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Abstract

We study linear models under heavy-tailed priors from

a probabilistic viewpoint. Instead of computing a single

sparse most probable (MAP) solution as in standard deter-

ministic approaches, the focus in the Bayesian compressed

sensing framework shifts towards capturing the full poste-

rior distribution on the latent variables, which allows quan-

tifying the estimation uncertainty and learning model pa-

rameters using maximum likelihood. The exact posterior

distribution under the sparse linear model is intractable

and we concentrate on variational Bayesian techniques to

approximate it. Repeatedly computing Gaussian variances

turns out to be a key requisite and constitutes the main com-

putational bottleneck in applying variational techniques in

large-scale problems. We leverage on the recently pro-

posed Perturb-and-MAP algorithm for drawing exact sam-

ples from Gaussian Markov random fields (GMRF). The

main technical contribution of our paper is to show that es-

timating Gaussian variances using a relatively small num-

ber of such efficiently drawn random samples is much more

effective than alternative general-purpose variance estima-

tion techniques. By reducing the problem of variance es-

timation to standard optimization primitives, the resulting

variational algorithms are fully scalable and parallelizable,

allowing Bayesian computations in extremely large-scale

problems with the same memory and time complexity re-

quirements as conventional point estimation techniques. We

illustrate these ideas with experiments in image deblurring.

1. Introduction

Sparsity: Deterministic and Bayesian viewpoints Spar-

sity has proven very fruitful in data analysis. Early methods

such as total variation (TV) modeling [31], wavelet thresh-

olding [23], sparse coding [26], and independent compo-

nent analysis [6] have had big impact in signal and image

modeling. Recent research in compressed sensing [4,8] has

shown that high-dimensional signals representable with few

non-zero coefficients in a linear transform domain are ex-

actly recoverable from a small number of measurements

through linear non-adaptive (typically random) operators

satisfying certain incoherence properties. Signal recovery

in these deterministic models typically reduces to a convex

optimization problem and is scalable to problems with mil-

lions of variables such as those arising in image analysis.

The deterministic viewpoint on sparsity has certain

shortcomings. In real-world applications the theoretical as-

sumptions of compressed sensing are often violated. For

example, filter responses of natural images exhibit heavy-

tailed marginal histograms but are seldom exactly zero [22].

In practical applications such as image inpainting or deblur-

ring the measurement operators are fixed and do not satisfy

the incoherence properties. In these setups it is impossible

to exactly reconstruct the underlying latent signal and it is

important to quantify the associated estimation uncertainty.

Along these lines, there is a growing number of studies

both in the machine learning [1,10,19,36,39] and the signal

processing literature [5, 14] which bring ideas from sparse

modeling into a powerful Bayesian statistical approach for

describing signals and images. The most distinctive char-

acteristic of Bayesian modeling is that beyond finding the

most probable (MAP) solution it also allows us to represent

the full posterior distribution on the latent variables, thus

capturing the uncertainty in the recovery process. From

a practical standpoint, this Bayesian compressed sensing

framework allows learning model parameters and devising

adaptive measurement designs in a principled way. We em-

ploy kurtotic priors for modeling the heavy-tailed nature of

filter responses. Beyond sparsity, we can also capture struc-

tured statistical dependencies between model variables [38]

using tools from probabilistic graphical models [29], yield-

ing methods that more faithfully describe the complex sta-

tistical properties of real-world signals.

Variational Bayes for sparse linear models Computing

the exact posterior under heavy tailed priors is not tractable.

We thus have to contend ourselves with approximate solu-

tions, either of stochastic sampling or deterministic varia-



tional type. In sampling techniques we represent the poste-

rior using random samples drawn by Markov chain Monte-

Carlo (MCMC); see [29, 30, 32, 33] for recent related work.

The variational techniques in which we focus in this pa-

per approximate the true posterior distribution with a pa-

rameterized Gaussian which allows closed-form computa-

tions. Inference amounts to adjusting the variational param-

eters to make the fit as tight as possible [41]. Mostly related

to our work are [1, 10, 19, 36]. There exist multiple alterna-

tive criteria to quantify the fit quality, giving rise to approx-

imations such as variational bounding [15], mean field or

ensemble learning, and, expectation propagation (EP) [24]

(see [2,28] for discussions about the relations among them),

as well as different iterative algorithms for optimizing each

specific criterion. These variational criteria involve some

sort of integration over the latent variables. We should con-

trast this with the Laplace approximation [2] which is based

on a second-order Taylor expansion around the MAP point

estimate and is thus inappropriate for the often non-smooth

posterior density under the sparse linear model.

All variational algorithms we study in the paper are of

a double-loop nature, requiring Gaussian variance estima-

tion in the outer loop and sparse point estimation in the in-

ner loop [35, 36, 40]. The ubiquity of the Gaussian vari-

ance computation routine is not coincidental. Variational

approximations try to capture uncertainty in the intractable

posterior distribution along the directions of sparsity. These

are naturally encoded in the covariance matrix of the proxy

Gaussian variational approximation. Marginal Gaussian

variance computation is also required in automatic rele-

vance determination algorithms for sparse Bayesian learn-

ing [20] and relevance vector machine training [39]; the

methods we develop could also be applied in that context.

Variance computation: Lanczos vs. proposed Monte-

Carlo algorithm Estimating Gaussian variances is cur-

rently the main computational bottleneck and hinders the

wider adoption of variational Bayesian techniques in large-

scale problems with thousands or millions of variables such

as those arising in image analysis, in which explicitly stor-

ing or manipulating the full covariance matrix is in general

infeasible. Computing variances in Gaussian Markov ran-

dom fields (GMRFs) with loops is challenging and a host of

sophisticated techniques have been developed for this pur-

pose, which often only apply to restricted classes of mod-

els [21, 42]. A general-purpose variance computation tech-

nique [27, 34] is based on the Lanczos iterative method for

solving eigenproblems [11] and has been extensively stud-

ied in the variational Bayes context by Seeger and Nick-

isch [36,37]. Unless run for a prohibitively large number of

iterations, the Lanczos algorithm severely underestimates

the required variances, to the extent that Lanczos is inad-

equate for optimizing criteria like expectation propagation

which are sensitive to gross variance estimation errors [35].

The main technical contribution of our work is to demon-

strate that the sample-based Monte-Carlo Gaussian vari-

ance estimator of [30] performs markedly better than the

Lanczos algorithm as the key computational sub-routine in

the variational learning context. Our estimator builds on

the efficient Perturb-and-MAP sampling algorithm of [30]

(c.f. [29, 32]) which draws exact GMRF samples by lo-

cally injecting noise to each Gaussian factor independently,

followed by computing the mean/mode of the perturbed

GMRF by preconditioned conjugate gradients. Being un-

biased, the proposed sample estimator does not suffer from

the Lanczos systematic underestimation errors. In practice,

a few samples suffice for capturing the variances with accu-

racy sufficient for even the more sensitive expectation prop-

agation algorithm to work reliably. Moreover, correlations

(i.e. off-diagonal elements of covariance matrix) needed in

certain applications are easy to compute.

The advocated approach to Monte-Carlo variance esti-

mation for variational learning has several other advantages.

It is fully scalable, only relying on well-studied computa-

tional primitives, thus allowing Bayesian inference with the

same memory and time complexity requirements as conven-

tional point estimation. The proposed algorithm is paral-

lelizable, since the required Gaussian samples can be drawn

independently on different processors. Further, we show

how we can use the samples to estimate the free energy and

monitor convergence of the algorithm at no extra cost.

2. Variational Bayes for sparse linear models

2.1. The sparse linear model: Point estimation vs.
Bayesian inference

The formulation of the sparse linear model we consider

follows the setup of [10, 36]. We consider a hidden vec-

tor x ∈ R
N which follows a heavy-tailed prior distribu-

tion P (x) and noisy linear measurements y ∈ R
M of it are

drawn with Gaussian likelihood P (y|x). Specifically:

P (x;θ) ∝
K
∏

k=1

tk(g
T
k x) , P (y|x;θ) = N (y;Hx, σ2I) ,

(1)

where the K rows of G = [gT
1 ; . . . ;g

T
K ] and the M rows of

H = [hT
1 ; . . . ;h

T
M ] are two sets of length-N linear filters,

the former mapping x to the domain s = Gx in which it ex-

hibits sparse responses and the latter capturing the Gaussian

measurement process1. The sparsity inducing potentials

are denoted by tk(sk). The Laplacian tk(sk) = e−τk|sk|,
sk = gT

k x, is a widely used form for them. In some appli-

cations a subset of the model’s aspects (H, σ2,G) can be

unknown and dependent on a parameter vector θ; e.g., in

1N (x;µ,Σ) = |2πΣ|−1/2 exp
(

− 1

2
(x− µ)TΣ

−1(x− µ)
)

is

the multivariate Gaussian density on x with mean µ and covariance Σ.



blind image deconvolution θ typically is the unknown blur-

ring kernel k which determines the measurement matrix H.

By Bayes’ rule, the posterior distribution of the latent

variables x given y has the non-Gaussian density

P (x|y) = Z−1(θ)P (y|x)
K
∏

k=1

tk(sk) , where (2)

Z(θ) , P (y;θ) =

∫

P (y|x)
K
∏

k=1

tk(sk) dx (3)

is the evidence/ partition function.

Point estimation corresponding to standard compressed

sensing amounts to finding the posterior MAP configuration

x̂MAP , argmaxx logP (x|y), leading to minimization of

φMAP(x) = σ−2‖y −Hx‖2 − 2

K
∑

k=1

log tk(sk) . (4)

Point estimation thus reduces to a standard optimization

problem and a host of modern techniques have been de-

veloped for solving it, scalable to large-scale applications.

However, since it ignores the partition function, point es-

timation neither provides information about the estimation

uncertainty nor allows parameter estimation.

In the Bayesian framework we try to overcome these

shortcomings by capturing the full posterior distribution.

Since it is intractable to manipulate it directly, we consider

variational approximations of Gaussian form

Q(x|y) ∝ P (y|x)eβ
T s− 1

2
sTΓ−1s = N (x; x̂Q,A

−1) , with

x̂Q = A−1b , A = σ−2HTH+GTΓ−1G ,

Γ = diag(γ) , and b = σ−2HTy +GTβ . (5)

The implied form for the variational evidence is

ZQ(θ) , Q(y;θ) =

∫

P (y|x)eβ
T s− 1

2
sTΓ−1sdx . (6)

Our task in variational learning is to adjust the set of varia-

tional parameters ξ = (β,γ) so as to improve the fit of the

approximating Gaussian to the true posterior distribution.

We will mostly be focusing on log-concave sparsity in-

ducing potentials tk(·) – i.e., log tk(·) is concave – such as

the Laplacian. This guarantees that the posterior P (x|y) is

also log-concave in x, and thus point estimation in Eq. (4) is

a convex optimization problem. Log-concavity also implies

that P (x|y) is unimodal and justifies approximating it with

a Gaussian Q(x|y) in Eq. (5).

2.2. Variational bounding

Variational bounding [10, 15, 28, 36] is applicable to

sparsity-inducing potentials of super-Gaussian form. The

family of even super-Gaussian potentials is quite rich and

superset of the family of mixtures of zero-mean Gaussians;

it includes the Laplacian and the Student as members [28].

Super-Gaussian potentials have a useful dual representation

tk(sk) = sup
γk>0

e−s2
k
/(2γk)−hk(γk)/2 , with (7)

hk(γk) , sup
sk

−s2k/γk − 2 log tk(sk) (8)

Variational bounding amounts to replacing the potentials

tk(sk) in Eq. (2) with these bounds and tuning the varia-

tional parameters γ (β is fixed to zero in this case) so as the

variational evidence lower bounds as tightly as possible the

exact evidence Z ≥ ZQ. This leads to the variational free

energy minimization problem (see [36] for the derivation)

infγ≻0 φQ(γ), where

φQ(γ) = log|A|+ h(γ) + inf
x

R(x,γ) , (9)

with h(γ) ,
∑K

k=1 hk(γk) and R(x,γ) , σ−2‖y −
Hx‖2 + sTΓ−1s. The A and b are given in Eq. (5); note

that A is a function of γ.

The log-determinant term in Eq. (9) is what makes

Bayesian variational inference more interesting and at the

same time computationally more demanding than point es-

timation. Indeed, using Eq. (7), we can re-write the ob-

jective function for MAP estimation (4) as φMAP(x) =
infγ≻0 h(γ) + R(x,γ), showing that φMAP and φQ only

differ in the log|A| term, which endows variational infer-

ence with the ability to capture the effect of the partition

function. The difficulty lies in the fact that the elements of

the vector γ are interleaved in log|A|. Following [28, 36],

we can decouple the problem by exploiting the concavity of

log|A| as a function of γ−1 , (γ−1
1 , . . . , γ−1

K ). Fenchel du-

ality then yields the upper bound log|A| ≤ zTγ−1−g∗(z),
z ≻ 0. For given γ the bound becomes tight for z =
∇γ−1 log|A| = diag(GA−1GT ), which can be identified

as the vector of marginal variances zk = VarQ(sk|y) along

the directions sk = gT
k x under the variational posterior

Q(x|y) with the current guess for the parameters γ.

This approach naturally suggests a double-loop algo-

rithm, globally convergent when the potentials tk are log-

concave [28, 36]. In the outer loop, we compute the vector

of marginal variances z so as to tighten the upper bound to

log|A|, given the current value of γ.

In the inner loop, instead of φQ in Eq. (9) we minimize

w.r.t. x and γ the upper bound given the newly computed z

φ̄Q(x,γ; z) = zTγ−1 + h(γ) +R(x,γ)

= σ−2‖y −Hx‖2 +
K
∑

k=1

(

s2k + zk
γk

+ hk(γk)

)

. (10)

We can minimize this expression explicitly w.r.t. γ by not-

ing that it is decoupled in the γk and recalling from (7) that



−2 log tk(sk) = infγk>0 s
2
k/γk + hk(γk). This leaves us

with a minimization problem w.r.t. x alone

φ̄Q(x; z) = inf
γ≻0

φ̄Q(x,γ; z) =

= σ−2‖y −Hx‖2 − 2

K
∑

k=1

log tk

(

(s2k + zk)
1/2
)

. (11)

This is just a smoothed version of the MAP point estima-

tion problem (4), also convex when tk are log-concave,

which we minimize in the course of the inner loop with

standard quasi-Newton methods [3] to obtain the varia-

tional mean x̂. After completion of the inner loop, we re-

cover the minimizing values for the variational parameters

γ−1
k = −2d log tk(

√
v)

dv

∣

∣

∣

v=ŝ2
k
+zk

, with which we update the

vector of marginal variances z in the subsequent outer loop

iteration [36].

2.3. Mean field and expectation propagation

Bounding is not the only way to construct variational

approximations to the intractable posterior distribution

P (x|y). The mean field (or ensemble learning) approach

amounts to assuming a simplified parametric form Q for the

posterior distribution and adjusting the corresponding vari-

ational parameters ξ so as to minimize the KL-divergence

DKL(Q||P ) between Q and P [1]. See [18] for a recent

application of the mean field approximation to the problem

of image deconvolution, where it is shown that the mean

field updates reduce to point estimation and variance com-

putation primitives, exactly as in the variational bounding

approximation discussed in detail in Sec. 2.2.

Expectation propagation (EP) is yet another powerful

variational approximation criterion, in which the variational

parameters of the approximating distribution Q are adjusted

so as expectations under Q and the true posterior P (x|y)
are matched [24]. There are various iterative sequential

message passing-like algorithms for optimizing the EP cri-

terion. Applying EP to large-scale problems in which our

paper focuses is challenging. We will employ the parallel

update algorithm of [40], but our methods are also appli-

cable to the recently proposed provably convergent double-

loop algorithm of [35]. Once more, variance estimation in

the outer loop is the computational bottleneck; see [35, 40].

3. Monte-Carlo posterior variance estimation

As highlighted in Sec. 2, repeatedly computing poste-

rior Gaussian variances turns out to be a key computational

routine in all variational approximations of the sparse lin-

ear model. With reference to Eq. (5), our goal is to com-

pute certain elements of the covariance matrix Σ , A−1

or marginal variances zk = VarQ(sk|y) along certain pro-

jections sk = gT
k x under the variational posterior Q(x|y).

Note that Σ is a fully dense N×N matrix. Thus for large-

scale models comprising N ≈ 106 variables it is impossible

to compute or store the full Σ explicitly.

3.1. Lanczos variance estimation

So far, the main candidate for variance estimation in the

context of large-scale variational Bayes has been the Lanc-

zos iterative method [36, 37]. As the iteration progresses,

the Lanczos algorithm builds a monotonically increasing

estimate for the variances [11]. It can reveal in relatively

few iterations the rough structure and relative magnitude of

variances, but requires a very large number of iterations to

accurately approximate their absolute values. Since it scales

badly with the number of iterations NL (its complexity is

O(N2
L) in time and O(NL) in memory due to a required

reorthogonalization step), it is only practical to run Lanczos

for a relatively small number of iterations, yielding gross

underestimates for the variances.

In practice, variational bounding has proven relatively

robust to the Lanczos crude variance estimates [36, 37],

while expectation propagation completely fails [35]. This

starkly contrasting qualitative behavior in the two cases can

be explained as follows: In the presence of Lanczos vari-

ance underestimation errors, the expression (10) remains an

upper bound of (9), albeit not tight any more. Moreover, the

variational optimization problem (11) gracefully degrades

to the point estimation problem (4) when 0 ≤ ẑk ≪ zk. In

other words, despite the variance errors the algorithm does

not collapse, although it effectively ends up solving a mod-

ified inference problem rather than the one that it was sup-

posed to solve. In contrast, expectation propagation works

by moment matching and the gross variance estimation er-

rors make iterative EP algorithms hopelessly break down.

3.2. Efficient Monte­Carlo variance estimation with
Perturb­and­MAP sampling

We propose estimating variances using a sampling-based

Monte-Carlo technique, leveraging on the efficient Perturb-

and-MAP GMRF sampling algorithm of [30]. Although

[30] has already suggested this possibility, it has not ex-

plored its effectiveness in the variational Bayesian context.

The algorithm of [30] reduces GMRF sampling into a

GMRF mean estimation problem. In our notation, an exact

Gaussian sample x̃ ∼ N (0,A−1), with A = σ−2HTH +
GTΓ−1G, can be drawn by solving the linear system

Ax̃ = σ−2HT ỹ +GT β̃ . (12)

The local perturbations ỹ ∼ N (0, σ2I) and β̃ ∼
N (0,Γ−1) are trivial to sample since Γ is diagonal. We ef-

ficiently solve the linear system (12) using preconditioned

conjugate gradients (PCG) [11], employing filtering rou-

tines for fast evaluation of matrix-vector products Ax, thus



avoiding the costly Cholesky factorization step typically as-

sociated with Gaussian simulation. In contrast to Lanczos,

the memory footprint of PCG is small as only 4 length-

N vectors need to be stored, while multiple samples can

be trivially drawn in parallel (using, e.g., parfor in Mat-

lab). Also note that, unlike conjugate gradients, employing

preconditioning within Lanczos variance estimation is dif-

ficult [34] and seldom used in practice.

Having drawn Ns Gaussian samples as described, we

employ the standard sample-based covariance estimators

Σ̂ =
1

Ns

Ns
∑

i=1

x̃ix̃
T
i , ẑk =

1

Ns

Ns
∑

i=1

s̃2k,i , (13)

with s̃k,i , gT
k x̃i. The variance estimates marginally fol-

low scaled chi-square distributions with Ns degrees of free-

dom ẑk ∼ zk
Ns

χ2(Ns). This implies that E {ẑk} = zk, i.e.,

this estimator is unbiased, unlike the Lanczos one. Its rela-

tive error is r = ∆(ẑk)/zk =
√

Var(ẑk)/zk =
√

2/Ns, in-

dependent from the problem size N . The error drops quite

slowly with the number of samples (Ns = 2/r2 samples

are required to reach a desired relative error r), but vari-

ance estimates sufficiently accurate for even the more sen-

sitive expectation propagation algorithm to work reliably

can be obtained after about 20 samples (which translates

to r ≈ 32%). One can show that zk ≤ γ−1
k [36], a con-

sequence of the fact that measurements always reduce the

uncertainty in Gaussian models. To enforce this important

structural constraint, we use in place of (13) the clipped esti-

mator z̄k = min(ẑk, γ
−1
k ) which behaves considerably bet-

ter in practice while still being (asymptotically) unbiased.

To illustrate the efficiency of the proposed Monte-Carlo

variance estimator in the context of variational Bayesian in-

ference, we compare in Fig. 1 the marginal variances ob-

tained by our sample-based estimator with that of Lanczos.

The system matrix A for this particular example is the one

of the last iteration of the double-loop variational bound-

ing algorithm of Sec. 2.2 applied to a small-scale 48×73
deblurring problem for which it is feasible to compute the

exact marginal variances zk. We use the clipped version

z̄k of our estimator with Ns = 20 samples, each drawn by

solving the linear system (12) with 20 PCG iterations as de-

tailed in Sec. 4. Lanczos was run for NL = 300 iterations,

so as the runtime for the two algorithms to be the same. We

see that the proposed sample-based variance estimator per-

forms markedly better than Lanczos, which grossly under-

estimates the true marginal variances. Note that for large-

scale problems the performance gap will be even more pro-

nounced: as we showed earlier, the relative estimation accu-

racy r of the sample-based estimator is independent of the

latent space dimensionality N , while the relative accuracy

of Lanczos further deteriorates for large N [36, Fig. 6].
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Figure 1. Scatter-plot of exact zk vs. estimated ẑk marginal vari-

ances for a small-scale deblurring problem. We compare the the

proposed sample-based Monte-Carlo estimator with Lanczos.

3.3. Monte­Carlo free energy estimation

To monitor convergence of the free energy (9) and for

debugging purposes, it is desirable to estimate log|A| dur-

ing the course of the algorithm. Note that this step is not a

requisite for the variational algorithm to yield estimates for

x or estimate the model parameters θ.

By coercing information from the samples x̃ ∼
N (0,A−1) drawn for variance estimation, we can reli-

ably estimate log|A| at no extra cost, provided that we

can analytically compute log|P| for some matrix P that

approximates A well, typically the preconditioner em-

ployed by PCG for solving (12). To see this, note that

E
{

exp
(

0.5x̃T (A−P)x̃
)}

= |A|/|P|, which suggests

the Monte-Carlo estimator

log|A| ≈ log|P|− logNs+log

(

Ns
∑

i=1

0.5x̃T
i (A−P)x̃i

)

.

(14)

A special case of this with P = I has been proposed before

[7], but for the large-scale problems we consider here using

a good reference P ≈ A is crucial for the estimator (14) to

exhibit low variance and thus be useful in practice.

4. Applications to image deconvolution

Our main motivation for this work is solving inverse

problems in image analysis and low-level vision such as im-

age deblurring, inpainting, and tomographic reconstruction.

These give rise to large-scale inference problems involving

millions of variables. We report experimental results on im-

age deconvolution. Our software builds on the glm-ie

Matlab toolbox [25] designed for variational inference un-

der the variational bounding [36] and expectation propaga-

tion [40] criteria, which we have extended to include imple-

mentations of the proposed algorithms; our extensions will

be integrated in future releases of glm-ie.



In image deblurring [12, 13], our goal is to recover the

sharp image x from its blurred version y. We assume a

spatially homogeneous degradation, typically due to cam-

era or subject motion, captured by the measurement process

y = Hx , k ∗ x. In the non-blind variant of the prob-

lem, the convolution blur kernel k is considered known (the

problem is classically known as image restoration), while

in the more challenging blind variant our goal is to recover

both the sharp image and the unknown blurring kernel.

Blind image deconvolution In the blind deconvolution

case, the blurring kernel is considered as parameter, θ = k,

which we recover by maximum (penalized) likelihood. It

is crucial to determine k by first integrating out the latent

variables x and then maximizing the marginal likelihood

argmaxk P (y;k), instead of maximizing the joint likeli-

hood argmaxk (maxx P (x,y;k)) [9, 17]. Under the varia-

tional approximation, we use Q(y;k) from (6) in place of

P (y;k). Following [10, 18], we carry out the optimization

iteratively using expectation-maximization (EM).

In the E-step, given the current estimate kt for the

blurring kernel, we perform variational Bayesian inference

as described in Sec. 2. In the M-step of the t-th iter-

ation, we maximize w.r.t. k the expected complete log-

likelihood Ekt {logQ(x,y;k)}, with expectations taken

w.r.t. Q(x|y;kt). The updated kernel kt+1 is obtained by

minimizing w.r.t. k (see [18] for the derivation)

Ekt

{

1

2
‖y −Hx‖2

}

=
1

2
tr
(

(HTH)(A−1 + x̂x̂T )
)

− yTHx̂+ (const)

=
1

2
kTRxxk− rTxyk+ (const) ,

(15)

which is a quadratic program in k; see [18] for the formu-

las for rxy and Rxx. The entries in rxy accumulate cross-

correlations between x̂ and y; we use the variational mean

x̂ of (11) for computing them. The entries in Rxx capture

second-order information for x under Q(x|y;kt); we es-

timate them efficiently by drawing a small number of sam-

ples (1 or 2 suffice) from N (0,A−1), exactly as in Sec. 3.2.

Note that [18] estimates Rxx by making the simplifying as-

sumption that A is diagonal, which could potentially lead to

a poor approximation. We add to (15) an extra L1 penalty

term λ1‖k‖L1
so as to favor sparse kernels.

It is important to note that while the M-step update for

k in (15) is a convex optimization problem, the overall log-

likelihood objective − logQ(y;k) is not convex in k. This

means that the EM algorithm can get stuck to local min-

ima. Various techniques have been developed to mitigate

this fundamental problem, such as coarse-to-fine kernel re-

covery, gradient domain processing, or regularization of the

result after each kernel update with (15) – see [9, 17]. We

have not yet incorporated these heuristics into our blind de-

convolution implementation, and thus our software may still

give unsatisfactory results when the spatial support of the

unknown blurring kernel is large.

Efficient circulant preconditioning Our sample-based

variance estimator described in Sec. 3.2 requires repeatedly

drawing samples x̃. For each of the samples we solve by

PCG a linear system of the form Ax̃ = c̃, where c̃ is the

randomly perturbed right hand side in Eq. (12).

The system matrix A = σ−2HTH+GTΓ−1G arising

in image deblurring is typically poorly conditioned, slow-

ing the convergence of plain conjugate gradients. The key

to designing an effective preconditioner for A is to note that

A would be a stationary operator if Γ = γ̄I, i.e., the varia-

tional parameters γk were homogeneous. Following [16],

we select as preconditioner the stationary approximation

of the system matrix, P = σ−2HTH + γ̄−1GTG, with

γ̄−1 , (1/K)
∑K

k=1 γ
−1
k . One can prove that P is the

stationary matrix nearest to A in the Frobenius norm, i.e.

P = argminX∈C‖X − A‖, where C is the set of station-

ary (block-circulant with circulant blocks) matrices [16].

Thanks to its stationarity, P is diagonalized in the Fourier

domain; by employing the 2-D DFT, we can compute very

efficiently expressions of the form P−1x required by PCG

[12]. Moreover, log|P| is also readily computable in the

Fourier domain, allowing us to use the efficient free energy

estimator (14) for monitoring convergence. Note that the

applicability of this preconditioner extends beyond our vari-

ance estimation setup; e.g. it could be employed in conjunc-

tion with the MCMC-based deblurring algorithm of [33].

Circulant preconditioning with P dramatically acceler-

ates convergence of conjugate gradients. We plot in Fig. 2

the residual in the course of conjugate gradient iteration for

a typical system matrix A arising in deblurring a 190×289
image under the variational bounding approximation. With

circulant preconditioning (PCG) we attain within only 10

iterations the same level of accuracy that is reached af-

ter 100 iterations of unpreconditioned conjugate gradients

(CG). This substantial improvement in the convergence rate

more than compensates the roughly 60% time overhead per

iteration of PCG relative to CG (respectively, 80 vs. 50 msec

per iteration on this problem). We are not aware of any work

that similarly exploits the benefits of preconditioning in the

context of Lanczos variance estimation.

Image deblurring results We have carried out prelimi-

nary image deblurring experiments using the dataset of [17]

which contains images degraded by real blur due to camera

motion, as well as their sharp versions shot with the cam-

era still. We assume a total-variation prior, which implies

simple first-order finite difference filters as rows of G and

Laplacian sparsity inducing potentials tk(sk) = e−τk|sk|.
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Figure 2. Conjugate gradients residual norm as function of itera-

tion count; No (CG) vs. circulant (PCG) preconditioner.

We fix τk = 15 which roughly matches the image deriva-

tive scale for typical images with values between 0 and 1.

We set the noise variance to σ2 = 10−5.

We employ the double-loop algorithms described in

Sec. 2 for both the variational bounding (VB) and expec-

tation propagation (EP). We use 20 samples for variance

estimation, and allow 20 PCG iterations for solving each of

the linear systems (12). We show the deblurred images from

both the VB and EP algorithms in Fig. 3 for both the non-

blind and blind scenaria. Note that EP completely breaks

down if we use the Lanczos variance estimator, while it re-

liably works under our sample-based variance estimator.

5. Discussion

We have shown that marginal variances required by vari-

ational Bayesian algorithms can be effectively estimated

using random sampling. This allows applying variational

Bayesian inference to large-scale problems, essentially at

the same cost as point estimation. The proposed variance

estimator can be thought as a stochastic sub-routine in the

otherwise deterministic variational framework.

Interestingly, efficient Perturb-and-MAP random sam-

pling turns out to be a key component in both the proposed

approach to variational inference and recent MCMC tech-

niques [29, 30, 32, 33]. Systematically comparing these two

alternative Bayesian inference alternatives in large-scale ap-

plications arises as an interesting topic for future work.
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