734-1748, Jul. 2016.
- [35] X. Yang, X. Geng, and D. Zhou, "Sparsity conditional energy label distribution learning for age estimation," in Proc. 25th Int. Joint Conf. Artif. Intell., 2016, pp. 2259-2265.
- A. L. Berger, S. D. Pietra, and V. J. D. Pietra, "A maximum entropy approach to natural language processing," Comput. Linguistics, vol. 22, no. 1, pp. 39–71, 1996.
- [37] B. B. Gao, C. Xing, C. W. Xie, J. Wu, and X. Geng, "Deep label distribution learning with label ambiguity," IEEE Trans. Image Process., vol. 26, no. 6, pp. 2825–2838, Jun. 2017.
- T. K. Ho, "Random decision forests," in Proc. 3rd Int. Conf. Document Anal. Recognit., 1995, pp. 278-282.
- C. Leistner, A. Saffari, J. Santner, and H. Bischof, "Semisupervised random forests," in Proc. IEEE 12th Int. Conf. Comput. Vis., 2009, pp. 506–513.
- C. Leistner, A. Saffari, and H. Bischof, "Miforests: Multipleinstance learning with randomized trees," in Proc. Eur. Conf. Comput. Vis., 2010, pp. 29-42.
- Y. Ioannou, D. P. Robertson, D. Zikic, P. Kontschieder, J. Shotton, M. Brown, and A. Criminisi, "Decision forests, convolutional networks and the models in-between," arXiv:1603.01250, 2016.
- [42] C. Lee, P. W. Gallagher, and Z. Tu, "Generalizing pooling functions in CNNs: Mixed, gated, and tree," IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 863–875, Apr. 2018.
 [43] A. Roy and S. Todorovic, "Monocular depth estimation using neu-
- ral regression forest," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 5506–5514.
- T. K. Ho, "The random subspace method for constructing decision forests," IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8, pp. 832-844, Aug. 1998.
- R. M. Neal and G. E. Hinton, Learning in Graphical Models. M. I. Jordan, Ed. Cambridge, MA, USA: MIT Press, 1999, ch. A View of the EM Algorithm That Justifies Incremental, Sparse, and Other Variants, pp. 355-368.
- [46] K. Chen, S. Gong, T. Xiang, and C. L. Chen, "Cumulative attribute space for age and crowd density estimation," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2013, pp. 2467-2474.
- X. Wang, R. Guo, and C. Kambhamettu, "Deeply-learned feature for age estimation," in Proc. IEEE Winter Conf. Appl. Comput. Vis., 2015, pp. 534-541
- [48] R. Rothe, R. Timofte, and L. V. Gool, "Some like it hot visual guidance for preference prediction," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 5553-5561.

- [49] G. Guo and G. Mu, "A framework for joint estimation of age, gen- 1269 der and ethnicity on a large database," Image Vis. Comput., vol. 32, no. 10, pp. 761-770, 2014.
- [50] D. Yi, Z. Lei, and S. Z. Li, "Age estimation by multi-scale convolu-1272 tional network," in *Proc. Asian Conf. Comput. Vis.*, 2014, pp. 144–158. 1273
- S. Yan, H. Wang, X. Tang, and T. S. Huang, "Learning auto-1274 structured regressor from uncertain nonnegative labels," in Proc. 1275 IEEE 11th Int. Conf. Comput. Vis., 2007, pp. 1-8. 1276
- [52] K. Chang, C. Chen, and Y. Hung, "Ordinal hyperplanes ranker 1277 with cost sensitivities for age estimation," in Proc. IEEE Conf. Com-1278 put. Vis. Pattern Recognit., 2011, pp. 585-592. 1279
- I. Huerta, C. Fernández, and A. Prati, "Facial age estimation 1280 through the fusion of texture and local appearance descriptors," 1281 in Proc. Eur. Conf. Comput. Vis. Workshops, 2014, pp. 667-681. 1282
- Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, 1283 S. Guadarrama, and T. Darrell, "Caffe: Convolutional architecture 1284 for fast feature embedding," in Proc. ACM Int. Conf. Multimedia, 1286 2014, pp. 675–678.
- [55] K. Simonyan and A. Zisserman, "Very deep convolutional net-1287 works for large-scale image recognition," in Proc. Int. Conf. Learn. 1288 Representations, 2015.
- [56] P. A. Viola and M. J. Jones, "Rapid object detection using a boosted cascade of simple features," in Proc. IEEE Comput. Soc. Conf. Comput. 1290 1291 Vis. Pattern Recognit., 2001, pp. 511-518. 1292
- [57] T. F. Cootes, G. J. Edwards, and C. J. Taylor, "Active appearance 1293 models," in *Proc. Eur. Conf. Comput. Vis.*, 1998, pp. 484–498. 1294
- X. Geng, Z.-H. Zhou, and K. Smith-Miles, "Automatic age estima-1295 tion based on facial aging patterns," IEEE Trans. Pattern Anal. 1296 1297
- Mach. Intell., vol. 29, no. 12, pp. 2234–2240, Dec. 2007. Y. Zhang and D.-Y. Yeung, "Multi-task warped gaussian process 1298 for personalized age estimation," in Proc. IEEE Comput. Soc. Conf. 1299 Comput. Vis. Pattern Recognit., 2010, pp. 2622-2629. 1300
- [60] K.-Y. Chang, C.-S. Chen, and Y.-P. Hung, "A ranking approach for 1301 human ages estimation based on face images," in Proc. 20th Int. 1302 Conf. Pattern Recognit., 2010, pp. 3396-3399. 1303
- [61] G. Guo and G. Mu, "Joint estimation of age, gender and ethnicity: 1304 CCA vs. PLS," in Proc. 10th IEEE Int. Conf. Workshops Autom. Face 1305 Gesture Recognit., 2013, pp. 1–6. 1306
- K. Luu, K. Seshadri, M. Savvides, T. D. Bui, and C. Y. Suen, 1307 "Contourlet appearance model for facial age estimation," in Proc. 1308 Int. Joint Conf. Biometrics, 2011, pp. 1–8.
- [63] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classifi-1310 cation with deep convolutional neural networks," in *Proc.* 25th Int. 1311 Conf. Neural Inf. Process. Syst., 2012, pp. 1106-1114. 1312

Wei Shen received the BS and PhD degrees 1313 both in electronics and information engineering from the Huazhong University of Science and Technology, Wuhan, China, in 2007 and in 2012. From April 2011 to November 2011, he worked in Microsoft Research Asia as an intern. In 2012, he joined the School of Communication and Information Engineering, Shanghai University and served as an assistant and associate professor until Oct 2018. He is currently an assistant research professor with the Department of Computer Science, 1323

Johns Hopkins University. His current research interests include computer vision, deep learning and biomedical image analysis. 1325

Yilu Guo received the BS degree in electronic and 1326 information engineering from Shanghai University, Shanghai, China, in 2016. Currently, he is working toward the master's degree in the School of Communication and Information Engineering, Shanghai University. His research interests include computer 1331 vision and deep learning.

1347

1348

1349 1350

1351

1352

1353

Yan Wang received the BE degree in electronics and information engineering from the Huazhong University of Science and Technology, in 2011, and the PhD degree in electrical and electronic engineering from Nanyang Technological University, in 2017. She is currently a post-doctoral researcher with the Center for Imaging Science, the Johns Hopkins University. She was a research scholar at electrical and computer engineering at the Ohio State University from 2016 to 2017. Her research interests include computer vision and medical image analysis.

Bo Wang received the master's degree in computer science from the University of Toronto, Canada, in 1355 2012 and the PhD degree in computer science from 1356 Stanford University, in 2017. He is a scientist with 1357 the Peter Munk Cardiac Center, University Health 1358 Network, and an assistant professor with the Dept. 1359 of Medical Biophysics, University of Toronto. He 1360 started his own laboratory in Toronto, in 2018. He is 1361 also named as one of the CIFAR AI chairs at Vector 1362 Institute, Toronto, Canada, in 2019. His current 1363 research interests include computer vision, computational biology and machine learning.

Kai Zhao received the BS and MS degrees both in communication and information engineering from Shanghai University, Shanghai, China, in 2014 and 2017. He is currently working toward the PhD degree in the College of Computer and Control Engineering, Nankai University. His research interests include computer vision and deep learning.

Alan Yuille received the BA degree in mathematics from the University of Cambridge, in 1976, 1368 and the PhD degree in theoretical physics at 1369 Cambridge, in 1980. He then held a postdoctoral 1370 position with the Physics Department, University 1371 of Texas at Austin, and the Institute for Theoretical Physics, Santa Barbara. He then became a 1373 research scientist with the Artificial Intelligence 1374 Laboratory, MIT (1982-1986) and followed this 1375 with a faculty position in the Division of Applied 1376 Sciences at Harvard (1986-1995), rising to the 1377

position of associate professor. From 1995-2002 he worked as a senior scientist with the Smith-Kettlewell Eye Research Institute in San Francisco. From 2002-2016 he was a full professor with the Department of Statistics, UCLA with joint appointments in Psychology, Computer Science, and Psychiatry. In 2016 he became a Bloomberg distinguished professor in cognitive science and computer science at Johns Hopkins University. He has won a Marr prize, a Helmholtz prize, and is a fellow of the IEEE.

▷ For more information on this or any other computing topic, 1387
 please visit our Digital Library at www.computer.org/publications/dlib. 1388