
Efficient Authentication
from Hard Learning Problems?

Eike Kiltz1??, Krzysztof Pietrzak2? ? ?,
David Cash3†, Abhishek Jain4†, and Daniele Venturi5†

1 RU Bochum
2 CWI Amsterdam

3 UC San Diego
4 UC Los Angeles

5 Sapienza University of Rome

Abstract. We construct efficient authentication protocols and message-
authentication codes (MACs) whose security can be reduced to the learn-
ing parity with noise (LPN) problem.
Despite a large body of work – starting with the HB protocol of Hopper
and Blum in 2001 – until now it was not even known how to construct
an efficient authentication protocol from LPN which is secure against
man-in-the-middle (MIM) attacks. A MAC implies such a (two-round)
protocol.

1 Introduction

Authentication is among the most basic and important cryptographic tasks. In
the present paper we construct efficient (secret-key) authentication schemes from
the learning parity with noise (LPN) problem. We construct the first efficient
message authentication codes (MACs) from LPN, but also simpler and more
efficient two-round authentication protocols that achieve a notion called active
security. Prior to our work, the only known way to construct an LPN-based MAC
was via a relatively inefficient generic transformation [16] (that works with any
pseudorandom generator), and all interactive LPN-based protocols with security
properties similar to our new protocol required at least three rounds and had a
loose security reduction. Our constructions and techniques diverge significantly
from prior work in the area and will hopefully be of independent interest.

The pursuit of LPN-based authentication is motivated by two disjoint con-
cerns, one theoretical and one practical. On the theoretical side, the LPN prob-
lem provides an attractive basis for provable security [2, 3, 5, 21, 17, 26]. It is

? This is a preliminary full version of a Eurocrypt 2011 paper.
?? Funded by a Sofja Kovalevskaja Award of the Alexander von Humboldt Foundation

and the German Federal Ministry for Education and Research.
? ? ? Supported by the European Research Council under the European Union’s Seventh

Framework Programme (FP7/2007-2013) / ERC Starting Grant (259668-PSPC)
† Research done while visiting CWI Amsterdam

closely related to the well-studied problem of decoding random linear codes, and
unlike most number-theoretic problems used in cryptography, the LPN problem
does not succumb to known quantum algorithms. On the practical side, LPN-
based authentication schemes are strikingly efficient, requiring relatively few
bit-level operations. Indeed, in their original proposal, Hopper and Blum [17]
suggested that humans could perform the computation in their provably-secure
scheme, even with realistic parameters. The efficiency of LPN-based schemes also
makes them suitable for weak devices like RFID tags, where even evaluating a
blockcipher may be prohibitive.

Each of our theoretical and practical motivations, on its own, would be suffi-
ciently interesting for investigation, but together the combination is particularly
compelling. LPN-based authentication is able to provide a theoretical improve-
ment in terms of provable security in addition to providing better efficiency than
approaches based on more classical symmetric techniques that are not related
to hard problems. Usually we trade one benefit for the other, but here we hope
to get the best of both worlds.

Before describing our contributions in more detail, we start by recalling au-
thentication protocols, the LPN problem, and some of the prior work on which
we build.

Authentication protocols. An authentication protocol is a (shared-key)
protocol where a prover P authenticates itself to a verifier V (in the context of
RFID implementations, we think of P as the “tag” and V as the “reader”). We
recall some of the common definitions for security against impersonation attacks.
A passive attack proceeds in two phases, where in the first phase the adversary
eavesdrops on several interactions between P and V, and then attempts to cause
V to accept in the second phase (where P is no longer available). In an ac-
tive attack, the adversary is additionally allowed to interact with P in the first
phase. The strongest and most realistic attack model is a man-in-the-middle at-
tack (MIM), where the adversary can arbitrarily interact with P and V (with
polynomially many concurrent executions allowed) in the first phase.

The LPN problem. Briefly stated, the LPN problem is to distinguish from
random several “noisy inner products” of random binary vectors with a random
secret vector.

More formally, for τ < 1/2 and a vector x ∈ Z`2, define the distribution
Λτ,`(x) on Z`2 × Z2 by (r, rTx ⊕ e), where r ∈ Z`2 is uniformly random and
e ∈ Z2 is selected according to Berτ , the Bernoulli distribution over Z2 with
parameter τ (i.e. Pr[e = 1] = τ). The LPNτ,` problem is to distinguish an oracle
returning samples from Λτ,`(x), where x ∈ Z`2 is random and fixed, from an
oracle returning uniform samples. It was shown by Blum et al. [3] that this is
equivalent to the search version of LPN, where one needs to compute x given
oracle access to Λτ,`(x) (cf. [20, Thm.2] for precise bounds). We note that the
search and decision variants are solvable with a linear in ` number of samples
when there is no noise, i.e. when τ = 0, and the best algorithms take time 2`/ log `

when τ > 0 is treated as a constant [4, 5, 22].

Authentication protocols from LPN. Starting with the work of Hopper
and Blum [17], several authentication protocols based on the LPN problem have
been proposed. Their original elegant protocol is simple enough for us to recall
right away. The shared secret key is a binary vector s ∈ Z`2. The interaction
consists of two messages. First V sends a random challenge r ∈ Z`2, and then P
answers with the bit z = rTs ⊕ e, where e ∈ Z2 is sampled according to Berτ .
Finally, the verifier accepts if z = rTs.

This basic protocol has a large completeness error τ (as V will reject if e = 1)
and soundness error 1/2 (as a random r, z satisfies rT·s = z with probability 1/2).
This can be reduced via sequential or parallel composition. The parallel variant,
denoted HB, is illustrated in Figure 1 (we represent several r with a matrix R
and the noise bits are now arranged in a vector e). The verifier accepts if at
least a τ ′ fraction (where τ < τ ′ < 1/2) of the n basic authentication steps are
correct.

The 2-round HB protocol is provably secure against passive attacks, but
efficient active attacks are known against it. This is unsatisfying because in
several scenarios, and especially in RFID applications, an adversary will be able
to mount an active attack. Subsequently, Juels and Weis [18] proposed an efficient
3 round variant of HB, called HB+, and proved it secure against active attacks.
Again the error can be reduced by sequential repetition, and as shown by Katz,
Shin and Smith via a non-trivial analysis, parallel repetition works as well [19,
20]. The protocol (in its parallel repetition variant) is illustrated in Figure 2.

Despite a large body of subsequent work6 no improvements in terms of round
complexity, security or tightness of the reduction over HB+ were achieved: 3
round protocols achieving active security

√
ε (assuming LPN is ε-hard) are the

state of the art. In particular, Gilbert et al. [13] showed that HB+ can be broken
by a MIM attack. Several variants HB++ [8], HB∗ [10], HB-MP [23] were proposed
to prevent the particular attack from [13], but all of them were later shown to
be insecure [14]. In [15], a variant HB# was presented which provably resists the
particular attack from [13], but was shown susceptible to a more general MIM
attack [24].

Pτ,n(s ∈ Z`2) Vτ ′,n(s ∈ Z`2)
R←− R

$← Z`×n2

e
$← Bernτ

z := RT · s⊕ e
z−→ verify: wt(z⊕RT · s) < τ ′ · n

Fig. 1. The HB protocol, secure against passive attacks.

6 cf. http://www.ecrypt.eu.org/lightweight/index.php/HB for an incomplete list of
relevant papers.

Pτ,n(s1, s2) Vτ ′,n(s1, s2)

R1
$← Z`×n2

R1−→
R2←− R2

$← Z`×n2

e
$← Bernτ

z := RT
1 · s1 ⊕RT

2 · s2 ⊕ e
z−→ verify:

wt(z⊕RT
1 · s1 ⊕RT

2 · s2) ≤ τ ′ · n

Fig. 2. The HB+ protocol, secure against active attacks.

1.1 Our Contribution

We provide new constructions of authentication protocols and even MACs from
LPN. Our first contribution is a two-round authentication protocol secure against
active adversaries (this is mentioned as an open problem in [18]) which more-
over has a tight security reduction (an open problem mentioned in [20]). As a
second contribution, we build two efficient MACs, and thus also get two-round
authentication protocols secure against MIM attacks, from the LPN assumption.
Unlike previous proposals, our constructions are not ad-hoc, and we give a re-
duction to the LPN problem. Our authentication protocol is roughly as efficient
as the HB+ protocol but has twice the key length. Our MACs perform roughly
the same computation as the authentication protocol plus one evaluation of a
pairwise independent permutation of an ≈ 2` bit domain, where ` is the length
of an LPN secret.

2-Round Authentication with Active Security. Our first contribution is
a two-round authentication protocol which we prove secure against active attacks
assuming the hardness of the LPN problem. Our protocol diverges considerably
from all previous HB-type protocols [17, 18, 20, 15], and runs counter to the
intuition that the only way to efficiently embed the LPN problem into a two-
round protocol is via an HB-type construction.

We now sketch our protocol. In HB and its two-round variants, the prover
must compute LPN samples of the form RT · s ⊕ e, where R is the challenge
chosen by the verifier in the first message. We take a different approach. Instead
of sending R, we now let the verifier choose a random subset of the bits of s to
act as the “session-key” for this interaction. It represents this subset by sending
a binary vector v ∈ Z`2 that acts as a “bit selector” of the secret s, and we
write s↓v for the sub-vector of s which is obtained by deleting all bits from s
where v is 0. (E.g. if s = 111000,v = 011100 then s↓v = 110.) The prover then
picks R by itself and computes noisy inner products of the form RT · s↓v ⊕ e.
Curiously, allowing the verifier to choose which bits of s to use in each session
is sufficient to prevent active attacks. We only need to add a few sanity-checks
that no pathological v or R were sent by an active adversary.

Our proof relies on the recently introduced subspace LPN problem [25]. In
contrast to the active-attack security proof of HB+ [20], our proof does not use

any rewinding techniques. Avoiding rewinding has at least two advantages. First,
the security reduction becomes tight. Second, the proofs also works in a quantum
setting: our protocol is secure against quantum adversaries assuming LPN is
secure against such adversaries. As first observed by van de Graaf [28], classical
proofs using rewinding in general do not translate to the quantum setting (cf.
[30] for a more recent discussion). Let us emphasise that this only means that
there is no security proof for HB+ in the quantum setting, but we do not know
if a quantum attack actually exists.

MAC & Man-In-The-Middle Security. In Section 4, we give two construc-
tions of message authentication codes (MACs) that are secure (formally, un-
forgeable under chosen message attacks) assuming that the LPN problem is
hard. Note that a MAC implies a two-round MIM-secure authentication proto-
col: the verifier chooses a random message as challenge, and the prover returns
the MAC on the message.

As a first attempt, let us try to view our authentication protocol as a MAC.
That is, a MAC tag is of the form φ = (R, z = RT · fs(m) ⊕ e), where the
secret key derivation function fs(m) ∈ Z`2 first uniquely encodes the message m
into v ∈ Z2`

2 of weight ` and then returns s↓v by selecting ` bits from secret s,
according to v. However, this MAC is not secure: given a MAC tag φ = (R, z)
an adversary can ask verification queries where it sets individual rows of R to
zero until verification fails: if the last row set to zero was the ith, then the ith
bit of fs(m) must be 1. (In fact, the main technical difficulty to build a secure
MAC from LPN is to make sure the secret s does not leak from verification
queries.) Our solution is to randomize the mapping f , i.e. use fs(m,b) for some
randomness b and compute the tag as φ = π(R,RT · fs(m,b) ⊕ e,b), where
π is a pairwise independent permutation (contained in the secret key). We can
prove that if LPN is hard then this construction yields a secure MAC. (The
key argument is that, with high probability, all non-trivial verification queries
are inconsistent and hence lead to reject.) However, the security reduction to the
LPN problem is quite loose since it has to guess the value v from the adversary’s
forgery. (In the context of identity-based encryption (IBE) a similar idea has been
used to go from selective-ID to full security using “complexity leveraging” [6].)
In our case, however, this still leads to a polynomial security reduction when one
commits to the hardness of the LPN problem at the time of the construction.
(See the first paragraph of §4 for a discussion.)

To get a strictly polynomial security reduction (without having to commit to
the hardness of the LPN problem), in our second construction we adapt a tech-
nique originally used by Waters [29] in the context of IBE schemes that has been
applied to lattice based signature [7] and encryption schemes [1]. Concretely, we
instantiate the above MAC construction with a different secret key derivation
function fs(m,b) = s0 ⊕

⊕
i:v[i]=1 si (where v = h(m,b) and h(·) is a pairwise

independent hash). The drawback of our second construction is the larger key-
size. Our security reduction uses a technique from [7, 1] based on encodings with
full-rank differences (FRD) by Cramer and Damgard [9].

1.2 Efficiency

Construction Security Complexity Key-size Reduction
Communication Computation

HB [17] passive (2 rnd) ` · n/c Θ(` · n) ` · c ε (tight)
HB+ [18] active (3 rnd) ` · n · 2/ c Θ(` · n) ` · 2 · c

√
ε

AUTH § 3 active (2 rnd) ` · n · 2.1/c Θ(` · n) ` · 4.2 · c ε (tight)
MAC1 § 4.1 MAC → MIM (2 rnd) ` · n · 2.1/c Θ(` · n) + PIP ` · 12.6 · c

√
ε ·Q (?)

MAC2 § 4.2 MAC → MIM (2 rnd) ` · n · 1.1/c Θ(` · n) + PIP ` · λ · c ε ·Q
GGM [16] PRF → MIM (2 rnd) λ Θ(`2 · λ) Θ(`) ε · λ

Fig. 3. A comparison of our new authentication protocol and MACs with the HB, HB+

protocols and the classical GGM construction. The trade-off parameter c, 1 ≤ c ≤ n
and the term PIP will be explained in the “Communication vs. Key-Size” paragraph
below. (?) See discussion in §4.

Figure 3 gives a rough comparison of our new protocol and MACs with the
HB,HB+ protocols and, as a reference, also the classical tree-based GGM con-
struction [16]. The second row in the table specifies the security notion that
is (provably) achieved under the LPNτ,` assumption. λ is a security param-
eter and n denotes the number of “repetitions”. Typical parameters can be
` = 500, λ = 80, n = 250. Computation complexity counts the number of bi-
nary operations over F2. Communication complexity counts the total length of
all exchanged messages.7 The last row in the table states the tightness of the
security reduction, i.e. what exact security is achieved (ignoring constants and
higher order terms) assuming the LPNτ,` problem is ε-hard.

The prover and verifier in the HB,HB+ and our new protocols have to perform
Θ(` · n) basic binary operations, assuming the LPNτ,` problem (i.e., LPN with
secrets of length `) is hard. This seems optimal, as Θ(`) operations are necessary
to compute the inner product which generates a single pseudorandom bit. We
will thus consider an authentication protocol or MAC efficient, if it requires
O(` ·n) binary operations. Let us mention that one gets a length-doubling PRG
under the LPNτ,` assumption with Θ(`2) binary operations [11]. Via the classical
GGM construction [16], we obtain a PRF and hence a MAC. This PRF, however,
requires Θ(`2 · λ) operations per invocation (where λ is the size of the domain
of the PRF) which is not very practical. (Recall that ` ≈ 500.)

Communication vs. Key-Size. As we will discuss in Appendix A.1, For all
constructions except GGM, there is a natural trade-off between communication
and key-size, where for any constant c (1 ≤ c ≤ n), we can decrease commu-
nication by a factor of c and increase key-size by the factor c. For the first

7 For MACs, we consider the communication one incurs by constructing a MIM secure
2-round protocol from the MAC by having the prover compute the tag on a random
challenge message.

three protocols in the table, the choice of c does not affect the computational
efficiency, but it does so for our MACs: to compute or verify a tag one has to
evaluate a pairwise independent permutation (PIP) on the entire tag of length
m := Θ(` · n/c).

The standard way to construct a PIP π over Z2m is to define π(x) := a ·
x + b ∈ F2m for random a, b ∈ F2m . Thus the computational cost of evaluating
the PIP is one multiplication of two m bits values: the PIP term in the table
accounts for this complexity. Asymptotically, such a multiplication takes only
O(m logm log logm) time [27, 12], but for small m (like in our scheme) this will
not be faster than using schoolbook multiplication, which takes Θ(m2) time. For
parameters ` = 500, n = 250 and trade-off c = n (which minimizes the tag-length
m) we get m ≈ 1200 for MAC1 (i.e., 1200 = 2` plus some statistical security
parameters) and m ≈ 600 for MAC2. Hence, depending on the parameters, the
evaluation of the PIP may be the computational bottleneck of our MACs.

2 Definitions

2.1 Notation

We denote the set of integers modulo an integer q ≥ 1 by Zq. We will use normal,
bold and capital bold letters like x, x, X to denote single elements, vectors
and matrices over Zq, respectively. For a positive integer k, [k] denotes the set
{1, . . . , k}; [0] is the empty set. For a, b ∈ R,]a, b[= {x ∈ R ; a < x < b}. For a
vector x ∈ Zmq , |x| = m denotes the length of x; wt(x) denotes the Hamming
weight of the vector x, i.e. the number of indices i ∈ {1, . . . , |x|} where x[i] 6= 0.
The bit-wise XOR of two binary vectors x and y is represented as z = x ⊕ y,
where z[i] = x[i]⊕y[i]. For v ∈ Zm2 we denote by v its inverse, i.e. v[i] = 1−v[i]
for all i. For two vectors v ∈ Z`2 and x ∈ Z`q, we denote by x↓v the vector (of
length wt(v)) which is derived from x by deleting all the bits x[i] where v[i] = 0.
If X ∈ Z`×m2 is a matrix, then X↓v denotes the submatrix we get by deleting the
ith row if v[i] = 0. A function in λ is negligible, written negl(λ), if it vanishes
faster than the inverse of any polynomial in λ. An algorithm A is probabilistic
polynomial time (PPT) if A uses some randomness as part of its logic (i.e. A is
probabilistic) and for any input x ∈ {0, 1}∗ the computation of A(x) terminates
in at most poly(|x|) steps.

2.2 Authentication Protocols

An authentication protocol is an interactive protocol executed between a prover
P and a verifier V, both PPT algorithms. Both hold a secret x (generated using
a key-generation algorithm KG executed on the security parameter λ in unary)
that has been shared in an initial phase. After the execution of the authentica-
tion protocol, V outputs either accept or reject. We say that the protocol has
completeness error α if for all secret keys x generated by KG(1λ), the honestly
executed protocol returns reject with probability at most α.

Passive attacks. An authentication protocol is secure against passive attacks,
if there exists no PPT adversary A that can make the verifier return accept with
non-negligible probability after (passively) observing any number of interactions
between the verifier and prover.

Active attacks. A stronger notion for authentication protocols is security
against active attacks. Here the adversary A runs in two stages. First, she can
interact with the honest prover a polynomial number of times (with concurrent
executions allowed). In the second phase A interacts with the verifier only, and
wins if the verifier returns accept. Here we only give the adversary one shot
to convince the verifier.8 An authentication protocol is (t, Q, ε)-secure against
active adversaries if every PPT A, running in time at most t and making Q
queries to the honest prover, has probability at most ε to win the above game.

Man-in-the-middle attacks. The strongest standard security notion for au-
thentication protocols is security against man-in-the-middle (MIM) attacks. Here
the adversary can intially interact (concurrently) with any number of provers
and – unlike in an active attacks – also verifiers. The adversary gets to learn
the verifiers accept/reject decisions. One can construct two-round authentica-
tion schemes which are secure against MIM attacks from basic cryptographic
primitives like MACs, which we define next.

2.3 Message Authentication Codes

A message authentication code MAC = {KG,TAG,VRFY} is a triple of algorithms
with associated key space K, message space M, and tag space T .

– Key Generation. The probabilistic key-generation algorithm KG takes as input
a security parameter λ ∈ N (in unary) and outputs a secret key K ∈ K.

– Tagging. The probabilistic authentication algorithm TAG takes as input a
secret key K ∈ K and a message m ∈M and outputs an authentication tag
φ ∈ T .

– Verification. The deterministic verification algorithm VRFY takes as input
a secret key K ∈ K, a message m ∈ M and a tag φ ∈ T and outputs
{accept, reject}.

If the TAG algorithm is deterministic one does not have to explicitly define VRFY,
since it is already defined by the TAG algorithm as VRFY(K,m, φ) = accept iff
TAG(K,m) = φ.

Completeness. We say that MAC has completeness error α if for all m ∈ M
and λ ∈ N

Pr[VRFY(K,m, φ) = reject ;K ← KG(1λ) , φ← TAG(K,m)] ≤ α.

8 By using a hybrid argument one can show that this implies security even if the
adversary can interact in k ≥ 1 independent instances concurrently (and wins if the
verifier accepts in at least one instance). The use of the hybrid argument looses a
factor of k in the security reduction.

Security. The standard security notion for a MAC is unforgeability under a
chosen message attack (uf-cma). We denote by Advuf−cma

MAC (A, λ,Q), the advan-
tage of the adversary A in forging a message under a chosen message attack for
MAC when used with security parameter λ. Formally this is the probability that
the following experiment outputs 1.

Experiment Expuf−cma
MAC (A, λ,Q)

K ← KG(1λ)
Invoke ATAG(K,·),VRFY(K,·,·) who can make up to Q queries to TAG(K, ·) and
VRFY(K, ·, ·).
Output 1 if A made a query (m, φ) to VRFY(K, ·, ·) where

1. VRFY(K,m, φ) = accept
2. A did not already make the query m to TAG(K, ·)

Output 0 otherwise.

We say that MAC is (t, Q, ε)-secure against uf-cma adversaries if for any A
running in time t in the experiment above, we have Advuf−cma

MAC (A, λ,Q) ≤ ε.

2.4 Hard Learning Problems

Let Berτ be the Bernoulli distribution over Z2 with parameter (bias) τ ∈]0, 1/2[
(i.e., Pr[x = 1] = τ if x ← Berτ). For ` ≥ 1, Ber`τ denotes the distribution
over Z`2 where each vector consists of ` independent samples drawn from Berτ .
Given a secret x ∈ Z`2 and τ ∈]0, 12 [, we write Λτ,`(x) for the distribution over

Z`2×Z2 whose samples are obtained by choosing a vector r
$← Z`2 and outputting

(r, rT · x⊕ e) with e
$← Berτ .

The LPN assumption, formally defined below, states that it is hard to dis-
tinguish Λτ,`(x) (with a random secret x ∈ Z`2) from the uniform distribution.

Definition 1 (Learning Parity with Noise). The (decisional) LPNτ,` prob-
lem is (t, Q, ε)-hard if for every distinguisher D running in time t and making
Q queries, ∣∣∣Pr

[
x

$← Z`2 : DΛτ,`(x) = 1
]
− Pr

[
DU`+1 = 1

]∣∣∣ ≤ ε.
Below we define the (seemingly) stronger subspace LPN assumption (SLPN for
short) recently introduced in [25]. Here the adversary can ask for inner products
not only with the secret x, but even with A ·x⊕b where A and b can be adap-
tively chosen, but A must have sufficiently large rank. For minimal dimension
d ≤ `, a secret x ∈ Z`2 and A ∈ Z`×`2 , b ∈ Z`2, we define the distribution

Γτ,`,d(x,A,b) =

{
⊥ if rank(A) < d

Λτ,`(A · x⊕ b) otherwise

and let Γτ,`,d(x, ·, ·) denote the oracle which on input A,b outputs a sample
from Γτ,`,d(x,A,b).

Definition 2 (Subspace LPN). Let `, d ∈ Z where d ≤ `. The (decisional)
SLPNτ,`,d problem is (t, Q, ε)-hard if for every distinguisher D running in time
t and making Q queries,∣∣∣Pr

[
x

$← Z`2 : DΓτ,`,d(x,·,·) = 1
]
− Pr

[
DU`+1(·,·) = 1

]∣∣∣ ≤ ε,
where U`+1(·, ·) on input (A,b) outputs a sample of U`+1 if rank(A) ≥ d and ⊥
otherwise.

The following proposition states that the subspace LPN problem mapping to
dimension d+ g is almost as hard as the standard LPN problem with secrets of
length d. The hardness gap is exponentially small in g.

Proposition 1 (From [25]). For any `, d, g ∈ Z (where ` ≥ d + g), if the
LPNτ,d problem is (t, Q, ε)-hard then the SLPNτ,`,d+g problem is (t′, Q, ε′)-hard
where

t′ = t− poly(`,Q) ε′ = ε+ 2Q/2g+1.

For some of our constructions, we will only need a weaker version of the SLPNτ,`,d
problem that we call subset LPN. As the name suggests, here the adversary does
not ask for inner products with A ·x⊕b for any A (of rank ≥ d), but only with
subsets of x (of size ≥ d). It will be convienient to explicitly define this special
case. For x,v ∈ Z`2, let diag(v) ∈ Z`×`2 denote the zero matrix with v in the
diagonal, and let

Γ ∗τ,`,d(x,v) := Γτ,`,d(x, diag(v), 0`) =

{
⊥ if wt(v) < d

Λτ,`(x ∧ v) otherwise.

Definition 3 (Subset LPN). Let `, d ∈ Z where d ≤ `. The SLPN∗τ,`,d problem
is (t, Q, ε)-hard if for every distinguisher D running in time t and making Q
queries, ∣∣∣Pr

[
x

$← Z`2 : DΓ∗τ,`,d(x,·) = 1
]
− Pr

[
DU`+1(·) = 1

]∣∣∣ ≤ ε,
where U`+1(·) on input v (where wt(v) ≥ d) outputs a sample of U`+1 and ⊥
otherwise.

Remark 1. Γ ∗τ,`,d(x,v) samples are of the form (r, rT↓v · x↓v ⊕ e) ∈ Z`+1
2 , where

e
$← Berτ . To compute the inner product only r↓v ∈ Zwt(v)

2 is needed, the

remaining bits r↓v ∈ Z`−wt(v)
2 are irrelevant. We use this observation to improve

the communication complexity (for protocols) or tag length (for MACs), by using

“compressed” samples of the form (r↓v, r
T
↓v · x↓v ⊕ e) ∈ Zwt(v)+1

2 .

3 Two-Round Authentication with Active Security

In this section we describe our new 2-round authentication protocol and prove
its active security under the hardness of the SLPN∗τ,2`,d problem, where d =
`/(2+γ) for some constant γ > 0. (Concretely, γ = 0.1 should do for all practical
purposes.)

– Public parameters. The authentication protocol has the following public pa-
rameters, where τ, τ ′ are constants and `, n depend on the security parameter
λ.
` ∈ N length of the secret key s ∈ Z2`

2

τ ∈]0, 1/2[parameter of the Bernoulli error distribution Berτ
τ ′ = 1/4 + τ/2 acceptance threshold
n ∈ N number of parallel repetitions (we require n ≤ `/2)

– Key Generation. Algorithm KG(1λ) samples s
$← Z2`

2 and returns s as the
secret key.

– Authentication Protocol. The 2-round authentication protocol with prover
Pτ,n and verifier Vτ ′,n is given in Figure 4.

Prover Pτ,n(s ∈ Z2`
2) Verifier Vτ ′,n(s ∈ Z2`

2)
v←− v

$← {x ∈ Z2`
2 : wt(x) = `}

if wt(v) 6= ` abort

R
$← Z`×n2 ; e

$← Bernτ

z := RT · s↓v ⊕ e ∈ Zn2
(R,z)−−−→ if rank(R) 6= n reject

if wt(z⊕RT · s↓v) > n · τ ′ reject, else accept

Fig. 4. Two-round authentication protocol AUTH with active security from the LPN
assumption.

Theorem 1. For any constant γ > 0, let d = `/(2+γ). If the SLPN∗τ,2`,d problem
is (t, nQ, ε)-hard then the authentication protocol from Figure 4 is (t′, Q, ε′)-
secure against active adversaries, where for constants cγ , cτ > 0 that depend
only on γ and τ respectively,

t′ = t− poly(Q, `) ε′ = ε+Q · 2−cγ ·` + 2−cτ ·n = ε+ 2−Θ(n) .

The protocol has completeness error 2−c
′
τ ·n where c′τ > 0 depends only on τ .

3.1 Proof of completeness

For any n ∈ N, τ ∈]0, 1/2[, let

ατ,n := Pr[wt(e) > n · τ ′ : e
$← Bernτ] = 2−c

′′
τ ·n (3.1)

denote the probability that n independent Bernoulli samples with bias τ contain
more than a τ ′ := 1/4 + τ/2 fraction of 1’s. The last equality in eq.(3.1) follows
from the Hoeffding bound, where the constant c′′τ > 0 depends only on τ .

We now prove that the authentication protocol has completeness error α ≤
2−`+n + ατ,n. The verifier performs the following two checks. In the first verifi-
cation step, the verifier rejects if the random matrix R does not have full rank.

By Lemma 2 (in Appendix ??) the probability of this event is ≤ 2−n. Now, let
e := z⊕RT ·s↓v denote the noise added by Pτ,n. Then, in the second verification
step, the verifier rejects if wt(e) > n · τ ′. From equation 3.1, we have that this
happens with probability ατ,n. This completes the proof of completeness.

3.2 Proof of security

We first define some terms that will be used later in the security proof. For
a constant γ > 0, let d = `/(2 + γ) (as in Theorem 1). Let α′`,d denote the
probability that a random substring of length ` chosen from a string of length
2` with Hamming weight `, has a Hamming weight less than d. Using the fact
that the expected Hamming weight is `/2 = d(1 + γ/2) = d(1 + Θ(1)), one can
show that there exists a constant cγ > 0 (only depending on γ), such that

α′`,d :=

∑d−1
i=0

(
`
i

)(
`
`−i
)(

2`
`

) ≤ 2−cγ ·`. (3.2)

For τ ′ = 1/4 + τ/2, let α′′τ ′,n denote the probability that a random bitstring
y ∈ Zn2 has Hamming weight wt(y) ≤ n · τ ′. From the Hoeffding bound, it
follows that there exists a constant cτ > 0 (only depending on τ), such that

α′′τ ′,n := 2−n ·
bn·τ ′c∑
i=0

(
n

i

)
≤ 2−cτ ·n. (3.3)

We now prove security of the authentication protocol. Consider an oracle O
which is either the subset LPN oracle Γ ∗τ,2`,d(x, ·) or U2`+1(·), as defined in

Definition 3. We will construct an adversary BO that uses A (who breaks the
active security of AUTH with advantage ε′) in a black-box way such that:

Pr[BΓ
∗
τ,2`,d(x,·) → 1] ≥ ε′ −Q · α′`,d and Pr[BU2`+1(·) → 1] ≤ α′′τ ′,n .

Thus BO can distinguish between the two oracles with advantage ε := ε′ − Q ·
α′`,d − α′′τ ′,n as claimed in the statement of the Theorem. Below we define BO.

Setup. Initially, BO samples

x∗
$← Z2`

2 , v∗
$← {y ∈ Z2`

2 : wt(y) = `}.

The intuition of our simulation below is as follows. Let us first assume O is
a subset LPN oracle Γ ∗τ,2`,d(x, ·) with secret x. In the first phase we have to

produce answers (R, z) to a query v ∈ {y ∈ Z2`
2 : wt(y) = `} by A. The

simulated answers have exactly the same distribution as the answers of an
honest prover Pτ,n(s ∈ Z2`

2) where

s = (x∗ ∧ v∗)⊕ (x ∧ v∗) (3.4)

Thus one part of s’s bits come from x∗, and the other part is from the
unknown secret x (for which we use the oracle O). In the second phase we

give A the challenge v∗. As s↓v∗ = (x∗ ∧v∗)↓v∗ is known, we will be able to
verify if A outputs a valid forgery.
If O is the random oracle U2`+1(·), then after the first phase x∗ ∧ v∗ is
information theoretically hidden, and thus A cannot come up with a valid
forgery but with exponentially small probability.

First phase. In the first phase BO invokes A who expects access to Pτ,n(s ∈
Z2`
2) . We now specify how BO samples the answer (R, z) to a query v ∈
{y ∈ Z2`

2 : wt(y) = `} made by A. Let

u∗ := v ∧ v∗ u := v ∧ v∗

1. BO queries its oracle n times on the input u. If the oracle’s output is ⊥
(which happens iff wt(u) < d), BO outputs 0 and stops. Otherwise let

R̂1 ∈ Z2`×n
2 , z1 ∈ Zn2 denote the n outputs of the oracle.

2. Sample R̂0
$← Z2`×n

2 and set z0 = R̂T
0 (x∗ ∧ u∗).

3. Return (R = R̂↓v ∈ Z`×n2 , z = z0 ⊕ z1 ∈ Zn2), where R̂ is uniquely

determined by requiring R̂↓v∗ = R̂0 and R̂↓v∗ = R̂1.
Second phase. Eventually, A enters the second phase of the active attack,

expecting a challenge from Vτ ′,n(s ∈ Z2`
2).

1. BO forwards v∗ as the challenge to A.
2. A answers with some (R∗, z∗).
3. BO checks if

rank(R∗) = n and wt(z∗ ⊕R∗T · x∗↓v∗) ≤ n · τ ′. (3.5)

The output is 1 if both checks succeed and 0 otherwise.

Claim 2 Pr[BU2`+1(·) → 1] ≤ α′′τ ′,n.

Proof (of Claim). If R∗ does not have full rank then B outputs 0 by definition.
Therefore, we now consider the case where rank(R∗) = n.

The answers (R, z) that the adversary A obtains from BU2`+1(·) are indepen-
dent of x∗ (i.e., z = z0⊕ z1 is uniform as z1 is uniform). Since x∗↓v∗ is uniformly
random and R∗ has full rank, the vector

y := R∗T · x∗↓v∗ ⊕ z∗

is uniformly random over Zn2 . Thus the probability that the second verification
in eq. (3.5) does not fail is Pr[wt(y) ≤ n · τ ′] = α′′τ ′,n.

Claim 3 Pr[BΓ
∗
τ,2`,d(x,·) → 1] ≥ ε′ −Q · α′`,d.

Proof (of Claim). We split the proof in two parts. First we show that B outputs
1 with probability ≥ ε′ if the subset LPN oracle accepts subsets of arbitrary
small size (and does not simply output ⊥ on inputs v where wt(v) < d), i.e.,

Pr[BΓ
∗
τ,2`,0(x,·) → 1] ≥ ε′. (3.6)

Then we’ll upper bound the gap between the probability that B outputs 1 in the
above case and the probability that B outputs 1 when given access to the oracle
that we are interested in as:∣∣∣Pr[BΓ

∗
τ,2`,d(x,·) → 1]− Pr[BΓ

∗
τ,2`,0(x,·) → 1]

∣∣∣ ≤ Q · α′`,d. (3.7)

The claim then follows by the triangle inequality from the two equations above.
Eq. (3.6) holds as:

– The answers (R, z) that BΓ
∗
τ,2`,0(x,·) gives to A’s queries in the first phase

of the attack have exactly the same distribution as what A would get when
interacting with an honest prover Pτ,n(s ∈ Z2`

2) where the “simulated” secret
s is defined in eq.(3.4).
To see this, recall that on a query v from A, BΓ

∗
τ,2`,0(x,·) must answer with

(R, z = RTs↓v⊕e), where R = R̂↓v is the compressed form of R̂ (cf. Remark
1). In the first step, B queries its oracle with u = v ∧ v∗ and obtains noisy

inner products (R̂1, z1) with the part of s↓v that contains only bits from x,
i.e.,

z1 = R̂T
1 · (x ∧ u)⊕ e = R̂1 · (s ∧ u)⊕ e.

In the second step, B samples n inner products (R̂0, z0) (with no noise) with
the part of s↓v that contains only bits from the known x∗, i.e.,

z0 = R̂0 · (x∗ ∧ u∗) = R̂0 · (s ∧ u∗).

In the third step, B then generates (R̂, R̂ · (s ∧ v) ⊕ e) from the previous

values where R̂ is defined by R̂↓v∗ = R̂0 and R̂↓v∗ = R̂1. Using v = u⊕u∗,
we get

z = z0 ⊕ z1

= R̂0 · (s ∧ u∗)⊕ R̂1 · (s ∧ u)⊕ e

= R̂ · (s ∧ v)⊕ e

= R · s↓v ⊕ e.

– The challenge v∗ sent to A in the second phase of the active attack is uni-
formly random (even given the entire view so far), and therefore has the
same distribution as a challenge in an active attack.

– BΓ
∗
τ,2`,0(x,·) outputs 1 if eq.(3.5) holds, which is exactly the case when A’s

response to the challenge was valid. By assumption this probability is at
least ε′.

It remains to prove eq.(3.7). Note that Γ ∗τ,2`,0(x, ·) behaves exactly like Γ ∗τ,2`,d(x, ·)
as long as one never makes a query v where wt(v ∧ v∗) < d.

Since v∗
$← {y ∈ Z2`

2 : wt(y) = `}, for any v, the probability that wt(v ∧
v∗) < d is (by definition) α′`,d as defined in eq.(3.2). Using the union bound, we
can upper bound the probability that wt(v ∧ v∗) < d for any of the Q different
v’s chosen by the adversary as Q · α′`,d.

Pτ,n(s ∈ Z2`
2 ,b

v ∈ Z2`
2 ,b

z ∈ Zn2) Vτ ′,n(s,bv,bz)
v←− v

$← Z2`
2

R
$← Z2`×n

2 ; e
$← Bernτ

z := RT · (s ∧ (v ⊕ bv))⊕ bz ⊕ e
z,R−−→ if wt(

(
RT · (s ∧ (v ⊕ bv))

)
⊕ bz) > n · τ ′

reject otherwise accept

Fig. 5. By blinding the values v, z with secret random vectors bv,bz we can avoid
checking whether wt(v) = ` and rank(R) = n as in the protocol from Figure 4.

3.3 Avoid Checking

One disadvantage of the protocol in Figure 4, compared to HB style protocols,
is the necessity to check whether the messages exchanged have the right from:
the prover checks if v has weight `, while the verifier must make the even more
expensive check whether R has full rank. Eliminating such verification proce-
dures can be particularly useful if for example the prover is an RFID chip where
even the simple verification that a vector has large weight is expensive. We note
that it is possible to eliminate these checks by blinding the exchanged messages
v and z using random vectors bv ∈ Z2`

2 and bz ∈ Zn2 respectively, as shown in
Figure 5. The security and completeness of this protocol is basically the same
as for the protocol in Figure 5. The security proof is also very similar and is
therefore omitted.

4 Message Authentication Codes

In this section, we construct two message authentication codes whose security
can be reduced to the LPN assumption. Our first construction is based on the 2-
round authentication protocol from Section 3. We prove that if the LPN problem
is ε-hard, then no adversary making Q queries can forge a MAC with probability
more than Θ(

√
ε ·Q). However, the construction has the disadvantage that one

needs to fix the hardness of the LPN problem at the time of the construction,
c.f. Remark 2. Our second construction has no such issues and achieves better
security Θ(ε ·Q). The efficiency of this construction is similar to that of the first
construction, but a larger key is required.

4.1 First construction

Recall the 2-round authentication protocol from Section 3. In the protocol the
verifier chooses a random challenge subset v. To turn this interactive protocol
into a MAC, we will compute this v from the message m to be authenticated
as v = C(h(m,b)), where h is a pairwise independent hash function, b ∈ Zν2 is
some fresh randomness and C is some encoding scheme. The code C is fixed and
public, while the function h is part of the secret key. The authentication tag φ

is computed in the same manner as the prover’s answer in the authentication
protocol. That is, we sample a random matrix R ∈ Z`×n2 and compute a noisy

inner product z := RT · s↓v ⊕ e, where e
$← Bernτ . We note that using (R, z) as

an authentication tag would not be secure, and we need to blind these values.
This is done by applying an (almost) pairwise independent permutation (PIP)
π – which is part of the secret key – to (R, z,b) ∈ Z`×n+n+ν2 .

Construction. The message authentication code MAC1 = {KG,TAG,VRFY}
with associated message space M is defined as follows.
– Public parameters. MAC1 has the following public parameters.

`, τ, τ ′, n as in the authentication protocol from Section 3
µ ∈ N output length of the hash function
ν ∈ N length of the randomness
C : Zµ2 → Z2`

2 encoding, where ∀ x 6= x′ ∈ Zµ2 we have wt(C(x)) = `
and wt(C(x)⊕ C(x′)) ≥ 0.9`.

– Key generation. Algorithm KG(1λ) samples s
$← Z2`

2 , an (almost) pairwise
independent hash function h : M× Zν2 → Zµ2 and a pairwise independent
permutation π over Z`×n+n+ν2 . It returns K = (s, h, π) as the secret key.

– Tagging. Given secret key K = (s, h, π) and message m ∈M, algorithm TAG
proceeds as follows.

1. R
$← Z`×n2 , b

$← Zν2 , e
$← Bernτ

2. v := C(h(m,b)) ∈ Z2`
2

3. Return φ := π(R,RT · s↓v ⊕ e,b)
– Verification. On input a secret-key K = (s, h, π), message m ∈ M and tag
φ, algorithm VRFY proceeds as follows.
1. Parse π−1(φ) as (R ∈ Z`×n2 , z ∈ Zn2 ,b ∈ Zν2). If rank(R) 6= n, then return

reject
2. v := C(h(m,b))
3. If wt(z⊕RT · s↓v) > n · τ ′ return reject, otherwise return accept

Theorem 4. For µ = ν ∈ N, a constant γ > 0 and d := `/(2 + γ), if the
SLPN∗τ,2`,d problem is (t, nQ, ε)-hard then MAC1 is (t′, Q, ε′)-secure against uf-
cma adversaries, where

t′ ≈ t, ε = min

{
ε′/2− Q2

2µ−2
,

ε′

2µ+1
− 2−Θ(n)

}
.

MAC1 has completeness error 2−cτ ·n where cτ > 0 depends only on τ .

Corollary 1. Choosing µ s.t. 2µ = Q2·24
ε′ in the above theorem, we get ε =

min{ε′/4, (ε′)2/(25Q2)− 2−Θ(n)}. The 2nd term is the minimum here, and solv-
ing for ε′ gives

ε′ :=
√

32 ·Q ·
√
ε+ 2−Θ(n). (4.1)

Remark 2 (about µ). Note that to get security as claimed in the above corollary,
we need to choose µ as a function of Q and ε such that 2µ ≈ Q2 · 24/ε′ for ε′

as in eq.(4.1). Of course we can just fix Q (as an upper bound to the number
of queries made by the adversary) and ε (as our guess on the actual hardness
of SLPN∗τ,2`,d). But a too conservative guess on µ (i.e. choosing µ too small)
will result in a construction whose security is worse than what is claimed in the
above corallary. A too generous guess on the other hand will make the security
reduction meaningless (we don’t have any actual attacks on the MAC for large
µ though).

We now give an intuition for the proof of Theorem 4. A formal proof will
be given in Appendix B.1. Every query (m, φ) to VRFY and query m to TAG
defines a subset v (as computed in the second step in the definitions of both
VRFY and TAG). We say that a forgery (m, φ) is “fresh” if the v contained
in (m, φ) is different from all v’s contained in all the previous VRFY and TAG
queries. The proof makes a case distinction and uses a different reduction for the
two cases where the forgery found by the adversary is more likely to be fresh, or
more likely to be non-fresh. In both cases we consider a reduction BO which has
access to either a uniform oracle O = U or a subset LPN oracle O = Γ ∗. BO uses
an adversary A who can find forgeries for the MAC to distinguish those cases
and thus break the subset LPN assumption. In the first case, where the first
forgery is likely to be non-fresh, we can show (using the fact that a pairwise
independent permutation is used to blind the tag) that if BO’s oracle is O = U ,
even a computationally unbounded A cannot come up with a message/tag pair
(m, φ) that contains a non-fresh v. Thus we can distinguish the cases O = U and
O = Γ ∗ by just observing if A ever makes a VRFY query (m, φ) that contains a
non-fresh v (even without being able to tell if (m, φ) is valid or not).

If the forgery found by A is more likely to be fresh, we can use a similar
argument as in the proof of our authentication protocol in the last section. An
additional difficulty here is that the reduction has to guess the fresh v ∈ Zµ2
contained in the first forgery and cannot choose it as in the protocol. This is the
reason why the reduction looses a factor 2µ.

4.2 Second construction

We now give the construction of another MAC based on the hardness of the
LPN problem. The main difference to MAC1 from the last subsection is the
way we generate the values s(v). In the new construction, we define s(v) :=
s0 ⊕

⊕
i:v[i]=1 si, where each si is a part of the secret key. The construction

uses ideas from Waters’ IBE scheme [29], and parts of the security reduction use
simulation tricks from [7, 1] that we need to adapt to the binary case.

Construction. The message authentication code MAC2 = {KG,TAG,VRFY}
with associated message space M is defined as follows.
– Public parameters. MAC2 has the following public parameters.

`, τ, τ ′, n as in the authentication protocol from Section 3
µ ∈ N output length of the hash function
ν ∈ N length of the randomness

– Key generation. Algorithm KG(1λ) samples si
$← Z`2 (for 0 ≤ i ≤ µ) and

chooses a pairwise independent hash function h : M× Zν2 → Zµ2 , as well
as a pairwise independent permutation π over Z`×n+n+ν2 . It returns K =
(s0, . . . , sµ, h, π) as the secret key.

– Tagging. Given secret key K = (s0, . . . , sµ, h, π) and message m ∈ M, algo-
rithm TAG proceeds as follows.

1. R
$← Z`×n2 , b

$← Zν2 , e
$← Bernτ

2. v := h(m,b)
3. s(v) := s0 ⊕

⊕
i:v[i]=1 si

4. Return φ := π(R,RT · s(v)⊕ e,b)
– Verification. On input a secret-key K = (s0, . . . , sµ, h, π), message m ∈ M

and tag φ, algorithm VRFY proceeds as follows.
1. Parse π−1(φ) as (R ∈ Z`×n2 , z ∈ Zn2 ,b ∈ Zν2). If rank(R) 6= n, then return

reject
2. v := h(m,b)
3. s(v) := s0 ⊕

⊕
i:v[i]=1 si

4. If wt(z⊕RT · s(v)) > n · τ ′ return reject, otherwise return accept

Theorem 5. If the SLPNτ,`,` problem is (t, nQ, ε)-hard, then MAC2 is (t′, Q, ε′)-
secure against uf-cma adversaries, where

t′ ≈ t ε = min

{
ε′/2− Q2

2µ−2
,
ε′

4Q
− 2−Θ(n)

}
.

MAC2 has completeness error 2−cτ ·n where cτ only depends on τ .

We now give an intuition for the proof of Theorem 5. A formal proof will be given
in Appendix B.2. Similar to the proof of Theorem 4, we distinguish fresh and
non-fresh forgeries. Here the new and interesting case is the fresh forgery. The
idea is that in the reduction to the SLPN problem we define the function s(v) =
A(v)·s⊕b(v) (where s is the LPN secret) such that the following holds with non-
negligible probability: (i) for each vi from the TAG queries, A(vi) has full rank
` and hence the tags can be simulated using the provided Γτ,`,`(s, ·, ·) oracle; (ii)
for the first fresh forgery we have A(v) = 0 such that s(v) is independent of s
and the reduction can check the forgery’s correctness. The above two properties
allow to maintain the simulation. The setup of the function s(·) is the crucial
step and here we adapt a technique recently introduced by Boyen [7] based on
homomorphic encodings with full-rank differences that allows us to arbitrarily
control the probability that the above simulation works.

Acknowledgements

Krzysztof would like to thank Vadim Lyubashevsky for many interesting discus-
sions on LPN while being in Tel Aviv (and Eyjafjallajökull for making this stay
possible.)

References

[1] Shweta Agrawal, Dan Boneh, and Xavier Boyen. Efficient lattice (H)IBE in the
standard model. In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of
LNCS, pages 553–572. Springer, May 2010.

[2] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of
certain coding problems. IEEE Transactions on Information Theory, 24(3):384–
386, 1978.

[3] Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Crypto-
graphic primitives based on hard learning problems. In Douglas R. Stinson, editor,
CRYPTO’93, volume 773 of LNCS, pages 278–291. Springer, August 1994.

[4] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. In 32nd ACM STOC, pages 435–440.
ACM Press, May 2000.

[5] Avrim Blum, Adam Kalai, and Hal Wasserman. Noise-tolerant learning, the parity
problem, and the statistical query model. J. ACM, 50(4):506–519, 2003.

[6] Dan Boneh and Xavier Boyen. Efficient selective-ID secure identity based encryp-
tion without random oracles. In Christian Cachin and Jan Camenisch, editors,
EUROCRYPT 2004, volume 3027 of LNCS, pages 223–238. Springer, May 2004.

[7] Xavier Boyen. Lattice mixing and vanishing trapdoors: A framework for fully
secure short signatures and more. In Phong Q. Nguyen and David Pointcheval,
editors, PKC 2010, volume 6056 of LNCS, pages 499–517. Springer, May 2010.

[8] Julien Bringer, Hervé Chabanne, and Emmanuelle Dottax. HB++: a lightweight
authentication protocol secure against some attacks. In SecPerU, pages 28–33,
2006.

[9] Ronald Cramer and Ivan Damgard. On the amortized complexity of zero-
knowledge protocols. In Shai Halevi, editor, CRYPTO 2009, volume 5677 of
LNCS, pages 177–191. Springer, August 2009.

[10] D.N. Duc and K. Kim. Securing HB+ against GRS man-in-the-middle attack. In
SCIS, 2007.

[11] Jean-Bernard Fischer and Jacques Stern. An efficient pseudo-random generator
provably as secure as syndrome decoding. In Ueli M. Maurer, editor, EURO-
CRYPT’96, volume 1070 of LNCS, pages 245–255. Springer, May 1996.

[12] Martin Fürer. Faster integer multiplication. SIAM J. Comput., 39(3):979–1005,
2009.

[13] Henri Gilbert, Matt Robshaw, and Herve Sibert. An active attack against HB+ -
a provably secure lightweight authentication protocol. Cryptology ePrint Archive,
Report 2005/237, 2005. http://eprint.iacr.org/.

[14] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. Good variants of
HB+ are hard to find. In Gene Tsudik, editor, FC 2008, volume 5143 of LNCS,
pages 156–170. Springer, January 2008.

[15] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. HB]: Increasing the
security and efficiency of HB+. In Nigel P. Smart, editor, EUROCRYPT 2008,
volume 4965 of LNCS, pages 361–378. Springer, April 2008.

[16] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33:792–807, 1986.

[17] Nicholas J. Hopper and Manuel Blum. Secure human identification protocols.
In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 52–66.
Springer, December 2001.

[18] Ari Juels and Stephen A. Weis. Authenticating pervasive devices with human
protocols. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages
293–308. Springer, August 2005.

[19] Jonathan Katz and Ji Sun Shin. Parallel and concurrent security of the HB and
HB+ protocols. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 73–87. Springer, May / June 2006.

[20] Jonathan Katz, Ji Sun Shin, and Adam Smith. Parallel and concurrent security
of the HB and HB+ protocols. Journal of Cryptology, 23(3):402–421, July 2010.

[21] Michael J. Kearns. Efficient noise-tolerant learning from statistical queries. J.
ACM, 45(6):983–1006, 1998.

[22] Éric Levieil and Pierre-Alain Fouque. An improved LPN algorithm. In Roberto De
Prisco and Moti Yung, editors, SCN 06, volume 4116 of LNCS, pages 348–359.
Springer, September 2006.

[23] Jorge Munilla and Alberto Peinado. HB-MP: A further step in the HB-family of
lightweight authentication protocols. Computer Networks, 51(9):2262–2267, 2007.

[24] Khaled Ouafi, Raphael Overbeck, and Serge Vaudenay. On the security of HB#
against a man-in-the-middle attack. In Josef Pieprzyk, editor, ASIACRYPT 2008,
volume 5350 of LNCS, pages 108–124. Springer, December 2008.

[25] Krzysztof Pietrzak. Subspace LWE, 2010. Manuscript available at
http://homepages.cwi.nl/∼pietrzak/publications/SLWE.pdf.

[26] Oded Regev. On lattices, learning with errors, random linear codes, and cryptog-
raphy. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM STOC, pages
84–93. ACM Press, May 2005.

[27] Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing,
7, 1971.

[28] Jeroen Van De Graaf. Towards a formal definition of security for quantum pro-
tocols. PhD thesis, Monreal, P.Q., Canada, Canada, 1998. AAINQ35648.

[29] Brent R. Waters. Efficient identity-based encryption without random oracles. In
Ronald Cramer, editor, EUROCRYPT 2005, volume 3494 of LNCS, pages 114–
127. Springer, May 2005.

[30] John Watrous. Zero-knowledge against quantum attacks. SIAM J. Comput.,
39(1):25–58, 2009.

A Extensions

In this section we discuss some extensions of the protocols we presented in Sec-
tion 3 and Section 4.

A.1 Trading Key-Size for Communication Complexity

A disadvantage of the schemes proposed in this paper is their large communi-
cation complexity. For example, in the authentication protocol from Section 3
the prover has to send the entire `×n matrix R to the verifier. Similarly, in the
MACs from Section 4, the tag is computed by permuting a string of the form
(R,RT · s(m)⊕ e,b), where again R is an `× n matrix.

We now explain a simple tradeoff that is originally due to Gilbert et al. [15].
Consider the authentication protocol from Section 3. Let 1 ≤ c ≤ n be an integer
parameter and let ns := c and nr := n/c. The idea is to use a larger secret matrix

S ∈ Z2`×ns
2 (instead of just one vector s) and a smaller random matrix R ∈ Z`×nr2

(instead of R ∈ Z`×n2). The resulting protocol is illustrated in Figure 6. Similar
extensions can be easily derived for the MACs of Section 4, where the tradeoff
is more important due to the pairwise independent permutation π which is the
computational bottleneck of the protocol. See Figure 3 for a comparison of the
resulting complexities. The proof of Theorem 1, Theorem 4 and Theorem 5 can
be adapted to show the same security and completeness results.

P(S, τ, nr, ns) V(S, τ ′, nr, ns)
v←− v

$← {x ∈ Z2`
2 : wt(x) = `}

if wt(v) 6= ` abort

R
$← Z`×nr2 ; e

$← Bernr×nsτ

z := RT · S↓v ⊕ e
z,R−−→ if rank(R) 6= nr reject

if wt(RT · S↓v ⊕ z) > nr · ns · τ ′ reject else accept

Fig. 6. A generalization of the protocol from Figure 5 where we trade a larger key
(which now is a matrix S ∈ Z2`×ns

2) for lower communication and randomness com-
plexity. The protocol is as secure as the protocol from Figure 5 (wich is the special case
where nr = n and ns = 1) with n = nr · ns.

A.2 Generalization to LWE

All the protocols presented in this paper are based on the hardness of the LPN
problem. A natural generalization of this problem is the learning with errors
(LWE) problem [26]. The most appealing characteristic of this problem is that
it enjoys for certain parameters a worst-case hardness guarantee [26, ?]. We
informally recall the LWE problem below. Let q ≥ 2 be a prime and denote with
Gauq,τ the so called “discretized normal error” distribution parameterized by
some τ ∈]0, 1[. This distribution is obtained by drawing x ∈ R from the Gaussian
distribution of width τ (i.e., x is chosen with probability 1

τ exp(−πx2/τ2)) and
outputting bq · xe mod q. For a random secret s ∈ Z`q, the (decisional) LWEq,τ,`
problem is to distinguish samples of the form (r, rT · s + e) from uniformly

random samples in Z`q × Zq, where r
$← Z`q, e

$← Gauq,τ and all the operations
are performed modulo q. The subspace/subset version of the LWE problem can
be defined exactly in the same fashion as for LPN (cf. Definition 2). It was
showed in [25] that the subspace/subset LWE problems are equivalent to the
LWE problem.

All the protocols in this paper can be generalized to Zq and proven secure
under the hardness of the subset LWE assumption (and hence the standard
LWE assumption). This requires us to sample all the elements from Zq (instead
of Z2), replace Berτ with Gauq,τ and perform all the operations involved modulo

q. We need also to specify how to replace the verification steps involving the
computation of Hamming weights wt(·). Given a vector e ∈ Znq sampled from

Gaunq,τ (where e has the form z−RT · s↓v mod q for an honest execution of the

protocol from Section 3 or z−RT · s(v) mod q for the schemes from Section 4),
this can be done by checking that the (squared) Euclidean norm of e, i.e., the

quantity ‖e‖2 :=
∑n
i=1|e[i]|2, does not exceed n

⌊
q
2

⌋
· τ ′ (which will happen with

overwhelming probability by the standard tail bound on Gaussians).
Thus the change of domain from Z2 to Zq buys us security based on a different

assumption, which is known to be equivalent (for a proper choice of parameters)
to the hardness of well-studied (worst-case) lattice problems. This comes at the
price of a higher computational complexity, which may be a problem in the
context of resource bounded devices.

B Omitted Proofs

B.1 Proof of Theorem 4

The proof of completeness is essentially the same (and we get exactly the same
quantitative bound) as the proof of completeness for the protocol in Figure 4 as
claimed in Theorem 1.

We now prove security. As in the theorem statement, we set µ = ν (but
for clarity we will keep the different letters µ for the range of h and ν for the
length of the randomness). Let A be an adversary that (t′, Q, ε′)-breaks the uf-
cma security of MAC1. Let Qtag and Qvrfy denote the number of queries that A
makes to the oracles TAG(K, ·) and VRFY(K, ·, ·) respectively, such that Q =
Qtag +Qvrfy. We assume that A never makes the same VRFY query twice (since
VRFY is deterministic, repeating queries gives no additional information to A)
and also that she never makes a VRFY query (m, φ) where φ was received as the
output from TAG on input m. Since the completeness error of MAC1 is 2−Θ(n),
this is basically without loss of generality (as the answer would almost certainly
be accept). Every query (m, φ) to VRFY and query m to TAG defines a subset
v (as computed in step 2. in the definitions of both VRFY and TAG).

By definition, in the uf-cma experiment, with probability ε′ the adversary
A at some point makes a VRFY query (m, φ) where: (i) φ was not received as
output on a TAG query m, and (ii) VRFY(K,m, φ) = accept. We say that such
a forgery (m, φ) is “fresh” if the v defined by (m, φ) is different from all v’s
defined by all the previous VRFY and TAG queries. Let Efresh denote the event
that A finds a fresh forgery. As A finds a forgery with probability ε′ and every
forgery must be either fresh or not, we have that:

Pr[Efresh] + Pr[¬Efresh] = ε′.

We will consider the two cases where Pr[Efresh] > ε′/2 and Pr[Efresh] ≤ ε′/2
separately.
The case Pr[Efresh] ≤ ε′/2. Given A, we will construct an adversary BO1 who
can distinguish O = Γ ∗τ,2`,d(s, ·) from O = U2`+1(·) (as in Definition 3) with

advantage9

ε′/2− Q2

2µ−2
. (B.1)

BO1 samples π, h (but not s) as defined by KG. Next, it invokes A (who expects
to attack MAC1 with a key (s, h, π)) answering its queries as follows:
– If A makes a TAG query m, then BO1 does the following:

1. Sample b
$← Zν2 and compute v := C(h(m,b)).

2. Query the oracleO for n times on input v: for i = 1, . . . , n let (R[i], z[i])
$←

O(v).
3. Return φ := π(R, z,b) where R = [R[1], . . . ,R[n]] and z = [z[1], . . . , z[n]]

to A.
– If A makes a VRFY query (m, φ), BO1 simply answers with reject.

If any TAG or VRFY query contains a v which has appeared in a previous query,
BO1 outputs 1 and 0 otherwise. (Note that BO1 can compute the value v in a
VRFY query as it knows π, h.)

Claim 6 If O = Γ ∗τ,2`,d(s, ·), then BO1 outputs 1 with probability ≥ ε′/2.

Proof (Proof of Claim). The answers to the TAG queries of A computed by BO1
have exactly the same distribution as in the uf-cma experiment (where the secret
key is (s, h, π)). The answers to the VRFY queries (which are always reject) are
correct as long as A does not query a valid forgery. From our assumption, the
probability that A finds a valid forgery that is not fresh is > ε′/2, which is thus
a lower bound on the probability that BO1 outputs 1.

Claim 7 If O = U2`+1(·), then BO1 outputs 1 with probability < Q2/2µ−2.

Proof (Proof of Claim). The answers that A obtains on a TAG query m from

BU2`+1(·)
1 (i.e., π(R, z,b) where R, z,b are sampled uniformly) are uniformly

random, and in particular independent of h or π. The answers to VRFY queries
are always reject, and thus contain no information about h, π either. Then, we
have that vi = vj (where vi = C(h(mi,bi)) is defined by the ith TAG or VRFY
query) iff h(mi,bi) = h(mj ,bj).
A makes a total of Q queries. Assume that up to the (i− 1)th query, all the

v’s were distinct. If the ith query is a TAG query, a fresh bi is sampled which
will be distinct from all previous bj (for any j < i) with prob 1 − (i − 1)/2ν .
Assuming this is the case, the probability that h(mi,bi) = h(mj ,bj) for any
j < i can be upper bounded by i/2µ (here we use the fact that the answers that

A gets from BU2`+1(·)
1 are uniformly random, and thus A has no information

about h).
If the ith query is a VRFY query (mi, φi), then using the fact that π is a

pairwise independent permutation (and A has no information about it) we can
show that the probability that φi contains a bi which is equal to some bj (s.t.

9 In this case where Pr[Efresh] ≤ ε′/2, we can even distinguish a SLPN∗τ,2`,` oracle from
U2`+1(·).

φj 6= φi) is ≤ i/2ν+1. If this is the case then (mi,bi) 6= (mj ,bj) for all j < i
with overwhelming probability.10 As in the previous case, we can then upper
bound the probability that h(mi,bi) = h(mj ,bj) for any j < i by i/2µ.

Using the union bound over all i, 1 ≤ i ≤ Q we get the bound Q2/2ν−2 =
Q2/2µ−2 (recall that µ = ν) as claimed.

The case Pr[Efresh] > ε′/2. In this case, A will make TAG,VRFY queries, where

with probability > ε′/2, at some point she will make an accepting VRFY query
(m, φ) that defines a fresh v. We now construct an adversary BO2 that uses A
as a black-box, and can distinguish O = Γ ∗τ,2`,d(s, ·) from O = U2`+1(·) (as in
Definition 3) with advantage

ε′

2µ+1
−Qtag · α′`,d −Qvrfy · α′′τ ′,n. (B.2)

The construction of BO2 is very similar to the adversary B that we constructed
in the proof of Theorem 1 (where we proved that the authentication protocol
in Figure 4 is secure against active attacks). The queries to the prover in the
first phase of an active attack directly correspond to TAG queries. However, we
now have to additionally answer VRFY queries (we will always answer reject).
Furthermore, we cannot choose the challenge v∗ (as in the 2nd phase of an active
attack). Instead, we will simply hope that (in the case where O = Γ ∗τ,2`,d(s, ·))
the v contained in the first valid VRFY query (i.e. forgery) that A makes is fresh
(which by assumption happens with probability ε′/2). Moreover, we will hope
that it is the unique v∗ (out of 2µ possible ones) for which BO2 can verify this. This
gives us a distinguishing advantage of nearly ε′/2µ+1 as stated in eq.(B.2). We
do loose an additional additive term Qtag ·α′`,d as there is an exponentially small
probability that the transformation of subspace LPN samples to TAG queries
will fail, and moreover an exponentially small term Qvrfy · α′′τ ′,n which accounts
for the probability that A correctly guesses an accepting tag even in the case
where O = U2`+1(·).
BO2 samples π, h (but not s) as defined by KG, and y∗

$← Zµ2 , s∗
$← Z2`

2 .
Let v∗ := C(y∗). Next, BO2 invokes A and answers its queries as follows (the
intuition for the sampling below is given in the proof of Claim 9).
– TAG(K, ·). The answer φ to a TAG query m ∈ M is computed by BO2 as

follows:
1. Sample b

$← Zν2 and compute v := C(h(m,b)). If v = v∗, output 0 and
stop.
Let u := v ∧ v∗ and u∗ := v ∧ v∗.

2. For i = 1, . . . , n, let (R′[i], z′[i])
$← O(u), R′′[i]

$← Z2`
2 and z′′[i] :=

〈R′′[i], s∗ ∧ u∗〉.
Let R = [R[1],R[2], . . . ,R[n]] and z = [z[1], . . . , z[n]] where R[i] :=
(R′[i] ∧ u⊕R′′[i] ∧ u∗)↓v and z[i] := z′[i]⊕ z′′[i].

10 Note that for j < i where φi = φj we must have that mi 6= mj since we assume
that A does not repeat queries and does not ask VRFY queries (m, φ) if φ was the
output of a TAG query m.

3. Return φ := π(R, z,b) to A.
– VRFY(K, ·, ·). If A makes a VRFY query (φ,m), then BO2 always answers

reject, but also makes the following check:
1. Parse y := π−1(φ) as [R ∈ Z`×n2 , z ∈ Zn2 ,b ∈ Zν2] and compute v :=

C(h(m,b)).
2. If v 6= v∗, processing this query is over, otherwise go to the next step.
3. If rank(R) = n and wt(RT · s∗↓v∗ ⊕ z) ≤ n · τ ′ (i.e. we have a forgery)

output 1 and stop.
If A has finished its queries, BO2 stops with output 0.

Claim 8 If O = U2`+1(·), then BO2 outputs 1 with probability ≤ Qvrfy · α′′τ ′,n.

Proof (Proof of Claim). The proof of this claim is almost identical to the proof
of Claim 2, except that here we have an additional factor Qvrfy as we have to
take the union bound over all Qvrfy queries, whereas in Claim 2 the adversary
was (by definition of an active attack) only allowed one guess.

Claim 9 If O = Γ ∗τ,2`,d(s, ·), then BO2 outputs 1 with probability ≥ ε′

2µ+1 .

Proof. The proof of this claim is similar to the proof of Claim 3. BΓ
∗
τ,2`,d(s,·)

2 per-
fectly simulates access to TAG(K, ·),VRFY(K, ·, ·) oracles with key K = (s′, h, π)
where s′ := (s∗ ∧ v∗)⊕ (s ∧ v∗) and h, π are sampled by BO2 . By assumption, in
this case, A outputs a valid fresh forgery with probability ε′/2. Conditioned on
this, with probability 2−µ, this fresh v will be v∗ and therefore BO2 will output 1.

Summing up, using A we can break the subset LPN assumption with advantage
which is given either by eq.(B.1) or eq.(B.2), i.e.

ε = min

{
ε′/2− Q2

2µ−2
,

ε′

2µ+1
−Qtag · α′`,d −Qvrfy · α′′τ ′,n

}
.

B.2 Proof of Theorem 5

The proof of the completeness error is similar to the schemes before and is omit-
ted. As for security, let A be an adversary that successfully forges in the uf-cma
experiment with probability ε′. We make the same conventions and the defini-
tion of freshness as in the proof of Theorem 4 and split the forging probability
as Pr[Efresh] + Pr[¬Efresh] = ε′.
The case Pr[Efresh] ≤ ε′/2. We now give the description of BO1 attacking the

standard LPN problem, i.e. BO1 can distinguish O = Λτ,`(s) from O = U`+1 with
advantage

ε′/2− Q2

2µ−2
. (B.3)

Adversary BO1 samples π, h (but not s) as defined by KG and bi
$← Z`2, for

0 ≤ i ≤ µ. Next, it implicitly defines s0 := s ⊕ b0 (where s is unknown) and

si := bi. It is easy to see that with this setup of K = (s0, . . . , sµ, h, π) we have
that for each v ∈ Zµ2 ,

s(v) = s⊕ b(v), where b(v) := b0 ⊕
⊕

i:v[i]=1

bi. (B.4)

Note that adversary BO1 cannot evaluate s(v) but looking ahead, it will use its
oracle O to answer A’s queries as follows.
– If A makes a TAG(K, ·) query for message m ∈ M, then BO1 does the fol-

lowing:

1. Samples b
$← Zν2 and compute v := h(m,b). Compute b(v) as in equa-

tion (B.4)

2. Query the oracle O for n times: for i = 1, . . . , n let (R[i], z′[i])
$← O

3. Return φ := π(R, z,b), where z = z′ ⊕RT · b(v).
– If A makes a VRFY(K, ·, ·) query (m, φ), BO1 simply answers with reject

Finally, if any TAG or VRFY query contains a v which has appeared in a previous
query, BO1 outputs 1 and stops. Otherwise, it outputs 0. Note that if O = Λτ,`(s),
then BO1 perfectly simulates the TAG(K, ·) oracle.

The following two claims are the analogs of Claims 6 and 7, respectively.
Their proofs are essentially the same and are therefore omitted.

Claim 10 If O = Λτ,`(s), then BO1 outputs 1 with probability ≥ ε′/2.

Claim 11 If O = U`+1, then BO1 outputs 1 with probability < Q2

2µ−2 .

Before we start dealing with the case Pr[Efresh] > ε′/2, we recall the concept
of encodings with full-rank differences over general finite fields F. (For our proof
we will only be interested in the case F = Z2.)

Definition 4. Let k ≥ 1 be an integer and F be a finite field. A mapping ϕ :
Fk → Fk×k is an encoding with full-rank differences (FRD) over F, if
– ϕ is computable in polynomial time (in k);
– for all distinct vectors a,b ∈ Fk, ϕ(a)− ϕ(b) is an invertible matrix.

Further, ϕ is homomorphic if for all vectors a,b ∈ Fk, ϕ(a) +ϕ(b) = ϕ(a + b).

Cramer and Damgard [9] provided the following construction of an encoding with
FRD. Let f be some polynomial of degree k in F[X] that is irreducible. Recall
that if h is a polynomial over F[X], the polynomial h mod f has degree less than
k and therefore coefs(h mod f) can be viewed as a vector in Fk. For an input

a = (a[0], . . . ,a[k−1]) ∈ Fk define the polynomial ga(X) =
∑k−1
i=0 a[i]Xi ∈ F[X].

Define

ϕ(a) =


coefs(ga)

coefs(X · ga mod f)
coefs(X2 · ga mod f)

...
coefs(Xk−1 · ga mod f)

 ∈ Fk×k

As proved in [9], this is an encoding with FRD. Furthermore, it is also homomor-
phic since coefs(Xi · ga+b mod f) = coefs(Xi · ga mod f) + coefs(Xi · gb mod f).

Lemma 1. For any prime q ≥ 2 and integer k ≥ 1, there exists an homomorphic
encoding with full-rank differences over Zq.

The case Pr[Efresh] > ε′/2. We will use games, denoting by Xi the output of
the experiment in the ith game.

Game 0: The uf-cma security experiment with the modification that it only
returns 1 in case Efresh happens. We have that Pr[X0 → 1] ≥ ε′/2.

Game 1: Let k = dlog2(2Q)e. The experiment is the same as in Game 0 with
the following differences.

– Key Generation. Algorithm KG additionally picks ai
$← Zk2 (0 ≤ i ≤ µ) and

defines
a(v) := a0 ⊕

⊕
i:v[i]=1

ai ∈ Zk2 . (B.5)

– Tagging. For a query m ∈M, algorithm TAG proceeds as follows. As in the

last game, it computes tag φ and all the intermediate values. If a(v) = 0k ∈
Zk2 then the experiment stops and outputs 0. Otherwise, it outputs tag φ.

– Verification. For a query (m∗, φ∗), algorithm VRFY proceeds as follows. As
in the last game, it first computes the output d of the real VRFY algorithm,
together with all intermediate values. If d = accept and a(v∗) 6= 0k ∈ Zk2 ,
then it stops and outputs 0. Otherwise, it returns d.

Claim 12 Pr[X0 → 1] = 2QPr[X1 → 1].

Proof. Let Efail be the event that the execution in Game 1 stops, but not in
Game 0, i.e.,

Efail := a(v∗) = 0k ∧ a(v1) 6= 0k ∧ . . . ∧ a(vQ) 6= 0k,

where vi is the v value appearing in the ith TAG query and v∗ is the v value of
the first fresh VRFY query. We use a variant of [7, Lemma 27] to show that

1

2k

(
1− Q

2k

)
≤ Pr

a
[Efail] ≤

1

2k
, (B.6)

where the probability is taken over a = (a0, . . . ,aµ)
$← (Zk2)µ+1. Note that a(·)

from (B.5) is essentially pairwise independent over Zk2 , i.e. for each vi 6= v∗ ∈ Zµ2 ,
we have Pr[a(v∗) = 0k] = 1/2k and Pr[a(vi) = 0k | a(v∗) = 0k] = 1/2k.
Then (B.6) follows by applying the union bound. The claim now follows by the
definition of k = dlog2(2Q)e.

Game 2: Oracle TAG(K, ·) now internally uses uniform (R, z) ∈ Z`×n2 × Zn2 to
generate tag φ on message m.

Claim 13 Pr[X1 = 1]− Pr[X2 = 1] ≤ ε.

Proof. Assume there exists an adversary A that can distinguish between the two

games. We now describe adversary BO(·,·)
2 that (t, nQ, ε)-breaks the SLPNτ,`,`

problem.

– KG. Let k = dlog2(2Q)e and ϕ : Zk2 → Zk×k2 be an homomorphic encoding

with full-rank differences over Z2 from Lemma 1. BO2 picks ai
$← Zk2 , bi

$← Z`2
(for i = 0, . . . , µ) and (implicitly) defines si = Ai · s ⊕ bi, where s is the
(unknown) secret from the oracle Γτ,`,`(s, ·, ·) and

Ai :=



ϕ(ai)︸ ︷︷ ︸
∈Zk×k2

0 · · · 0

0 ϕ(ai)
...

...
. . .

...

0 · · · ϕ(ai)


∈ Z`×`2 .

(Here we assume that k|`. If that is not the case, the matrix Ai is truncated.)
This way we have that s(v) = A(v)·s⊕b(v), where A(v) = A0⊕

⊕
i:v[i]=1 Ai

and b(v) = b0 ⊕
⊕

i:v[i]=1 bi. Define a(v) := a0 ⊕
⊕

i:v[i]=1 ai as in (B.5).
By the properties of the homomorphic encoding with FRD we have that

A(v) =

{
0`×` if a(v) = 0k

full-rank matrix if a(v) 6= 0k
(B.7)

– Next, BO2 invokes A. The answer (R, z) to a TAG(K, ·) query m ∈ M by A
is computed by BO2 as follows.

1. Sample b
$← Zν2 and compute v := h(m,b).

2. Compute a(v), b(v) and A. If a(v) = 0k, then stop and output 0. If
a(v) 6= 0k we have that A(v) is a full-rank matrix by (B.7)

3. Query O(·, ·) for n times on input (A(v),b(v)): for i = 1, . . . , n let

(R[i], z[i])
$← O(A(v),b(v))

4. Return φ = π(R, z,b) to A.
– IfAmakes a verification query consisting of m∗ and a tag φ∗ = π(R∗, z∗,b∗),

then BO2 computes v∗ = h(m∗,b∗). If a(v∗) 6= 0k then BO2 returns reject.
Otherwise, we have that s(v∗) = b(v∗) does not depend on the unknown
secret s anymore and BO2 can perform the real check which is

rank(R∗) = n and wt(z∗ ⊕R∗T · b(v∗)) ≤ n · τ ′. (B.8)

The output is 1 if both checks succeed and 0 otherwise.
We now analyze BO2 . If O(·, ·) = Γτ,`,`(s, ·, ·) is the real subspace LPN oracle,
then the answers that BO2 gives to A’s queries in the first phase of the attack have
exactly the same distribution as what A would get in Game 1. (That is, the z[i]
from the oracle are of the form z[i] = R[i]T(A(v) ·s⊕b(v))⊕e = R[i]T ·s(v)⊕e,

as in Game 1.) Hence Pr[BΓτ,`,`(s,·,·)2 → 1] = Pr[X1 → 1]. If O = U`+1(·, ·) is
the uniform oracle, then all the outputs made by the TAG oracle are uniformly

random. Hence Pr[BU`+1(·,·)
2 → 1] = Pr[X2 → 1].

Claim 14 Pr[X2 = 1] ≤ α′′τ ′,n = 2−Θ(n).

Proof (Proof of Claim). If R∗ does not have full rank then the experiment out-
puts 0 by definition. So from now we only consider the case where rank(R∗) = n.
In Game 2, the answers (R, z) adversary A obtains from the TAG oracle are in-
dependent of the secrets s0, . . . , sµ. Since s(v∗) is uniformly random and R∗ has

full rank, the vector x := R∗T · s(v∗) ⊕ z∗ is uniformly random over Zn2 . Thus
the probability that the second verification wt(z∗ ⊕R∗T · s(v∗)) ≤ n · τ ′ fails is
Pr[wt(x) ≤ n · τ ′] = α′′τ ′,n = 2−Θ(n).

To sum up, in the case Pr[Efresh] > ε′/2 (putting all together the terms
in Claim 12—14), we can use A to break the subspace LPN assumption with

advantage ε′

4Q −2−Θ(n). On the other hand in the case Pr[Efresh] ≤ ε′/2, we have

an advantage as given in eq. (B.3). Thus ε = min
{
ε′/2− Q2

2µ−2 ,
ε′

4Q − 2−Θ(n)
}

.

C A Technical Lemma

The following lemma was used in Section 3.1.

Lemma 2. For n, t ∈ Z, let ∆(n, d) denote the probability that a random matrix
in Zn+d×n2 has rank less than n, then

∆(n, d) < 2−d .

Proof. Assume we sample the n columns of a matrix M ∈ Zn+d×n2 one by one.
For i = 1, . . . , n let Ei denote the event that the first i columns are linearly
independent, then

Pr[¬Ei|Ei−1] =
2i−1

2n+d
= 2i−1−n−d

as ¬Ei happens iff the ith column (sampled uniformly from a space of size 2n+d)
falls into the space (of size 2i−1) spanned by the first i − 1 columns. We get
further

∆(n, d) = Pr[¬En] =

n∑
i=1

Pr[¬Ei|Ei−1] =

n∑
i=1

2i−1−n−d ≤ 2−d.

