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Abstract

In this paper, we reveal the importance and benefits of

introducing second-order operations into deep neural net-

works. We propose a novel approach named Second-Order

Response Transform (SORT), which appends element-wise

product transform to the linear sum of a two-branch net-

work module. A direct advantage of SORT is to facilitate

cross-branch response propagation, so that each branch

can update its weights based on the current status of the

other branch. Moreover, SORT augments the family of

transform operations and increases the nonlinearity of the

network, making it possible to learn flexible functions to fit

the complicated distribution of feature space. SORT can be

applied to a wide range of network architectures, including

a branched variant of a chain-styled network and a resid-

ual network, with very light-weighted modifications. We

observe consistent accuracy gain on both small (CIFAR10,

CIFAR100 and SVHN) and big (ILSVRC2012) datasets. In

addition, SORT is very efficient, as the extra computation

overhead is less than 5%.

1. Introduction

Deep neural networks [27][46][50][16] have become the

state-of-the-art systems for visual recognition. Supported

by large-scale labeled datasets such as ImageNet [5] and

powerful computational resources like modern GPUs, it

is possible to train a hierarchical structure to capture dif-

ferent levels of visual patterns. Deep networks are also

capable of generating transferrable features for different

vision tasks such as image classification [6] and instance

retrieval [42], or fine-tuned to deal with a wide range of

challenges, including object detection [10][43], semantic

segmentation [36][2], boundary detection [45][58], etc.

The past years have witnessed an evolution in designing
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Figure 1. Two types of modules and the corresponding SORT

operations. Left: in a two-branch convolutional block, the two-

way outputs, F1(x) and F2(x), are combined with a second-order

transform F1(x)+F2(x)+F1(x)⊙F2(x). Right: in a residual-

learning building block [16], we can also modify the fusion stage

from x + F(x) to x + F(x) +
√

x⊙ F(x). Here, ⊙ denotes

element-wise product, and
√· denotes element-wise square-root.

efficient network architectures, in which the chain-styled

modules have been extended to multi-path modules [50]

or residual modules [16]. Meanwhile, highway inter-layer

connections are verified helpful in training very deep net-

works [48]. In the previous literatures, these connections

are fused in a linear manner, i.e., the neural responses of two

branches are element-wise summed up as the output. This

limits the ability of a deep network to fit the complicated

distribution of feature space, as nonlinearity forms the main

contribution to the network capacity [23]. This motivates us

to consider higher-order transform operations.



In this paper, we propose Second-Order Response Trans-

form (SORT), an efficient approach that applies to a wide

range of visual recognition tasks. The core idea of SORT

is to append a dyadic second-order operation, say element-

wise product, to the original linear sum of two-branch

vectors. This modification, as shown in Figure 1, brings

two-fold benefits. First, SORT facilitates cross-branch in-

formation propagation, which rewards consistent responses

in forward-propagation, and enables each branch to up-

date its weights based on the current status of the other

branch in back-propagation. Second, the nonlinearity of

the module becomes stronger, which allows the network

to fit more complicated feature distribution. In addition,

adding such operations is very cheap, as it requires less

than 5% extra time, and no extra memory consumptions.

We apply SORT to both deep chain-styled networks and

deep residual networks, and verify consistent accuracy gain

over some popular visual recognition datasets, including

CIFAR10, CIFAR100, SVHN and ILSVRC2012. SORT

also generates more effective deep features to boost the

transfer learning performance.

The remainder of this paper is organized as follows. Sec-

tion 2 briefly reviews related work, and Section 3 illustrates

the SORT algorithm and some analyses. Experiments are

shown in Section 4, and conclusions are drawn in Section 5.

2. Related Work

2.1. Convolutional Neural Networks

The Convolutional Neural Network (CNN) is a hierar-

chical model for visual recognition. It is based on the

observation that a deep network with enough neurons is

able to fit any complicated data distribution. In past years,

neural networks were shown effective for simple recogni-

tion tasks [30]. More recently, the availability of large-

scale training data (e.g., ImageNet [5]) and powerful GPUs

make it possible to train deep architectures [27] which

significantly outperform the conventional Bag-of-Visual-

Words [28][53][41] and deformable part models [8]. A

CNN is composed of several stacked layers. In each of

them, responses from the previous layer are convolved with

a filter bank and activated by a differentiable non-linearity.

Hence, a CNN can be considered as a composite function,

which is trained by back-propagating error signals defined

by the difference between supervision and prediction at the

top layer. Recently, efficient methods were proposed to help

CNNs converge faster and prevent over-fitting, such as Re-

LU activation [39], Dropout [47], batch normalization [21]

and varying network depth in training [20]. It is believed

that deeper networks have stronger ability of visual recog-

nition [46][50][16], but at the same time, deeper networks

are often more difficult to be trained efficiently [49].

An intriguing property of the CNN lies in its transfer

ability. The intermediate responses of CNNs can be used

as effective image descriptors [6], and widely applied to

various types of vision applications, including image classi-

fication [24][56] and instance retrieval [42][54]. Also, deep

networks pre-trained on a large dataset can be fine-tuned to

deal with other tasks, including object detection [10][43],

semantic segmentation [2], boundary detection [58], etc.

2.2. Multi­Branch Network Connections

Beyond the conventional chain-styled networks [46], it

is observed that adding some sideway connections can in-

crease the representation ability of the network. Typical

examples include the inception module [50], in which neu-

ral response generated by different kernels are concatenated

to convey multi-scale visual information. Meanwhile, the

benefit of identity mapping [17] motivates researchers to

explore networks with residual connections [16][60][19].

These efforts can be explained as the pursuit of building

highway connections to prevent gradient vanishing and/or

explosion in training very deep networks [48][49].

Another family of multi-branch networks follow the

bilinear CNN model [35], which constructs two separate

streams to model the co-occurrence of local features. For-

mulated as the outer-product of two vectors, it requires

a larger number of parameters and more computational

resources than the conventional models to be trained. An

alternative approach is proposed to factorize bilinear mod-

els [33] for visual recognition, which largely decreases the

number of trainable parameters.

All the multi-branch structures are followed by a module

to fuse different sources of features. This can be done by

linearly summing them up [16], concatenating them [50],

deeply fusing them [52], or using a bilinear [35] or recur-

rent [49] transform. In this work, we present an extremely

simple and efficient approach to enable effective feature

ensemble, which involves introducing a second-order term

to apply nonlinear transform in neural responses. Intro-

ducing a second-order operation into neural networks has

been studied in some old-fashioned models [11][25], but

we study this idea in modern deep convolutional networks.

3. Second-Order Response Transform

3.1. Formulation

Let x be a set of neural responses at a given layer of a

deep neural network. In practice, x often appears as a 3D

volume. In a two-branch network structure, x is fed into

two individual modules with different parameters, and two

intermediate data cubes are obtained. We denote them as

F1(x;θ1) and F2(x;θ2), respectively. In the cases without

ambiguity, we write F1(x) and F2(x) in short. Most often,

F1(x) and F2(x) are of the same dimensionality, and an

element-wise operation is used to summarize them into the



output set of responses y.

There are some existing examples of two-branch net-

works, such as the Maxout network [13] and the deep

residual network [16]. In Maxout, F1(x) and F2(x)
are generated by two individual convolutional layers, i.e.,

Fm(x) = σ
[

θ
⊤

mx

]

for m = 1, 2, where θm is the

m-th convolutional matrix, σ[·] is the activation function,

and an element-wise max operation is performed to fuse

them: yM = max {F1(x) ,F2(x)}. In a residual module,

F1(x) is simply set as an identity mapping (i.e., x itself),

and F2(x) is defined as x followed by two convolutional

operations, i.e., F2(x) = θ
′⊤

2 σ
[

θ
⊤

2 x

]

, and the fusion is

performed as linear sum: yR = F1(x) + F2(x).
The core idea of SORT is extremely simple. We append

a second-order term, i.e. element-wise product, to the linear

term, leading to a new fusion strategy:

yS = F1(x) + F2(x) + g[F1(x)⊙ F2(x)]. (1)

Here, ⊙ denotes element-wise product and g[·] is a differ-

entiable function. The gradient of yS over either x or θm

(m = 1, 2) is straightforward. Note that this modification

is very simple yet light-weighted. Based on a specifically

implemented layer in popular deep learning tools such as

CAFFE [24], SORT requires less than 5% additional time

in training and testing, meanwhile no extra memory is used.

SORT can be applied to a wide range of network archi-

tectures, even if the original structure does not have branch-

es. In this case, we need to modify each of the original

convolutional layers, i.e., yO = σ
[

θ
⊤
x

]

. We construct two

symmetric branches F1(x) and F2(x), in which the m-th

branch is defined as Fm(x) = σ
[

θ
′⊤

m σ
[

θ
⊤

mx

]]

. Then, we

perform element-wise fusion (1) beyond F1(x) and F2(x)
by setting g[·] to be an identity mapping function. Follow-

ing the idea to reduce the number of parameters [46], we

shrink the receptive field size of each convolutional kernel

in θm from k × k to
⌊

1

2
(k + 1)

⌋

×
⌊

1

2
(k + 1)

⌋

. With two

cascaded convolutional layers and k being an odd number,

the overall receptive field size of each neuron in the output

layer remains unchanged. As we shall see in experiments,

the branched structure works much better than the original

structure, and SORT consistently boosts the recognition

performance beyond the improved baseline.

Another straightforward application of SORT lies in the

family of deep residual networks [16]. Note that residu-

al networks are already equipped with two-branch struc-

tures, i.e., the input signal x is followed by an identi-

ty mapping and the neural response after two convolu-

tions. As a direct variant of (1), SORT modifies the o-

riginal fusion function from yR = x+ F(x) to yS =
x+ F(x) +

√

x⊙ F(x) + ε. Here ε = 10−4 is a smal-

l floating point number to avoid numerical instability in

gradient computation. Note that in the residual networks,

elements in either x or F(x) may be negative [17], and

we perform a ReLU activation on it before computing the

product term. Thus, the exact form of SORT in this case is

yS = x+ F(x) +
√

σ[x]⊙ σ[F(x)] + ε. Similarly, SORT

does not change the receptive field size of an output neuron.

3.2. Cross­Branch Response Propagation

We first discuss the second-order term. According to

our implementation, all the numbers fed into element-

wise product are non-negative, i.e., ∀i, F1,i(x) > 0 and

F2,i(x) > 0. Therefore, the second-order term is either 0
or a positive value (when both F1,i(x) and F2,i(x) are pos-

itive). Consider two input pairs, i.e., (F1,i(x) , F2,i(x)) =
(a, 0) or (F1,i(x) , F2,i(x)) = (a1, a2) where a1 + a2 = a.

In the former case we have ySi = a, but in the latter case

we have ySi = a+ a1 × a2. The extra term, i.e., a1 × a2,

is large when a1 and a2 are close, i.e., |a1 − a2| is small.

We explain it as facilitating the consistent responses, i.e.,

we reward the indices on which two branches have similar

response values.

We also note that SORT leads to an improved way of

gradient back-propagation. Since there exists a dyadic term

F1(x;θ1) ⊙ F2(x;θ2), the gradient of yS with respect to

either one in θ1 and θ2 is related to another. Thus, when

the parameter θ1 needs to be updated, the gradient ∂L
∂θ1

is

directly related to F2(x):

∂L

∂θ1

=

(

∂L

∂yS

)⊤

· [1 + F2(x;θ2)]
⊤
·
∂F1(x;θ1)

∂θ1

, (2)

and similarly, ∂L
∂θ2

is directly related to F1(x). This pre-

vents the gradients from being shattered as the network

goes deep [1], and reduces the risk of structural over-fitting

(i.e., caused by the increasing number of network layers).

As an example, we train deep residual networks [16] with

different numbers of layers on the SVHN dataset [40], a rel-

atively simple dataset for street house number recognition.

Detailed experimental settings are illustrated in Section 4.1.

The baseline recognition errors are 2.30% and 2.49% for the

20-layer and 56-layer networks, respectively, while these

numbers become 2.26% and 2.19% after SORT is applied.

SORT consistently improves the recognition rate, and the

gain becomes more significant when a deeper network ar-

chitecture is used.

In summary, SORT allows the network to consider cross-

branch information in both forward-propagation and back-

propagation. This strategy improves the reliability of neural

responses, as well as the numerical stability in gradient

computation.

3.3. Global Network Nonlinearity

Nonlinearity makes the major contribution to the repre-

sentation ability of deep neural networks [23]. State-of-
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Figure 2. Comparison of different response transform functions.

The second-order operation produces nonlinearity in a 2D subset.

Here, x∗

.
= max {x, 0} and y∗

.
= max {y, 0}.

+ max ⊙ LeNet BigNet ResNet

X 11.10 6.86 7.60

X 11.07 7.01 7.55

X 11.03 − −

X X 11.02 6.90 7.63

X X 10.34 6.60 7.14
X X 10.39 6.57 7.44

X X X 10.80 6.65 7.90
Table 1. Recognition error rate (%) on the CIFAR10 dataset

with different fusion strategies. Here, +, max and ⊙ denote

three dyadic operators, and multiple checkmarks in one row means

to sum up the results produced by the corresponding operators.

Sometimes, using the second-order terms alone results in non-

convergence (denoted by −). All these numbers are averaged over

3 individual runs, with standard deviations of 0.04%–0.08%.

the-art networks are often equipped with sigmoid or ReLU

activation [39] and/or max-pooling layers, and we argue that

the proposed second-order term is a better choice. To this

end, we consider two functions f1(x, y) = x∗ + y∗ and

f2(x, y) = x∗ + y∗ + x∗ × y∗, where x∗

.
= max {x, 0}

and y∗
.
= max {y, 0} are responses after ReLU activation.

If the second-order term is not involved, we obtain a piece-

wise linear function f1(x, y), which means that nonlinearity

only appears in several 1D subspaces of the 2D plane R
2.

By adding the second-order term, nonlinearity exists in

R
2
∗

.
= [0,+∞)

2
(see Figure 2).

Summarizing the cues above (cross-branch propagation

and nonlinearity) leads to adding a second-order term which

involves neural responses from both branches. Hence,

F1 ⊙ F2 is a straightforward and simple choice. We point

out that an alternative choice of second-term nonlinearity is

the square term, i.e., F2
1 (x), where ·2 denotes the element-

wise operation. but we do not suggest this option, since

this does not allow cross-branch response propagation. As

a side note, an element-wise product term behaves similarly

to a logical-and term, which is verified effective in learning

feature representations in neural networks [37].

We experimentally verify the effectiveness of nonlinear-

ity by considering three fusion strategies, i.e., F1(x) +
F2(x), max {F1(x) ,F2(x)} and

√

F1(x)⊙ F2(x). To

compare their performance, we apply different fusion s-

trategies on different networks, and evaluate them on the

CIFAR10 dataset (detailed settings are elaborated in Sec-

tion 4.1). Various combinations lead to different recognition

results, which are summarized in Table 1.

We first note that the second-order operator ⊙ shall not

be used alone, since this often leads to non-convergence

especially in those very deep networks, e.g., BigNet (19 lay-

ers) and ResNet (20 layers). The learning curves in Figure 3

also provide evidences to this point. It is well acknowledged

that first-order terms are able to provide numerical stability,

and help the training process converge [39] compared to

some saturable activation functions such as sigmoid. On

the other hand, when the second-order term is appended

to either + or max, the recognition error is significantly

decreased, which suggests that adding higher-order terms

indeed increases the network representation ability, which

helps to better depict the complicated feature space and

achieve higher recognition rates. Missing either the first-

order or second-order term harms the recognition accuracy

of the deep network, thus we suggest to use a combination

of linear and nonlinear terms in all the later experiments.

In practice, we choose the linear sum mainly because it

allows both branches to get trained in back-propagation,

while the max operator only updates half of the parameters

at each time. In addition, the max operator does not reward

consistent responses as the second-order term does.

3.4. Relationship to Other Work

We note that some previous work also proposed to use a

second-order term in network training. For example, the

bilinear CNN [35] computes the outer-product of neural

responses from two individual networks to capture feature

co-occurrence at the same spatial positions. However, this

operation often requires heavy time and memory overheads,

as it largely increases the dimensionality of the feature

vector, and consequently the number of trainable param-

eters. Training a bilinear CNN is often slow, even in

the improved versions [9][33]. In comparison, the extra

computation brought by SORT is merely ignorable (< 5%).

We evaluate [35] and [9] on the CIFAR10 dataset. Using

BigNet* [38] as the backbone (see Section 4.1.1), the error

rates of [35], [9] and SORT are 7.17%, 8.01% and 6.81%,

and every 20 iterations take 3.7s, 16.5s and 2.1s, respective-

ly. Compared with the baseline, bilinear pooling requires

heavier computation and reports even worse results. This

was noted in the original paper [35], which shows that

good initialization and careful fine-tuning are required, and

therefore it was not designed for training-from-scratch.

In a spatial transformer network [22], the product op-



erator is used to apply an affine transform on the neural

responses. In some attention-based models [3], product

operations are also used to adjust the intensity of neurons

according to the spatial weights. We point out that SORT is

generalized. Due to its simplicity and efficiency, it can be

applied to many different network structures.

SORT is also related to the gating function used in

recurrent neural network cells such as the long short-term

memory (LSTM) [18] or the gated recurrent unit (GRU) [4].

There, element-wise product is used at each time step to

regularize the memory cell and the hidden state. This

operation has also been explored in computer vision [48]

to facilitate very deep network training. In comparison, our

method introduces second-order transform without adding

new parameters, whereas the second-order terms in [18]

or [48] require extra parameters for every newly-added gate.

4. Experiments

We apply the second-order response transform (SORT)

to several popular network architectures, including chain-

styled networks (LeNet, BigNet and AlexNet) and two

variants of deep residual networks. We verify significant

accuracy gain over a wide range of visual recognition tasks.

4.1. Small­Scale Experiments

4.1.1 Settings

Three small-scale datasets are used in this section. Among

them, the CIFAR10 and CIFAR100 datasets [26] are sub-

sets drawn from the 80-million tiny image database [51].

Each set contains 50,000 training samples and 10,000 test-

ing samples, and each sample is a 32 × 32 RGB image.

In both datasets, training and testing samples are uniformly

distributed over all the categories (CIFAR10 contains 10
basic classes, and CIFAR100 has 100 where the visual con-

cepts are defined at a finer level). The SVHN dataset [40] is

a larger collection for digit recognition, i.e., there are 73,257
training samples, 26,032 testing samples, and 531,131 extra

training samples. Each sample is also a 32×32 RGB image.

We preprocess the data as in the previous literature [40],

i.e., selecting 400 samples per category from the training

set as well as 200 samples per category from the extra set,

using these 6,000 images for validation, and the remaining

598,388 images as training samples. We also use local

contrast normalization (LCN) for data preprocessing [13].

Four baseline network architectures are evaluated.

• LeNet [29] is a relatively shallow network with 3
convolutional layers, 3 pooling layers and 2 fully-

connected layers. All the convolutional layers have

5 × 5 kernels, and the input cube is zero-padded by

a width of 2 so that the spatial resolution of the output

remains unchanged. After each convolution including

the first fully-connected layer, a nonlinear function

known as ReLU [39] is used for activating the neural

responses. This common protocol will be used in all

the network structures. The pooling layers have 3 × 3
kernels, and a spatial stride of 2. We apply three

training sections with learning rates of 10−2, 10−3 and

10−4, and 60K, 5K, and 5K iterations, respectively.

• A so-called BigNet is trained as a deeper chain-styled

network. There are 10 convolutional layers, 3 pooling

layers and 3 fully-connected layers in this architecture.

The design of BigNet is similar to VGGNet [46], in

which small convolutional kernels (3×3) are used and

the depth is increased. Following [38], we apply four

training sections with learning rates of 10−1, 10−2,

10−3 and 10−4, and 60K, 30K, 20K and 10K itera-

tions, respectively.

• The deep residual network (ResNet) [16] brings sig-

nificant performance boost beyond chain-styled net-

works. We follow the original work [16] to define

network architectures with different numbers of lay-

ers, which are denoted as ResNet-20, ResNet-32 and

ResNet-56, respectively. These architectures differ

from each other in the number of residual blocks used

in each stage. Batch normalization is applied after each

convolution to avoid numerical instability in this very

deep network. Following the implementation of [59],

we apply three training sections with learning rates

of 10−1, 10−2, and 10−3, and 32K, 16K and 16K
iterations, respectively.

• The wide residual network (WRN) [60] takes the idea

to increase the number of kernels in each layer and

decrease the network depth at the same time. We apply

the 28-layer architecture, denoted as WRN-28, which

is verified effective in [60]. Following the same im-

plementation of the original ResNets, we apply three

training sections with learning rates of 10−1, 10−2 and

10−3, and 32K, 16K, and 16K iterations, respectively.

In all the networks, the mini-batch size is fixed as 100.

Note that both LeNet and BigNet are chain-styled net-

works. Using the details illustrated in Section 3.1, we

replace each convolutional layer using a two-branch, two-

layer module with smaller kernels. This leads to deeper

and more powerful networks, and we append an asterisk (*)

after the original networks to denote them. SORT is applied

to the modified network structure by appending element-

wise product to linear sum.

4.1.2 Results

Results are summarized in Table 2. One can observe that

SORT boosts the performance of all network architectures



Network CF10 CF100 SVHN

Lee et.al [32] 7.97 34.57 1.92

Liang et.al [34] 7.09 31.75 1.77

Lee et.al [31] 6.05 32.37 1.69

Wang et.al [52] 5.87 27.01 −

Zagoruyko et.al [60] 5.37 24.53 1.85

Xie et.al [55] 5.31 25.01 1.67

Huang et.al [20] 5.25 24.98 1.75

Huang et.al [19] 3.74 19.25 1.59

LeNet 14.37 43.83 4.00

LeNet* 11.16 36.84 2.65

LeNet*-SORT 10.41 34.67 2.47

BigNet 7.55 30.47 2.21

BigNet* 6.92 29.43 2.17

BigNet*-SORT 6.81 28.10 2.12

ResNet-20 7.72 31.80 2.30

ResNet-20-SORT 7.35 31.65 2.26

ResNet-32 6.83 30.28 2.54

ResNet-32-SORT 6.33 29.61 2.22

ResNet-56 6.30 28.25 2.49

ResNet-56-SORT 5.50 26.76 2.19

WRN-28 4.81 21.90 1.93

WRN-28-SORT 4.48 21.52 1.48
Table 2. Recognition error rate (%) on small datasets and different

network architectures. All the numbers are averaged over 3 indi-

vidual runs, and the standard deviation is often less than 0.08%.

consistently. On both LeNet and BigNet, we observe sig-

nificant accuracy gain brought by replacing of each con-

volutional layer as a two-branch module. SORT further

improves recognition accuracy by using a more effective

fusion function. In addition, we observe more significant

accuracy gain when the network goes deeper. For example,

on the 20-layer ResNet, the relative error rate drops are

4.79, 0.47% and 1.74% for CIFAR10, CIFAR100) and

SVHN, and these numbers become much bigger (12.70,

5.27% and 12.05%, respectively) on the 56-layer ResNet.

This verifies our hypothesis in Section 3.2, that SORT al-

leviates the shattered gradient problem and helps training

very deep networks more efficiently. Especially, based

on WRN-28, one of the state-of-the-art structures, SORT

reduces the recognition error rate of SVHN from 1.93% to

1.48%, giving a relatively 23.32% error drop, meanwhile

achieving the new state-of-the-art (the previous record is

1.59% [19]). All these results suggest the usefulness of the

second-order term in visual recognition.

4.1.3 Discussions

We plot the learning curves of several architectures in Fig-

ure 3. It is interesting to observe the convergence of network

structures before and after using SORT. On the two-branch

variants of both LeNet and BigNet, SORT allows each

parameterized branch to update its weights based on the

information of the other one, therefore it helps the network

to get trained better (the testing curves are closer to 0). On

the residual networks, as explained in Section 3.3, SORT

introduces numerical instability and makes it more difficult

for the network training to converge, thus in the first training

section (i.e., with the largest learning rate), the network with

SORT often reports unstable loss values and recognition

rates compared to the network without SORT. However, in

the later sections, as the learning rate goes down and the

training process becomes stable, the network with SORT

benefits from the increasing representation ability and thus

works better than the baseline. In addition, a comparable

loss value of SORT can lead to better recognition accuracy

(see the curves of ResNet-56 and WRN-28 on CIFAR100).

4.2. ImageNet Experiments

4.2.1 Settings

We further evaluate our approach on the ILSVRC2012

dataset [44]. This is a subset of the ImageNet database [5]

which contains 1,000 object categories. We train our mod-

els on the training set containing 1.3M images, and test

them on the validation set containing 50K images. Two

network architectures are taken as the baseline. The first

one is the AlexNet [27], a 8-layer network which is used

for testing chain-styled architectures. As in the previous

experiments, we replace each of the 5 convolutional kernels

with a two-branch module, leading to a deeper and more

powerful network structure, which is denoted as AlexNet*.

The second baseline is ResNet [16] with different numbers

of layers, which is the state-of-the-art network architecture

for this large-scale visual recognition task. In both cases, we

start from scratch, and train the networks with mini-batches

of 256 images. The AlexNet is trained through 450K
iterations, and the learning rate starts from 0.1 and drops by

1/10 after each 100K iterations. These numbers are 600K,

0.1 and 150K, respectively, for training a ResNet.

4.2.2 Results

The recognition results are summarized in Table 3. All the

numbers are reported by one single model. Based on the

original chain-styled AlexNet, replacing each convolutional

layer as a two-branch module produces 36.71% top-1 and

14.77% top-5 error rates, which is significantly lower than

the original version, i.e., 43.19% and 19.87%. This is

mainly due to the increase in network depth. SORT further

reduces the errors by 0.72% and 0.31 (or 1.96% and 2.10%
relatively). On the 18-layer ResNet, the baseline top-1
and top-5 error rates are 34.50% and 13.33%, and SORT
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Figure 3. CIFAR10, CIFAR100 and SVHN learning curves with different networks. Each number in parentheses denote the recognition

error rate reported by the final model. Please zoom in for more details.

reduces them to 32.37% and 12.61% (6.17% and 5.71%
relative drop, respectively).

On a 4-GPU machine, AlexNet* and ResNet-18 need

an average of 10.5s and 19.3s to finish 20 iterations. After

SORT is applied, these numbers becomes 10.7s and 19.9s,
respectively. Given that only less than 5% extra time and no

extra memory are used, we can claim the effectiveness and

the efficiency of SORT in large-scale visual recognition.

4.2.3 Discussions

We also plot the learning curves of both architectures in

Figure 4. Very similar phenomena are observed as in small-

scale experiments. On AlexNet* which is the branched ver-

sion of a chain-styled network, SORT helps the network to

be trained better. Meanwhile, on ResNet-18, SORT makes

the network more difficult to converge. But nevertheless,
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Figure 4. ILSVRC2012 learning curves with AlexNet (left) and ResNet-18 (right). Each number in parentheses denotes the top-1 error

rate reported by the final model. For better visualization, we zoom in on a local part (marked by a black rectangle) of each learning curve.

Network Top-1 Error Top-5 Error

AlexNet 43.19 19.87

AlexNet* 36.71 14.77

AlexNet*-SORT 35.99 14.46

ResNet-18 34.50 13.33

ResNet-18-SORT 32.37 12.61

ResNetT-18 30.50 11.07

ResNetT-18-SORT 29.95 10.80

ResNetT-34 27.02 8.77

ResNetT-34-SORT 26.57 8.55

ResNetT-50 24.10 7.11

ResNetT-50-SORT 23.82 6.72
Table 3. Recognition error rate (%) on the ILSVRC2012 dataset

using different network architectures. All the results are reported

using one single crop in testing. The ResNet-18 is implemented

with CAFFE, while ResNetT’s are implemented with Torch [15].

Network pool-5 fc-6 fc-7

AlexNet 69.19 71.51 69.47
(std deviation) ±0.18 ±0.25 ±0.11

AlexNet* 74.20 76.54 74.42
(std deviation) ±0.17 ±0.30 ±0.18

AlexNet*-SORT 74.88 77.12 75.06
(std deviation) ±0.19 ±0.24 ±0.15

Table 4. Classification accuracy (%) on the Caltech256 dataset

using deep features extracted from different layers of different

network structures.

in either cases, SORT improves the representation ability

and eventually helps the modified structure achieve better

recognition performance.

4.3. Transfer Learning Experiments

We evaluate the transfer ability of the trained models

by applying them to other image classification tasks. The

Caltech256 [14] dataset is used for generic image classifi-

cation. We use the AlexNet-based models to extract from

the pool-5, fc-6 and fc-7 layers, and adopt ReLU activation

to filter out negative responses. The neural responses from

the pool-5 layer (6× 6× 256) are spatially averaged into a

256-dimensional vector, while the other two layers directly

produce 4,096-dimensional feature vectors. We perform

square-root normalization followed by ℓ2 normalization,

and use LIBLINEAR [7] as an SVM implementation and

set the slacking variable C = 10. 60 images per category

are left out for training the SVM model, and the remaining

ones are used for testing. The average accuracy over all

categories is reported. We run 10 individual training/testing

splits and report the averaged accuracy as well as the stan-

dard deviation. Results are summarized in Table 4. One can

observe that the improvement on ILSVRC2012 brought by

SORT is able to transfer to Caltech256.

5. Conclusions

In this paper, we propose Second-Order Response Trans-

form (SORT), an extremely simple yet effective approach

to improve the representation ability of deep neural net-

works. SORT summarizes two neural responses by consid-

ering both sum and product terms, which leads to efficient

information propagation throughout the network and more

powerful network nonlinearity. SORT can be applied to

a wide range of modern convolutional neural networks,

and produce consistent recognition accuracy gain on some

popular benchmarks. We also verify the increasing effec-

tiveness of SORT on very deep networks.

In the future, we will investigate the extension of SORT.

It remains open problems that whether SORT can be ap-

plied to multi-branch networks such as Inception [50],

DenseNet [19] and ResNeXt [57], or some other applica-

tions such as GANs [12] or LSTMs [18].
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