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Remarkable progress in the mathematics and computer

science of probability has led to a revolution in the scope

of probabilistic models. In particular, ‘sophisticated’

probabilistic methods apply to structured relational

systems such as graphs and grammars, of immediate

relevance to the cognitive sciences. This Special Issue

outlines progress in this rapidly developing field, which

provides a potentially unifying perspective across a wide

range of domains and levels of explanation. Here, we

introduce the historical and conceptual foundations of

the approach, explore how the approach relates to

studies of explicit probabilistic reasoning, and give a

brief overview of the field as it stands today.
Introduction

The history of probabilistic models of thought is, in a
sense, as old as probability theory itself. Probability
theory has always had a dual aspect, serving both as a
normative theory for ‘correct’ reasoning about chance
events, but also as a descriptive theory of how people
reason about uncertainty – as providing an analysis, for
example, of the mental processes of an ‘intelligent’ juror.
The title of Bernouilli’s great book, Ars Conjectandi [1],
‘The Art of Conjecture’, nicely embodies this ambiguity,
suggesting both a ‘how-to’ guide for better reasoning, and
a survey of how the ‘art’ is actually practiced. That is, from
its origins, probability theory was viewed as both
mathematics and psychology.

From a modern perspective, this conflation seems
anomalous. Mathematics has shaken free of its psycho-
logical roots, and become an autonomous, and highly
formal, discipline. The philosophical thesis of ‘psycho-
logism’, that mathematics (including probability) is a
description of thought, fell from favour by the end of the
nineteenth century. Moreover, the mathematics and
psychology of probability have become divorced. The
normative mathematical theory has seen spectacular
developments in rigor, generality, and sophistication,
going far beyond unaided intuition (see Griffiths and
Yuille, Technical Introduction: Supplementary material
online). Yet the descriptive study of how people judge
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probabilities has focussed on apparently systematic
patterns of fallacious reasoning about chance [2].

This Special Issue is based on the premise that
reconciliation is long overdue and that the mathematics
of probability is a vital tool in building theories of cognition.
The articles in this issue illustrate how probability
provides a rich framework for vision and motor control,
learning, language processing, reasoning, and beyond.
Moreover, probabilistic models can be applied in various
ways – ranging from analyzing a problem that the cognitive
system faces, to explicating the function of the specific
neural processes that solve it. Rather than advocating a
monolithic and exclusively probabilistic view of the mind,
we suggest instead that probabilistic methods have a range
of valuable roles to play in understanding cognition. We
hope that this Special Issue will help further inspire
researchers in the cognitive and brain sciences to join the
project of illuminating cognition from a probabilistic
standpoint; and encourage mathematicians, statisticians
and computer scientists to deploy the recent remarkable
conceptual and computational armoury that they have
developed to help understand cognition.
The ubiquity of probabilistic inference

The cognitive sciences view the brain as an information
processor; and information processing typically involves
inferring new information from information that has been
derived from the senses, from linguistic input, or from
memory. This process of inference from old to new is,
outside pure mathematics, typically uncertain. Pro-
bability theory is, in essence, a calculus for uncertain
inference, at least according to the subjective interpre-
tation of probability (Box 1). Thus, prima facie,
probabilistic methods have potentially broad application
to uncertain inferences from sensory input to environ-
mental layout; from speech signal to semantic interpre-
tation; from goals to motor output; or from observations
and experiments to regularities in nature.

Probability has, however, only recently become a major
focus of attention in the cognitive sciences. One reason is
that the field has often focussed on computational
architecture (e.g. symbolic rule-based processing vs.
connectionist networks), rather than the nature of the
inferences, probabilistic or otherwise, implemented in that
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Box 1. Subjective probability in a nutshell

The mathematical properties of probability are relatively uncontro-

versial. But the interpretation of probability is not [44]. Most scientists

are familiar with the ‘frequentist’ interpretation: that probabilities are

limiting relative frequencies of repeated identical ‘experiments’, such

as coin flips or dice rolls.

Crucially, this interpretation is not in play here – in cognitive

science applications, probabilities refer to ‘degrees of belief’. Thus,

a person’s degree of belief that a coin that has rolled under the

table has come up heads might be around 1/2; this degree of belief

might well increase rapidly to 1 as she moves her head, bringing

the coin into view. Her friend, observing the same event, might

have different prior assumptions and obtain a different stream of

sensory evidence. Thus the two people are viewing the same event,

but their belief states and hence their subjective probabilities might

differ. Moreover, the relevant information is defined by the specific

details of the situation. This particular pattern of prior information

and evidence will never be repeated, and hence cannot define a

limiting frequency.

Probabilistic analyses of perceptual, linguistic, learning or motor

tasks typically follow this pattern – the issue is to understand what is

believed, and what can be inferred, about the objects in the

environment [3], the future state of the motor system (see Körding

and Wolpert, in this issue [45]), the message being conveyed [17], or

the regularities linking cause and effect (see Courville et al. [46] and

Tenebaum et al. [47], in this issue).

Why should degrees of belief follow the laws of probability? There

are various convergent justifications, but two of the more notable are

Cox’s axioms and the ‘Dutch book’ argument. Cox proposes several

qualitative axioms that any reasonable measure of degree of belief

should satisfy, and it can then be proven that only probability

measures satisfy those axioms. The ‘Dutch book’ argument suggests

that any violation of the laws of probability leads to trouble: for

example, combinations of gambles that each appear fair on their own

but which, together, guarantee a loss.

The subjective interpretation of probability generally aims to

evaluate conditional probabilities, Pr(hjjd), that is, probabilities of

alternative hypotheses, hj (about the state of reality), given certain

data, d (e.g. available to the senses). By the definition of conditional

probability, for any propositions, A and B, the probability that both are

true, Pr(A, B), is by definition the probability that A is true, Pr(A),

multiplied by the probability that B is true, given that A is true, Pr(BjA).

Applying this identity, simple algebra gives Bayes’ theorem:

Prðhj jdÞZ
Prðdjhj ÞPrðhj Þ

PrðdÞ

The centrality of Bayes theorem to the subjective approach to

probability has led to the approach commonly being known as the

Bayesian approach. But the real content of the approach is the

subjective interpretation of probability; Bayes’ theorem itself is just an

elementary, if spectacularly productive, identity in probability theory.

Box 2. How can probability theory be hard for a probabilistic

mind?

Terming probabilities as degrees of belief invites comparison with

the folk psychological notion of belief, in which our everyday

accounts of each other’s behaviour are framed. This in turn suggests

that people might reasonably be expected to introspect about the

probabilities associated with their beliefs. In practice, people often

appear poor at making such numerical judgments; and poor, too, at

numerical probabilistic reasoning problems, where they appear to

fall victim to a range of probabilistic fallacies [2]. The fact that people

appear to be such poor probabilists might seem to conflict with the

thesis that many aspects of cognition can fruitfully be modelled in

probabilistic terms.

Yet this conflict is only apparent. People struggle not just with

probability, but with all branches of mathematics. But the fact that,

for example, Fourier analysis, is hard to understand does not imply

that it, and its generalizations, are not fundamental to audition and

vision. The ability to introspect about the operations of the cognitive

system are the exception rather than the rule – hence, probabilistic

models of cognition do not imply the cognitive naturalness of

learning and applying probability theory.

Indeed, probabilistic models may be most applicable to

cognitive process that are particularly well-optimized, and that

solve the probabilistic problem of interest especially effectively.

Thus, vision or motor control are especially tractable to a

probabilistic approach; and our explicit attempts to reason

about chance might often, ironically, be poorly modelled by

probability theory [48]. Nonetheless, some conscious judgments

have proven amenable to probabilistic analyses, such as

assessments of covariation or causal efficacy [23,25], uncertain

reasoning over causal models [49,50], or predicting the extent of

everyday events [51]. But unlike textbook probability problems,

these are exactly the sorts of crucial real-world judgments for

which human cognition should be expected to be optimized.
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architecture. A second reason is that formal approaches to
uncertain reasoning in psychology and artificial intelli-
gence have often been studied using non-probabilistic
methods, such as default logics, non-monotonic logics, or
various heuristic techniques. A third reason is that
probabilistic methods have typically been viewed as too
restricted in scope to be relevant to cognitive processes
defined over linguistic structural descriptions, logical
representations, and networks of interconnected proces-
sing units. These restrictions have been substantially
reduced by remarkable technical progress in the math-
ematics and computer science of probabilistic models (e.g.
Yuille and Kersten, this issue [3], Griffiths and Yuille,
Technical Introduction: Supplementary material online).

The focus in this Special Issue is modelling cognitive
abilities using sophisticated forms of probabilistic
inference. The term ‘sophisticated’ is intended in at
least two ways. First, the knowledge and beliefs of
cognitive agents are modeled using probability distri-
butions defined over structured systems of represen-
tation, such as graphs, generative grammars, or
predicate logic. This development is crucial for making
probabilistic models relevant to cognitive science, where
structured representations are frequently viewed as
theoretically central. Second, the learning and reason-
ing processes of cognitive agents are modeled using
advanced mathematical techniques from statistical
estimation, statistical physics, stochastic differential
equations, and information theory.

Early examples of sophisticated probabilistic models
include Grenander’s pattern theory [4] and Pearl’s work
on Bayesian networks [5]. This approach has led to broad
advances in the design of intelligent machines, with
implications for computer vision, machine learning,
speech and language processing, and planning and
decision making. Applying these ideas to modeling aspects
www.sciencedirect.com
of human cognition was not straightforward, despite
pioneering work by Shepard [6] and Anderson [7]. Indeed,
classic work in cognitive psychology by Kahneman,
Tversky and their colleagues suggested that human
cognition might be non-rational, non-optimal, and non-
probabilistic in fundamental ways (Box 2).
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Yet it seems increasingly plausible that human
cognition may be explicable in rational probabilistic
terms and that, in core domains, human cognition
approaches an optimal level of performance. Nevertheless,
these new ideas remain unfamiliar to most cognitive
scientists and it is only in the last five years that they have
started making a significant impact on the field.

Vision is the subfield of cognitive science where these
models are most advanced (e.g. [8]). Recent work [9] has
used these techniques to extend classical ideal observer
models (which, by definition, perform optimally) to
complex stimuli, using Bayesian decision theory, and has
shown that these models can account for many aspects of
human visual perception. There have also been successes
in formulating the classic Gestalt laws of perceptual
organization in terms of probabilistic models [10] that
relate to earlier psychological models of grouping and
scene perception [11,12].

Researchers have begun to explore ‘grammatical’ models
of vision using compositional representations [13], and
developed stochastic grammars for image parsing [14].
These provide links between vision and probabilistic
approaches to language processing [15] which are becoming
increasingly successful at modeling experiments in psycho-
linguistics [16]. Indeed, whereas hierarchical symbolic
representations have been viewed as problematic for
probabilistic approaches, recent work in both vision and
language has focussed instead on taking these as the
structures over which sophisticated probabilistic models
are defined. Specifically, determining which structure is
most likely to underlie image or speech data requires using
Bayes’ theorem to combine a prior probability distribution
over structures, and the probability of the data, given each
structure. Computing this latter quantity amounts to
‘synthesizing’ the data, from candidate structures. Thus,
inboth languageandvision, ‘analysis-by-synthesis’ becomes
natural from a probabilistic viewpoint (Yuille and Kersten
[3] and Chater and Manning [17], in this issue).

An advantage of the probabilistic perspective is that it
leads to techniques for coupling different sensory modes
and for integrating perception with planning. Recent work
(e.g. [18]) has built on theoretical studies [19] to model the
integration of visual and haptic cues, yielding good fits
with experimental data. Stankiewicz et al. [20] have made
use of modeling by Kaelbling et al. [21] to design an ideal
observer model for how humans navigate through mazes
and demonstrated that this model fits data where people
navigate mazes in virtual reality.

More recently, these ideas have started making an
impact in causal learning and inference. This work has
built on artificial intelligence approaches to probabilistic
and causal reasoning using Bayesian networks [5,22].
Cheng’s causal power model [23] explains people’s
judgements about the strength of causal relations, as a
form of parameter estimation in a simple Bayesian
network. Tenenbaum, Griffiths and colleagues [24–26]
show that judgments about causal structure – which
variables are causes of which other variables – could be
explained using Bayesian model selection among a set of
candidate Bayesian networks of the same class. Gopnik
www.sciencedirect.com
and colleagues [27] argue that children’s causal learning
could be modeled in this way.

Many other cognitive abilities might be explicable
within this framework. How people learn the forms and
meanings of words from linguistic and perceptual
experience has been the subject of recent work (e.g.
[28]) that draws on, and advances, state-of-the-art
techniques developed in information retrieval, compu-
tational linguistics, and machine learning [15]. In
earlier, related work, Anderson [7] and Shiffrin and
Steyvers [29] considered how people form long-term
memories, and prioritize the retrieval of memories, as a
function of the statistics of their experience with the
relevant events (see also Steyvers et al., this issue [30]).
Work on concept learning by Tenenbaum and Griffiths
[31,32] showed that many phenomena of inductive
generalization and similarity could be explained in
terms of Bayesian inference over a hypothesis space of
candidate concepts, on the assumption that the
observed examples of a concept are a random sample
from the concept’s extension. In reasoning, work by
Chater and Oaksford [33] and Krauss, Martignon, and
Hoffrage [34] helps explains why people use simple
heuristics for certain judgment and decision tasks as
approximations to Bayesian inference. This approach
relates to theoretical analyses (e.g. [35]) showing that
simple heuristics can be sometimes serve as surpris-
ingly good approximations.

Finally, studies of the temporal characteristics of
human causal learning [36] suggest relationships to
stochastic differential equations. Causal relationship
models can be learnt by variants of the Rescorla-
Wagner associative learning model. The equilibria of
this model have recently been classified [37] and
convergence rates analyzed using stochastic approxi-
mation theory [38]. Related techniques have been
applied by Dayan and colleagues [39] to analyzing the
dynamics of animal learning behavior, and to under-
standing connections between basic human and animal
learning processes. This approaches promises to provide
a deeper understanding of learning phenomena that
have typically been viewed in purely mechanistic,
associative terms. More generally, the probabilistic
viewpoint may help explain why the computational
and neural mechanisms of the brain have the structure
they do.
Levels of probabilistic explanation

Sophisticated probabilistic models can be related to
cognitive processes in a variety of ways. This variety can
usefully be understood in terms of Marr’s [40] celebrated
distinction between three levels of computational expla-
nation: the computational level, which specifies the nature
of the cognitive problem being solved, the information
involved in solving it, and the logic by which it can be
solved; the algorithmic level, which specifies the represen-
tations and processes by which solutions to the problem are
computed; and the implementational level, which specifies
how these representations and processes are realized in
neural terms.
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The probabilistic models and methods described in this
Special Issue have potential relevance at each of these
levels. As we have noted, the very fact that much cognitive
processing is naturally interpreted as uncertain inference
immediately highlights the relevance of probabilistic
methods at the computational level. This level of analysis
is focussed entirely on the nature of the problem being
solved – there is no commitment concerning how the
cognitive system actually attempts to solve (or approxi-
mately to solve) the problem. Thus, a probabilistic view-
point on the problem of, say, perception or inference, is
compatible with the belief that, at the algorithmic level, the
relevant cognitive processes operate via a set of heuristic
tricks, rather than explicit probabilistic computations.

One drawback of the heuristics approach, though, is
that it is not easy to explain the remarkable generality
and flexibility of human cognition. Such flexibility seems
to suggest that cognitive problems involving uncertainty
may, in some cases at least, be solved by the application of
probabilistic methods. Thus, we may take models such as
stochastic grammars for language or vision, or Bayesian
networks, as candidate hypotheses about cognitive
representation. Yet, when scaled-up to real-world pro-
blems, full Bayesian computations are intractable, an
issue that is routinely faced in engineering applications.
From this perspective, the fields of machine learning,
artificial intelligence, statistics, informational theory and
control theory can be viewed as rich sources of hypotheses
concerning tractable, approximate algorithms that might
underlie probabilistic cognition.

Finally, turning to the implementational level, one may
askwhether thebrain itself shouldbeviewed inprobabilistic
terms. Intriguingly, many of the sophisticated probabilistic
models that have been developed with cognitive processes in
mind map naturally onto highly distributed, autonomous,
and parallel computational architectures, which seem to
capture the qualitative features of neural architecture.
Indeed, computational neuroscience [41] has attempted to
understand the nervous system as implementing probabil-
istic calculations; and neurophysiological findings, ranging
from spike trains in the blow-fly visual system [42], to cells
apparently involved in decision making in monkeys [43],
have been interpreted as conveying probabilistic infor-
mation. How far it is possible to tell an integrated
probabilistic story across levels of explanation, or whether
the picture is more complex, remains to be determined by
future research.
Conclusion

Sophisticated probabilistic models are finding increasingly
wide application across the cognitive and brain sciences.
Much of cognition is concerned with dealing, highly
effectively, with spectacularly complex problems of prob-
abilistic inference. We suggest that probabilistic methods
are likely to be increasingly important theoretical tools for
understanding cognition. We hope that the articles in this
Special Issue will inspire future researchers to contribute
further to the project of building probabilistic models
of mind.
www.sciencedirect.com
Acknowledgements
This special issue arose from a workshop on ‘Probabilistic Models of
Cognition: The Mathematics of Mind’ hosted by the Institute for Pure and
Applied Mathematics (IPAM) on the UCLA campus in January 2005. We
greatly thank IPAM, in particular the director Mark Green and the
advisory board, for their leadership role in recognizing early on the
scientific potential of this emerging area of mathematical modeling.
IPAM, and its enthusiastic staff, provided intellectual and financial
support, organizational assistance and hospitality. IPAM (http://www.
ipam.ucla.edu) is funded by the National Science Foundation with the
mission of making connections between a broad spectrum of mathema-
ticians and scientists.
Supplementary data

Supplementary data associated with this article can be
found at doi:10.1016/j.tics.2006.05.007
References

1 Bernoulli, J. (1713) Ars conjectandi, Thurnisiorum, Basel
2 Kahneman, D. and Tversky, A., eds (2000) Choices, Values, and

Frames, Cambridge University Press
3 Yuille, A. and Kersten, D. (2006) Vision as Bayesian inference: analysis

by synthesis? Trends Cogn. Sci. DOI:10.1016/j.tics.2006.05.002
4 Grenander, U. (1993) General Pattern Theory: A Mathematical Study

of Regular Structures, Oxford University Press
5 Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems:

Networks of Plausible Inference, Morgan-Kaufman
6 Shepard, R.N. (1987) Towards a universal law of generalization for

psychological science. Science 237, 1317–1323
7 Anderson, J.R. (1990) The Adaptive Character of Thought, Erlbaum
8 Kersten, D. and Yuille, A. (2003) Bayesian models of object perception.

Curr. Opin. Neurobiol. 13, 150–158
9 Weiss, Y. et al. (2002) Motion illusions as optimal percepts. Nat.

Neurosci. 5, 598–604
10 Zhu, S.C. (1999) Embedding Gestalt laws in Markov random fields.

IEEE Trans. Pattern Anal. Mach. Intell. 21, 1170–1187
11 Shipley, T.F. and Kellman, P.J., eds (2001) From Fragments to Objects:

Segmentation and Grouping in Vision, Elsevier
12 Chater, N. (1996) Reconciling simplicity and likelihood principles in

perceptual organization. Psychol. Rev. 103, 566–581
13 Geman, S. (2002) Composition systems. Q. Appl. Math. LX, 707–736
14 Tu, Z. et al. (2005) Image parsing: unifying segmentation, detection,

and object recognition. Int. J. Comput. Vis. 63, 113–140
15 Manning, C. and Schütze, H. (2000) Foundations of Statistical

Natural Language Processing, MIT Press
16 Jurafsky, D. (2003) Probabilistic modelling in psycholinguistics:

linguistic comprehension and production. In Probabilistic Linguistics
(Bod, R. et al., eds), MIT Press

17 Chater, N. and Manning, C.D. (2006) Probabilistic models of language
processing and acquisition. Trends Cogn. Sci. DOI:10.1016/j.tics.2006.
05.006

18 Ernst, M.O. and Banks, M.S. (2002) Humans integrate visual and
haptic information in a statistically optimal fashion. Nature 415,
429–433

19 Clark, J.J. and Yuille, A.L. (1990) Data Fusion for Sensory
Information Processing Systems, Kluwer Academic Publishers

20 Stankiewicz, B.J. et al. Lost in virtual space: human and ideal
wayfinding behavior.J.Exp. Psychol.Hum.Percept. Perform. (in press)

21 Kaelbling, L. et al. (1998) Planning and acting in partially observable
stochastic domains. Artif. Intell., 101

22 Pearl, J. (2000) Causality: Models, Reasoning and Inference,
Cambridge University Press

23 Cheng, P.W. (1997) From covariation to causation: a causal power
theory. Psychol. Rev. 104, 367–405

24 Tenenbaum, J.B. and Griffiths, T.L. (2001) Structure learning in
human causal induction. In Advances in Neural Information
Processing Systems Vol. 13. (Leen, T. et al., eds), pp. 59–65, MIT Press

25 Griffiths, T.L. and Tenenbaum, J.B. (2005) Structure and strength in
causal induction. Cogn. Psychol. 51, 334–384

26 Steyvers, M. et al. (2003) Inferring causal networks through
observations and interventions. Cogn. Sci. 27, 453–489

http://www.ipam.ucla.edu
http://www.ipam.ucla.edu
http://dx.doi.org/doi:10.1016/j.tics.2006.05.007
http://dx.doi.org/doi:10.1016/j.tics.2006.05.002
http://dx.doi.org/doi:10.1016/j.tics.2006.05.006
http://dx.doi.org/doi:10.1016/j.tics.2006.05.006
http://www.sciencedirect.com


Editorial TRENDS in Cognitive Sciences Vol.10 No.7 July2006 291
27 Gopnik, A. et al. (2004) A theory of causal learning in children: causal
maps and Bayes nets. Psychol. Rev. 111, 3–32

28 Tenenbaum, J.B. and Xu, F. (2000) Word learning as Bayesian
inference. In Proc. 22nd Annu. Conf. Cogn. Sci. Soc. (Gleitman, L.R.
and Joshi, A.K., eds), pp. 517–522, Erlbaum

29 Shiffrin, R.M. and Steyvers, M. (1997) A model for recognition memory:
REM: Retrieving effectively from memory.Psychon. Bull. Rev. 4, 145–166

30 Steyvers, M. et al. (2006) Probabilistic inference in human semantic
memory. Trends Cogn. Sci. DOI:10.1016/j.tics.2006.05.005

31 Tenenbaum, J.B. (1999) Bayesian modeling of human concept
learning. In Advances in Neural Information Processing Systems
Vol. 11 (Kearns, M. et al., eds), pp. 59–68, MIT Press

32 Tenenbaum, J.B. and Griffiths, T.L. (2001) Generalization, similarity,
and Bayesian inference. Behav. Brain Sci. 24, 629–641

33 Chater, N. and Oaksford, M. (1999) The probability heuristics model of
syllogistic reasoning. Cogn. Psychol. 38, 191–258

34 Krauss, S. et al. (1999) Simplifying Bayesian inference: the general
case. In Model-based Reasoning in Scientific Discovery (Magnani, L.
et al., eds), pp. 165–179, Kluwer Academic/Plenum Press

35 Coughlan, J.M. and Yuille, A.L. (2002) Bayesian A* tree search with
expected O(N) node expansions: applications to road tracking. Neural
Comput. 14, 1929–1958

36 Danks, D. et al. (2003) Dynamical causal learning, Advances in Neural
Information Processing Systems Vol. 15. (Becker, S. et al., eds), pp. 67–
74, MIT Press

37 Danks, D. (2003) Equilibria of the Rescorla–Wagner model. J. Math.
Psychol. 47, 109–121

38 Yuille, A.L. (2004) The Rescorla–Wagner algorithm and maximum
likelihood estimation of causal parameters. Adv. Neural Inf. Process.
Syst. 17, 1585–1592
Endea

The quarterly magazi
and philosophy

You can access Ende
ScienceDirect, whe
collection of beaut

articles on the histor
reviews and edito

Featur

Waxworks and the performance of anatomy in
Representing revolution: icons o

Myths about moths: a study in
The origins of research into t

In search of the sea monste
Michael Faraday, med

and comin

The Livingstone story and the Ind
Intertwined legacies: Pierre Curie
Provincial geology and the Indus

The history of computer clima
The history of NASA’s exobio

and much, muc

Locate Endeavour on ScienceDirect

www.sciencedirect.com
39 Dayan, P. et al. (2000) Learning and selective attention. Nat. Neurosci.

3, 1218–1223
40 Marr, D. (1982) Vision, W.H. Freeman
41 Dayan, P. and Abbott, L.F. (2001) Theoretical Neuroscience: Compu-

tational and Mathematical Modelling of Neural Systems, MIT Press
42 Rieke, F. et al. (1999) Spikes, MIT Press
43 Shadlen, M.N. and Gold, J.I. (2004) The neurophysiology of decision-

making as a window on cognition. In The Cognitive Neurosciences, 3rd
edn (Gazzaniga, M.S., ed.), pp. 1229–1241, MIT Press
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