
CS 601.642/442
Modern Cryptography

Lecture Notes

Abhishek Jain

September 16, 2017

ii

THE DOCUMENT IS UNDER CONTINUAL UPDATE

iv

Contents

1 Introduction 3
1.1 Adversary Model . 3
1.2 Algorithms and Running Times . 3

2 One-Way Functions 5
2.1 Introduction . 5
2.2 Formal Definition of One-way Functions . 5
2.3 Factoring Problem . 7
2.4 Weak to strong OWF . 9

3 Hard Core Predicate 13
3.1 Introduction . 13
3.2 Hard Core Predicate via Inner Product . 14
3.3 Final Remarks on OWFs . 15

4 Pseudorandomness 17
4.1 Introduction . 17
4.2 Computational Indistinguishability and Prediction Advantage 17
4.3 Next-Bit Test . 19
4.4 Pseudorandom Generators (PRG) . 20
4.5 PRG with 1-bit Stretch . 21
4.6 PRG with Poly-Stretch . 22
4.7 Going beyond Poly Stretch . 22
4.8 Pseudorandom Functions (PRF) . 23

4.8.1 Security of PRF via Game Based Definition 23
4.8.2 PRF with 1-bit input . 24
4.8.3 PRF with n-bit input . 25

5 Secret-Key Encryption 29
5.1 Setting . 29
5.2 Secret-key Encryption . 29

5.2.1 One-Time Pads . 30
5.2.2 Encryption using PRGs . 30

5.3 Multi-message Secure Encryption . 31
5.3.1 Encryption using PRFs . 32

6 Public-Key Encryption 35
6.1 Semantic Security . 35
6.2 Public Key Encryption . 36
6.3 Trapdoor Permutations . 37

v

6.4 Public-key Encryption from Trapdoor Permutations 38
6.5 Trapdoor Permutations from RSA . 39

7 Authentication 41
7.1 Introduction . 41
7.2 Private Key: MAC . 41

7.2.1 Algorithm overview . 41
7.3 Construction of MAC . 42

7.3.1 One Time MACs . 43
7.4 Public Key: Digital Signature . 43

7.4.1 Algorithm overview . 43
7.5 One Time Signatures . 43
7.6 Collision-Resistant Hash Function . 45
7.7 Multi-message Signatures . 46

8 Zero-Knowledge Proofs 47
8.1 What is a Proof? . 47
8.2 Interactive Protocols . 47
8.3 Interactive Proofs . 48

8.3.1 Why Interactive Proofs? . 48
8.4 Notation for Graphs . 49
8.5 Interactive Proof for Graph Non-Isomorphism . 50
8.6 Interactive Proofs with Efficient Provers . 50

8.6.1 Interactive proof for Graph Isomorphism 51
8.7 Zero Knowledge . 52
8.8 Reflections on Zero Knowledge . 54
8.9 Zero-knowledge Proofs for NP . 55
8.10 Commitment Schemes . 56
8.11 Zero-knowledge Proof for Graph 3-coloring . 58

9 Secure Computation 61
9.1 Introduction . 61
9.2 Adversary Models . 61
9.3 Definition . 62
9.4 Oblivious Transfer . 62
9.5 Importance of Oblivious Transfer . 63

9.5.1 Construction . 63
9.6 Proof of Security . 63
9.7 Remarks . 64
9.8 Goldreich- Micali-Wigderson (GMW) Protocol 65

9.8.1 Circuit Representation . 65
9.8.2 Secret Sharing . 65
9.8.3 Protocol Notations . 66
9.8.4 Protocol Details . 66
9.8.5 CircuitEval . 67
9.8.6 Security . 67

9.9 Yao’s Garbled Circuits . 67
9.9.1 Garbled Circuits Construction . 68
9.9.2 Secure Computation from Garbled Circuits 69

vi

10 Non-Interactive Zero Knowledge 71
10.1 Introduction . 71
10.2 Non-Interactive Proofs . 71
10.3 NIZKs for NP . 73
10.4 The Hidden-Bit Model . 73
10.5 From NIZK in HB model to NIZK in CRS model 74
10.6 Hamiltonian Graphs . 77
10.7 NIZKs for LH in Hidden-Bit Model . 78

10.7.1 Step I . 78
10.7.2 Step II . 79

11 CCA Security 83
11.1 Definition . 83
11.2 IND-CCA-1 Construction . 84
11.3 IND-CCA-2 Security . 90
11.4 CCA-2 Secure Public-Key Encryption . 90

11.4.1 Construction . 91
11.4.2 Security . 92

vii

viii

Acknowledgment

Thanks to the students of CS 600.442 (Fall 2016) (Alex Badiceanu, Ke Wu, David Li, Yeon
Woo Kim, Aarushi Goel, Jesse Fowers, Neil Fendley, Katie Chang, Alishah Chator, Arka Rai
Choudhuri, Cheng-Hao Cho) for scribing the original lecture notes.

1

2

Chapter 1

Introduction

In this chapter we will establish some basic definitions that will be used throughout the course.

1.1 Adversary Model

Adversary’s Resources: In practice, everyone has bounded computational resources. There-
fore, it is reasonable to model the adversary as such an entity, instead of an all powerful entity.
Adversary’s Strategy: The adversary is not restricted to any specific strategies. We do not
make any assumptions about adversarial strategy. Adversary can use its bounded computa-
tional resources however intelligently it likes.
Turing machines can capture all types of computations that are possible. Hence, our adversary
will be a computer program or an algorithm, modeled as a Turing Machine. Our adversary will
also be efficient (captured via its running time)
Computational Security: Security against efficient adversaries. We will mostly focus on
computational security throughout the course.
Information-theoretic Security: Security against inefficient adversaries.

1.2 Algorithms and Running Times

Definition 1 (Algorithm)An algorithm is a deterministic Turing Machine whose input and
output are strings over the binary alphabet

∑
= {0, 1}.

Note, that the two terms “Turing machine" and “algorithm" will be used interchangeably
from now on.

Definition 2 (Running Time)An algorithm A is said to run in time T(n) if for all strings
of length n over the input alphabet (x ∈ {0, 1}n), A(x) halts within T (|x|) steps.

Definition 3 (Polynomial Running Time)An algorithm A is said to run in polynomial
time if there exists a constant c such that A runs in time T (n) = nc.

We say an algorithm is efficient if it runs in polynomial time. If an algorithm runs in
super-polynomial time T (n) = 2n or T (n) = nlogn, then we will say it is inefficient

Note that here, c could be an arbitrary constant. In particular, it may not be small. Then,
does this definition of an efficient algorithm reflect what we commonly think of as being efficient?
For example, consider c=100. In practice, n100 may actually be considered “inefficient". For our
purposes, however, we will stick with this definition of efficiency. In particular, for us, inefficient

3

algorithms correspond to those that have super-polynomial running times such as T (n) = 2n or
T (n) = nlogn.

So far, we have only considered deterministic algorithms. In computer science, and specifi-
cally cryptography, randomness plays a central role. Therefore, throughout the course, we will
be interested in randomized (a.k.a. probabilistic) algorithms.

Definition 4 (Randomized Algorithm)A randomized algorithm, also called a probabilistic
polynomial time Turing machine (PPT) is a Turing machine that runs in polynomial time and
is equipped with an extra randomness tape. Each bit of randomness tape is uniformly and inde-
pendently chosen.The output of a randomized algorithm is a distribution.

As mentioned earlier, in practice, everyone including the adversary has some bounded com-
putational resources. These resources can be used in a variety of intelligent ways, but they are
still limited. Turing machines are able to capture all the types of computations possible given
these resources. Therefore, a adversary will be a computer program or algorithm modeled as a
Turing machine.

This captures what we can do efficiently ourselves and can be described as a uniform PPT
Turing machine. When it comes to adversaries, we will allow them to have some extra power.
Instead of having only one algorithm that works for different input lengths, it can write down
potentially a different algorithm for every input size. Each of them individually could be efficient.
If that is the case, overall the adversary still runs in polynomial time.

Definition 5 (Non-uniform PPT)A non-uniform probabilistic polynomial time Turing ma-
chine is a Turing machine A made up of a sequence of probabilistic machines A = {A1, A2,}
for which there exists a polinomial p(·) such that for every Ai ∈ A, the description size |Ai| and
the running time of Ai are at most p(i). We write A(x) to denote the distribution obtained by
running A|x|(x).

Our adversary will usually be a non-uniform probabilistic polynomial running time algorithm
(n.u. PPT).

4

Chapter 2

One-Way Functions

2.1 Introduction
Intuitively, a given function f is “one-way" if it is very easy to compute f(x) efficiently, but it is
hard to recover x if given f(x).

f(x)x

EASY

HARD

Definition 6 (One-way Function (Informal))A function f is one-way if it satisfies the
following two informal properties:

1. Functionality - Easy to compute: Given any input x from the domain, it should be
easy to compute f(x). In other words it is possible to compute f(x) in polynomial time.

2. Security - Hard to invert: Any polynomial time algorithm should fail to recover x given
f(x). This can also be expressed as: the probability of inverting f(x) is “small".

What is this probability even over? Taking probability over adversary’s random tape is not a
good idea. What the adversary can do is find the best available random tape and just hardwire
that inside the description. Instead, we want to take the probability over the choice of x. Take
any non-uniform PPT adversary, with the best strategy, and then for any input length for x,
the probability that A inverts f(x) for a randomly chosen x from the input should be small.
So we sample an x at random, and then we compute f(x) and give it to the adversary, and we
observe the probability that it inverts that image. Using this informal definition, we will make
an attempt to describe the 2 conditions in a more formal way.

2.2 Formal Definition of One-way Functions
Definition 7 (One-way Function (1st Attempt))A function f : {0, 1}∗ → {0, 1}∗ is a one
way function (OWF) if it satisfies the following two conditions:

1. Easy to compute: There is a PPT algorithm C s.t. ∀x ∈ {0, 1}∗,

Pr[C(x) = f(x)] = 1.

5

What do we mean when we say the “probability is 1" - What set is this probability over?
- It’s the probability over the random tape input to the randomized algorithm C.

2. Hard to invert: for every non-uniform PPT adversary A, for any input length n ∈ N.

Pr[x←$ {0, 1}n;A inverts f(x)] ≤ small

We need to specify what exactly “small" means. We will define a fast decaying function ν(·)
s.t for any imput length n ∈ N. This function decays asymptotically faster than any inverse
polynomial. We willl call this function negligible Then, our security definition becomes:

Pr[x←$ {0, 1}n;A inverts f(x)] ≤ ν(n).

Definition 8 (Negligible function)A function ν(n) is negligible if for every c, there exists
some n0 such that for all n > n0, ν(n) ≤ 1

nc

i.e ∀c ∈ N, ∃n0 ∈ N such that ∀n > n0, ν(n) ≤ 1
nc

In other words, a negligible function decays faster than all "inverse-polynomial" functions
(n−ω(1)). An example of an obviously negligible function is an exponentially decaying function
2−n or n− log(n)

Updating our previous definition:

Definition 9 (One-way Function (2nd Attempt))A function f : {0, 1}∗ → {0, 1}∗ is a one
way function (OWF) if it satisfies the following two conditions:

1. Easy to compute: There is a PPT algorithm C s.t. ∀x ∈ {0, 1}∗,

Pr[C(x) = f(x)] = 1.

2. Hard to invert: for every non-uniform PPT adversary A, for any input length n ∈ N,
there exists a negligible function ν(·) s.t:

Pr[x←$ {0, 1}n;A inverts f(x)] ≤ ν(|x|).

Although this definition seems accurate, it has one small problem: What is A’s input? Let’s
take a closer look at this: Let’s write y = f(x) If f is a one way function, the following two
conditions have to be satisfied:

• Condition 1: A on input y must run in poly(|y|).

• Condition 2: A cannot output x′ s.t. f(x′) = y.

However, if the size of y is much smaller than the size of the domain, A cannot write the inverse
even if it can find it. For example, if we consider the function f(x) =first log|x| Although it is
trivial to invert this function (f−1(y) = y|| 0000...0︸ ︷︷ ︸

n - lg n

wheren = 2|y|), it still satisfies the definition

we wrote above. Although f is easy to compute, and A cannot invert f in time poly(|y|) as it
needs 2|y| to write the answer, it is not a one-way function. In order to fix this issue, we adopt
the convention to always pad y and write A(1n, y), so that A has sufficient time to write the
answer.

6

Definition 10 (Strong One-way Function)A function f : {0, 1}∗ → {0, 1}∗ is a one way
function (OWF) if it satisfies the following two conditions:

1. Easy to compute: There is a PPT algorithm C s.t. ∀x ∈ {0, 1}∗,

Pr[C(x) = f(x)] = 1.

2. Hard to invert: There exists a negligible function µ : N→ R s.t. for every non-uniform
PPT adversary A and ∀n inN:

Pr[x← {0, 1}n, x′ ← A(1n, f(x)) : f(x′) = f(x)] ≤ µ(n)

Definition 11 (Injective or 1-1 OWFs)A function f is injective if each image has a unique
pre-image:

f(x1) = f(x2)⇒ x1 = x2

Definition 12 (One Way Permutation)An injective one way function with the additional
condition that “each image has a pre-image" or in other words t hat the domain and range of
the function have the same size.

f(x1) = f(x2)⇒ x1 = x2.

2.3 Factoring Problem
Since proving that f is a one way function requires proving (at least) P 6= NP , we cannot tell for
sure if OWFs exist unconditionally. However, by making certain assumptions about the hard-
ness of some problems, we can construct conditional one-way functions also called “candidates".
One such problem is the Factoring Problem:

We will start with considering the multiplication function: fx : N× N→ N :

fx(x, y) =
{
⊥ if x = 1 or y = 1
x · y otherwise

This function is clearly not one-way, as the probability of xy being even and thus obviously
factored into (2, xy/2) is 3

4 for random (x, y). In other words, the inversion succeeds 75% of
time. We will then try to eliminate such trivial factors. We define

∏
n be the set of all prime

numbers < 2n and we randomly select two elements, p and q from this set and multiply them.
Their product is thus unlikely to contain small trivial factors. Thus:

Assumption 1 (Factoring Assumption)For every (non-uniform PPT) adversary A, there
exists a negligible function ν such that:

Pr[p $←−
∏
n; q $←−

∏
n;N = pq : A(N) ∈ {p, q}] ≤ ν(n)

Untill now, there have been no “good attacks" on this assumption. The best known algorithms
for breaking the Factoring Assumption are:

2O(
√
n logn) (provable)

2O(3
√
n log2 n) (heuristic)

7

Looking back at our multiplication function, it is clear that if a random x and y happen to
be prime, no A could invert it, which is a GOOD case. If such a case happens with probability
greater than ε, then every A must fail to invert the function with probability at least ε. If ε
is a noticeable function, then A fails to invert the function with noticeable probability. Lastly,
if ε is a noticeable function, then A fails with a noticeable probability. This is what we call a
WEAK one-way function.

Definition 13 (Noticeable Function)Function ε : N → R is noticeable means that ∃c and
integer Nc such that ∀n > Nc : ε(n) ≥ 1

nc

Definition 14 (Weak One-way Function)A function f : {0, 1}∗ → {0, 1}∗ is a weak one
way function (OWF) if it satisfies the following two conditions:

1. Easy to compute: There is a PPT algorithm C s.t. ∀x ∈ {0, 1}∗,

Pr[C(x) = f(x)] = 1.

2. Somewhat hard to invert: There is a noticeable function ε : N → R s.t. for every
non-uniform PPT A and ∀n ∈ N :

Pr[x← {0, 1}n, x′ ← A(1n, f(x)) : f(x′) 6= f(x)] ≥ ε(n)..

Now we will try to show that f× is a weak OWF.

Theorem 1 Assuming the factoring assumption, function f× is a weak OWF.

To prove this, we will show that the “good" case when x and y are prime occurs with
noticeable probability and we will use Chebyshev’s theorem to show that the fraction of prime
numbers between 1 and 2n is noticeable.

Theorem 2 (Chebyshev’s theorem)An n bit number is a prime with probability 1
2n .

Proof .
Proof via definition:Let GOOD be the set of inputs (x, y), such that both x and y are

prime. Then we have

Pr[A inverts f×]
=Pr[A inverts f×|(x, y) ∈ GOOD]Pr[(x, y) ∈ GOOD]
+Pr[A inverts f×|(x, y) /∈ GOOD]Pr[(x, y) /∈ GOOD]

According to the Factoring Assumption, when (x, y) ∈ GOOD, A could invert f× with a prob-
ability no more than a negligible function ν(n). Using Chebyshev’s theorem, an n bit number
is a prime number with probability 1

2n . Thus we get

Pr[A] ≤ ν(n) 1
4n2 + 1(1− 1

4n2) = 1− 1
4n2 (1− ν(n))

Now we only need to prove that 1
4n2 (1 − ν(n)) is a noticeable function. Considering that

∀c > 0, ν(n) ≤ 1
nc , hence, we can conclude that for n ≥ 2, 1−ν(n) ≥ 1

n . Thus
1

4n2 (1−ν(n)) ≥ 1
4n3

is noticeable. Hence f× is a weak OWF.

8

Proof via reduction: Suppose that f× is not a weak OWF, then we can construct an
adversary to break the factoring assumption. Assume that there exists a non-uniform PPT
algorithm A inverting f× with probability at leats 1− 1

8n2 . That is

Pr[(x, y) $←− {0, 1}n × {0, 1}n, z = x · y,A(12n, z) ∈ f−1
× (z)] ≥ 1− 1

8n2

Now we construct a non-uniform adversary algorithm B on input z (which is a product of two
random n-bit prime numbers) to break the factoring assumption. B runs as follows:

1. Pick (x, y) randomly from {0, 1}n × {0, 1}n;

2. if x, y are both prime, let z′ = z;

3. else, let z′ = xy;

4. run ω = A(12n, z′);

5. if x, y are both prime, return ω.

The reason for randomly choosing (x, y) instead of passing the input directly to A is that, the
input of B is a product of two random n-bit primes while that of A is the product of two random
n-bit numbers. Passing the input directly to A would not emulate the uniform distribution of
the inputs given to A .

Now we calculate the probability that B fails to break factoring assumption. We use the
following notation:

Pr[B fails to break factoring assumption]
=Pr[B pass input to A]Pr[A fails to invert f×] + Pr[B fails to pass input to A]
≤Pr[A fails to invert f×] + Pr[B fails to pass input to A]

≤ 1
8n2 + (1− 1

4n2)+ ≤ 1− 1
8n2

Thus B breaks factoring assumption with a noticeable probability. And we get contraction.
Thus f× is a weak one-way function.

2.4 Weak to strong OWF

Now, once we have a weak OWF, how can we get strong OWF? Can we transform the multiply
function into a strong OWF? Can we do this generically. The answer is yes, proven by Yao.

Theorem 3 (Yao’s theorem)Strong OWFs exist if and only if weak OWFs exist.

In other words, if you have a weak one-way function, you can generically convert it to a
strong one-way function.This is an example of a general phenomenon which is very well studied
in complexity theory called hardness amplification.

Theorem 4 For any weak OWF f : {0, 1}n → {0, 1}n, ∃ polynomial N(·) s.t. F : {0, 1}nN(n) →
{0, 1}nN(n) : F (x1, ..., xN (n)) = (f(x1), ..., f(xN)) is a strong OWF.

9

Proof .
Since f is weak OWF, then let q : N → N be a polynomial function, and for every non-

uniform A
Pr[x $←− {0, 1}n, y = f(x),A(1n, y) ∈ f−1(y)] ≤ 1− 1

q(n)
We want to find a N s.t. (1 − 1

q(n))N tends to be very small. Thus we pick N = 2nq(n), and
(1− 1

q(n))N ∼ e−2n.
Suppose that F is not a strong OWF. Then ∃ polynomial function p′(·) and a non-uniform

A′ s.t.

Pr[(x1, ..., xN) $←− {0, 1}nN , (y1, ..., yN) = F (x1, ..., xN),A′(1nN , (y1, ..., yN)) ∈ F−1(y1, ..., yN)] ≥ 1
p′(nN)

Since N is a polynomial in n, the above polynomial can be re-written as:

Pr[(x1, ..., xN) $←− {0, 1}nN , (y1, ..., yN) = F (x1, ..., xN),A′(1nN , (y1, ..., yN)) ∈ F−1(y1, ..., yN)] ≥ 1
p(n)

Now we construct a non-uniform PPT B to break f with probability more than 1− 1
q(n) .

First we construct B0 on input y = f(x) for random x ∈ {0, 1}n as follows:

1. Randomly pick i ∈ [1, N]

2. For j 6= i, randomly pick xj
$←− {0, 1}n, let yj = f(xj). Let yi = y.

3. Let (z1, ..., zN) = A′(1nN , (y1, ..., yN)).

4. If f(zi) = y, output zi; otherwise, output ⊥

To improve the chance of inverting f , we will runB0 several times using independently chosen
random coins. We define B : {0, 1}n → {0, 1}n∪ ⊥ on input y to run B0(y) for 2nN2p(n) times
independently (to choose xj independently and randomly each time). B outputs the first non-⊥
it receives. If all runs of B0 results in ⊥, then B also outputs ⊥.

Let GOOD be the set that B0 inverts f with a probability at least 1
2N2p(N) .

GOOD = {x ∈ {0, 1}n|Pr[B0(1n, f(x)) ∈ f−1(f(x))] ≥ 1
2N2p(n)}

. Otherwise, call x "bad". Then the probability that B fails to invert f on GOOD set is
(1− 1

2N2p(N))2nN2p(n) ∼ e−n, which is extremely small.
Now we prove that the fraction of GOOD set is noticeable.

Lemma 5 There are at least 2n(1− 1
2q(n)) good elements in {0, 1}n.

Pr[B(f(x)) fails] = Pr[B(f(x)) fails|x ∈ GOOD]× Pr[x ∈ GOOD]
+ Pr[B(f(x)) fails|x /∈ GOOD]× Pr[x /∈ GOOD]
≤ Pr[B(f(x)) fails|x ∈ GOOD] + Pr[x /∈ GOOD]

≤ (1− 1
2N2p(n))2N2np(n) + 1

2q(n)

≈ e−n + 1
2q(n)

<
1

q(n)

10

This is a contradiction to our assumption that f is q(n)- weak. The only thing that remains to
be proven is Lemma 3.
Proof. [lemma 5] For the sake of contradiction, assume there are > 2n(1

2q(n)) bad elements.

Pr[∀i ∈ [N], xi ← {0, 1}n; yi ← f(xi) : A′(y1,yN) succeeds]
= Pr[∀i ∈ [N], xi ← {0, 1}n; yi ← f(xi) : A′(y1,yN) 6=⊥ ∧ some xi /∈ GOOD]
+ Pr[∀i ∈ [N], xi ← {0, 1}n; yi ← f(xi) : A′(y1,yN) 6=⊥ ∧ all xi ∈ GOOD]

For each j ∈ [1, N], we have

Pr[∀i ∈ [N], xi ← {0, 1}n; yi ← f(xi) : A′(y1,yN) 6=⊥ ∧ xj /∈ GOOD]
≤ Pr[∀i ∈ [N], xi ← {0, 1}n; yi ← f(xi) : A′(y1,yN) succeeds|xj /∈ GOOD]
≤ N × Pr[B0(f(xj)) succeeds| xj is bad]

≤ N

2N2p(n) = 1
2Np(n)

So by taking union bound, we have

Pr[∀i ∈ [N], xi ← {0, 1}n; yi ← f(xi) : A′(y1,yN) 6=⊥ ∧ some xi /∈ GOOD]
≤
∑
j

Pr[∀i ∈ [N], xi ← {0, 1}n; yi ← f(xi) : A′(y1,yN) 6=⊥ ∧ xj /∈ GOOD]

≤ N

2Np(n) = 1
2p(n)

Also,

Pr[∀i ∈ [N], xi ← {0, 1}n; yi ← f(xi) : A′(y1,yN) 6=⊥ ∧ all xi ∈ GOOD]
≤ Pr[∀i ∈ [N], xi ← {0, 1}n : all xi ∈ GOOD]

≤ (1− 1
2q(n))N = (1− 1

2q(n))2nq(n) ≈ e−n

Hence,

Pr[∀i ∈ [N], xi ← {0, 1}n; yi ← f(xi) : A′(y1,yN) succeeds]

<
1

2p(n) + e−n

<
1

p(n)

This contradicts with the assumption that F is not strongly one-way. Thus F is a strong OWF.

11

12

Chapter 3

Hard Core Predicate

3.1 Introduction

In this chapter, we will first examine what information one-way functions hide, and that will
introduce us to the notion of hard core predicate.

The idea of a one-way function is very intuitive, but by themselves, they’re often not very
useful. Why? Because it only guarantees that f(x) will hide the preimage x, but no more than
that! For instance, if we have a one-way function f , then

f ′(x) = f(x)||x[1,··· ,n/2],

where x[1,··· ,n/2] are the first half bits of x, is also a one-way function!
In fact, a function f may not hide any subset of the input bits, and still be a one-way

function. More generally, for any non-trivial function a(·), there is no guarantee that f(x) will
hide a(x). The question that naturally follows is,

Are there non-trivial functions of x that f(x) hides?

As a starting point, we’d be happy with such a function that outputs just a single bit.

Hard Core Predicate: Intuition. A hard core predicate for a one-way function f is a
function over its inputs {x} and its output is a single bit. We want this function to be easily
computed given x, but “hard” to compute given f(x). Intuitively, this says that f can leak some
(or many) bits of x, but does not leak the hard core bit. In other words, finding out the hard
core bit, even given f(x), is as difficult as inverting f . Of course, we need to be a little careful
with “hard to compute” for a single bit, since it can be guessed correctly with probability 1

2 .
So, intuitively, “hardness” should mean that it is impossible for any efficient adversary to gain
any non-trivial advantage over guessing. We formalize this below:

Definition 15 (Hard Core Predicate) Let f : {0, 1}n 7→ {0, 1}m be a one-way function. A
predicate h : {0, 1}∗ 7→ {0, 1} is a hard core predicate for f(·) if h is efficiently computable
given x, and there exists a negligible function negl such that for every non-uniform PPT adver-
sary A, and ∀n ∈ N,

Pr
[
x

$←−{0, 1}n : A(1n, f(x)) = h(x)
]
≤ 1

2 + negl(n) .

Here the randomness is over both the choice of x and the random coins used by A.

13

3.2 Hard Core Predicate via Inner Product
Ideally we would like every one-way function to have a hard core bit. But unfortunately, we
do not know if this true. Instead, we settle for something slightly different. Namely, given
any one-way function f , we show how to transform it into another function f ′ such that f ′ is
one-way and has a hard core bit. We now describe this transformation using the inner product.

Theorem 6 (Goldreich-Levin) Let f : {0, 1}n 7→ {0, 1}n be a one-way function (permuta-
tion). Then define g : {0, 1}2n 7→ {0, 1}2n as

g(x) = f(x)||r

where |x| = |r|. Then, g is a one-way function (permutation) and

h(x, r) = 〈x, r〉

is a hard-core predicate for f , where 〈x, r〉 = (
∑
i xiri) mod 2.

How should we prove this? If we use reduction, our main challenge is that our adversary
A for h only outputs one bit, but our inverter B for f needs to output n bits. Amazingly,
Goldreich and Levin proved that this can be done!

We start by considering two warmup cases, where we make assumptions on the adversary.

Assumption 2 First, let’s suppose that given g(x, r) = f(x)||r, adversary A will always (with
probability 1) output h(x, r) correctly.

Proof. We can use the property of the inner product to recover each bit of x one-by-one.
For every i ∈ [n], let ei to be the ith standard basis vector for Rn (i.e., ei is such that its ith bit
is 1 but every other bit is 0). We construct an adversary B for f that works as follows: on input
f(x), It then runs the adversary A on input (f(x), ei) to recover x∗i . Now, B simply outputs
x∗ = x∗1 · · ·x∗n.

B(1n, f(x))

for i = 1 to n do
x∗i ← A(f(x), ei)

output x∗ = x∗1 · · ·x∗n

Okay, that was fairly straightforward. Let’s see what happens when the adversary doesn’t
output h(x, r) correctly with probability 1.

Assumption 3 Now assume A outputs h(x, r) with probability 3
4 + ε(n).

Proof. [Informal Strategy] The main issue here is that our adversary A might not work on
some specific inputs - such as ei as in the previous case. We need the inputs to “look” random
in order to mimic the expected distribution over the inputs of A. So, we split our original
single query into two queries such that each query looks random individually. Specifically, our
inverter B computes a := A(f(x), ei + r) and b := A(f(x), r) for r $←−{0, 1}n. Then, compute
c := a⊕ b, where ⊕ is xor. By using a union bound, one can show that c = xi with probability
1
2 + ε, and we can then repeatedly compute xi and take the majority to get x∗i with x∗i = xi
with probability 1− negl(n).

14

By repeating this process for every i, B can learn every x∗i and output x∗ = x∗1 · · ·x∗n.

The full proof of Theorem 6 will be on the first homework assignment. Note that this
theorem is actually very important, even outside cryptography! It has applications to learning,
list-decoding codes, etc.

3.3 Final Remarks on OWFs
One-way functions are necessary for most of cryptography. Nevertheless, they are often not
sufficient for most of cryptography. In particular, it is known that many advanced cryptographic
primitives cannot be constructed by making black-box use of one-way functions; however, full
separations are not known.

Also, recall that we don’t know if one-way functions actually exist. (We only have candidates
based on assumptions such as hardness of factoring.) Now, suppose someone told you one-way
functions exist (perhaps by an existence proof, and not a constructive one). Then, simply using
that knowledge, could you create an explicit one-way function? Surprisingly, it can be done!
Levin gives a proof here: https://arxiv.org/pdf/cs/0012023.pdf.

15

https://arxiv.org/pdf/cs/0012023.pdf

16

Chapter 4

Pseudorandomness

4.1 Introduction
Our computers use randomness every day, but what exactly is randomness? How does your
computer get this randomness? Some common sources of randomness are key-strokes, mouse
movement, and power consumption, but the amount of randomness generated by these isn’t a
lot, and often a lot of randomness is required (such as for encryption).

This brings us to the fundamental question: Can we “expand” a few random bits into many
random bits? There are many heuristic approaches to this, but this isn’t good enough for
cryptography. We need bits that are “as good as truly random bits” (to a PPT adversary). This
isn’t very precise, so let’s define it formally.

4.2 Computational Indistinguishability and Prediction Advan-
tage

Suppose we have n uniformly random bits, x = x1‖· · · ‖xn, and we want to find a deterministic
polynomial time algorithm G that outputs n+1 bits: y = y1‖· · · ‖yn+1 and looks “as good as” a
truly random string r = r1‖· · · ‖rn+1. We call such a G : {0, 1}n → {0, 1}n+1 a pseudorandom
generator, or PRG for short.

But what does “as good as” really mean? Intuitively it means that there should be no
obvious patterns and that it should pass all statistical tests a truly random string would pass
(all possible k-length substrings should occur equally). But the key point is that we only need
to address our adversary, so as long as there is no efficient test that can tell G(x) and r apart,
then that is enough!

This gives us the notion of computational indistinguishability of {x← {0, 1}n : G(x)}
and {r $←− {0, 1}n+1 : r}. We will use this notion and an equivalent one called prediction
advantage in order to define pseudorandomness. Then, we will devise a complete test for
pseudorandom distributions (next-bit prediction), and examine pseudorandom generators.

First, we will have to define some terms.

Definition 16 (Distribution) X is a distribution over a sample space S if it assigns a
probability ps to the element s ∈ S such that

∑
s ps = 1.

Definition 17 (Ensemble) A sequence {Xn}n∈ is called an ensemble if for each n ∈, Xn is
a probability distribution over {0, 1}∗.

Generally, we will take Xn to be a distribution over {0, 1}`(n), where `(·) is a polynomial.

17

Now, we will try to define computational indistinguishability. This captures what it means
for distributions X, Y to “look alike” to any efficient test. In other words, no non-uniform PPT
“distinguisher” algorithm D can tell X and Y apart, or the behavior of D on X and Y is the
same.

We can try to think of this as a game of sorts. Let’s say we give D a sample of X. Then, D
gains a point if it says the sample is from X, and loses a point if it says the sample is from Y .
Then we can encode D’s output with one bit. In order for X and Y to be indistinguishable, D’s
average score on a sample of X should be basically the same as its average score on a sample
of Y .

Pr[x← X;D(1n, x) = 1] ≈ Pr[y ← Y ;D(1n, y) = 1]

or
Pr[x← X;D(1n, x) = 1]− Pr[y ← Y ;D(1n, y) = 1] ≤ µ(n)

for negligible µ(·).
This brings us to the formal definition of computational indistinguishability.

Definition 18 (Computational Indistinguishability) Two ensembles of probability distri-
butions X = {Xn}n∈ and Y = {Yn}n∈ are said to be computationally indistinguishable if for
every non-uniform PPT distinguisher D there exists a negligible function ν(·) such that

|Pr[x← X;D(1n, x) = 1]− Pr[y ← Y ;D(1n, y) = 1]| ≤ ν(n).

We can see that this formalizes the notion of a PRG if we let X be the distribution over
the PRG outputs and Y be the uniform distribution over strings of the same length as PRG
outputs.

But, there is actually another model for the same idea! If we give D a sample from either
X or Y , and ask it to identify which distribution it is from, if D is not right with probability
better than 1

2 , then X and Y look the same to it! We will change notation a bit and set
X(1) = X,X(0) = Y .

Definition 19 (Prediction Advantage) Prediction Advantage is defined as

max
A

∣∣∣∣Pr
[
b

$←− {0, 1}, t← Xb
n : A(t) = b

]
− 1

2

∣∣∣∣ .
Proposition 1 Prediction advantage is equivalent to computational indistinguishability.

Proof. ∣∣∣∣Pr
[
b← {0, 1}; z ← X(b);D(1n, z) = b

]
− 1

2

∣∣∣∣
=
∣∣∣∣Pr[D(x) = 1]x←X1 · Pr[b = 1] + Pr[D(x) = 0]x←X0 · Pr[b = 0]− 1

2

∣∣∣∣
= 1

2 |Pr[D(x) = 1]x←X1 + Pr[D(x) = 0]x←X0 − 1|

= 1
2 |Pr[D(x) = 1]x←X1 − (1− Pr[D(x) = 0]x←X0)|

= 1
2 |Pr[D(x) = 1]x←X1 − Pr[D(x) = 1]x←X0 |

So they are equivalent within a factor of 2.

18

Lemma 7 (Prediction Lemma) Let {X(0)
n }, {X(1)

n } be ensembles of probability distributions.
Let D be a non-uniform PPT adversary that ε(·)-distinguishes {X(0)

n }, {X(1)
n } for infinitely many

n ∈. Then ∃ a non-uniform PPT A such that

Pr
[
b

$←− {0, 1}, t← Xb
n : A(t) = b

]
− 1

2 ≥
ε(n)

2
for infinitely many n ∈.

Properties of Computational Indistinguishability.

1. First, we define the notation {Xn} ≈C {Yn} to mean computational indistinguishability.

2. If we apply an efficient algorithm on X and Y , then their images under this opera-
tion are still indistinguishable. Formally, ∀ non-uniform PPT M , {Xn} ≈C {Yn} =⇒
{M(Xn)} ≈C {M(Yn)}. If this were not the case, then a distinguisher could simply use
M to tell {Xn} and {Yn} apart!

3. If X,Y are indistinguishable with advantage at most µ1 and Y,Z are indistinguishable
with advantage at most µ2, thenX,Z are indistinguishable with advantage at most µ1+µ2.
This follows from the triangle inequality.

This last property is actually quite nice, and we would like to generalize it a bit.

Lemma 8 (Hybrid Lemma) Let X1, . . . , Xm be distribution ensembles for m = poly(n).
Suppose D distinguishes X1 and Xm with advantage ε. Then ∃i ∈ {1, · · · ,m− 1} such that D
distinguishes Xi, Xi+1 with advantage ≥ ε

m .

This follows from the pigeonhole principle.
Returning to pseudorandomness, we define a bit more notation. We call the uniform dis-

tribution over {0, 1}`(n) by U`(n). Intuitively, a distribution is pseudorandom if it looks like a
uniform distribution to any efficient test. We have the tools now to formulate this:

Definition 20 (Pseudorandom Ensembles) An ensemble {Xn}, where Xn is a distribution
over {0, 1}`(n) is said to be pseudorandom if

{Xn} ≈C {U`(n)}.

This is relevant for PRGs, as their outputs should be pseudorandom.

4.3 Next-Bit Test
Our last topic for this lecture is about an interesting way to characterize pseudorandomness.
We know a pseudorandom string should pass all efficient tests a true random string would pass.
For a truly random string, given a subsequence, it is not possible to predict the “next bit” with
probability better than 1

2 if you’re given the previous bits in the subsequence. So this gives us
the notion of a test using the “next bit” idea. So, we say a sequence of bits passes the next-bit
test if no efficient adversary can predict “the next bit” in the sequence with probability better
than 1

2 even given all previous bits of the sequence.

Definition 21 (Next-bit Unpredictability) An ensemble of distributions {Xn} over {0, 1}`(n)

is next-bit unpredictable if, for all 0 ≤ i < `(n) and non-uniform PPT adversaries A, ∃ negligible
function ν(·) such that

Pr
[
t = t1 · · · t`(n) ← Xn : A(t1 · · · ti) = ti+1

]
≤ 1

2 + ν(n).

19

Theorem 9 (Completeness of the Next-bit Test) If {Xn} is next-bit unpredictable then
{Xn} is pseudorandom.

Proof.
FSOC, suppose ∃ a n.u. PPT distinguisher D, and a polynomial p(·) s.t. for infinitely many n
∈ N, D distinguishes Xn and Ul(n) with probability 1

p(n) . Let A be a machine that predicts the
next bit of Xn for every n. A sequence of hybrid distributions is defined as:

H i
n = {x← Xn : u← U`(n) : x0x1...xiui+1ui+2...u`(n)}

Note that the first hybrid H0
n is the uniform distribution U`(n), and the last hybrid H`(n)

n is the
distribution Xn. Thus, D distinguishes between H0

n and H`(n)
n with probability 1

p(n) . By hybrid
lemma, ∃ some i ∈ [0, `(n)] s.t. D distinguishes between H i

n and H i+1
n with probability 1

p(n)`(n) .
The only difference between H i+1 and H i is that in H i+1, (i+ 1)th bit is xi+1, and in H i, it is
ui+1. Thus, given only x1...xi, D can distinguish xi+1 from the random set. The distribution
H̃ i
n is defined as:

H̃ i
n = {x← Xn : u← U`(n) : x0x1...xi−1x̄iui+1ui+2...u`(n)} where x̄i = 1− xi

Since H i
n can be sampled from either H i+1

n or H̃ i+1
n with equal probabilities,∣∣∣Pr

[
t← H i+1

n : D(t) = 1]− Pr[t← H i
n : D(t) = 1

]∣∣∣
=
∣∣∣∣Pr

[
t← H i+1

n : D(t) = 1
]
−
(1

2 Pr
[
t← H i+1

n : D(t) = 1
]

+ 1
2 Pr

[
t← H̃ i+1

n : D(t) = 1
])∣∣∣∣

=1
2

∣∣∣Pr
[
t← H i+1

n : D(t) = 1
]
− Pr

[
t← H̃ i+1

n : D(t) = 1
]∣∣∣ .

The observation that D distinguishes H i
n and H i+1

n with probability 1
p(n)`(n) implies that D

distinguishes H i+1
n and H̃ i+1

n with probability 2
p(n)`(n) . Therefore, by the prediction lemma, ∃ a

machine A s.t.
Pr
[
b← {0, 1}; t← H i+1,b

n : D(t) = b
]
>

1
2 + 1

p(n)`(n)

where b = 1 if A predicts a sample came from H i+1
n and b = 0 if it is from H̃ i+1

n . Then, we
construct a machine A′ that predicts the (i+ 1)th bit of the pseudorandom sequence, xi+1. A′
picks `(n) − i random bits from ui+1...u`(n) ← U `(n)−1 and run g ← A(t1...tiui+1...u`(n)). If
g = 1 then A′ outputs ui+1, else A′ outputs ūi+1 = 1− ui+1. Then,

Pr
[
t← Xn : A′(1n, t1...ti) = ti+1

]
= Pr

[
b← {0, 1}; t← H i+1,b

n : A(t) = 1
]
>

1
2 + 1

p(n)`(n)

which shows that D correctly predicts the next bit with some noticeable probability. This is a
contradiction.

4.4 Pseudorandom Generators (PRG)
We have defined the notion of pseudorandomness and next-bit unpredictability. Now, we turn
to construct the definition of pseudorandom generators using the above theorem.

Definition 22 (Pseudorandom Generator) A deterministic algorithm G : {0, 1}n → {0, 1}n
is called a pseudorandom generator (PRG) if:

20

1. (efficiency): G can be computed in polynomial time

2. (expansion): |G(x)| > |x|

3. {x← {0, 1}n : G(x)} ≈c {U`(n)} where `(n) = |G(0n)|

Definition 23 (Stretch) The stretch of G is defined as: |G(x)| − |x|

We will first construct a PRG by 1-bit stretch. Then, we will show how to generically transform
a PRG with 1-bit stretch into one that achieves polynomial-bit stretch.

4.5 PRG with 1-bit Stretch

We can think of an initial construction of PRG as G(s) = f(s)‖h(s) where f is a one-way
function and h is the hardcore predicate associated with f . However, while h(s) is indeed
unpredictable even given f(s), this construction is not really a PRG because of the following
reasons:

• |f(s)| might be less than |s|.

• f(x) may always start with a prefix, which is not random. Indeed, OWF doesn’t promise
random outputs.

To solve this problem, we will set f to be a one-way permutation (OWP) over {0, 1}n. Now, we
can address both of the above issues:

• Since f is a permutation, the domain and range have the same number of bits, i.e.,
|f(s)| = |s| = n.

• f(s) is uniformly random over {0, 1}n if s is randomly chosen. In particular:

∀y : Pr[f(s) = y] = Pr[s = f−1(y)] = 2−n.

Thus, f(s) is uniform and cannot start with a fix value.

Theorem 10 (PRG based on OWP) Let f be a one-way permutation, and h be a hard-core
predicate for f . Then G(s) = f(s)‖h(s) is a PRG with 1-bit stretch.

Proof.
FSOC, suppose ∃ a n.u. PPT adversary A and a polynomial p(n) s.t. ∀n, ∃ i s.t. A predicts
the ith bit with non-negligible probability 1

p(n) . Since f is a permutation, the first n bits of G(s)
are uniformly distributed. A must predict (n+ 1)th bit with advantage 1

p(n) , i.e.

Pr[A(f(s)) = h(s)] > 1
2 + 1

p(n)

which contradicts the assumption that h(s) is hard-core for f . Thus, G is a PRG.

21

4.6 PRG with Poly-Stretch
Lemma 11 Let G : {0, 1}n → {0, 1}n+1 be a PRG. For any polynomial l, G′ : {0, 1}n →
{0, 1}`(n) is defined as:

G′(s) = b1...b`(n) where
X0 ← s

Xi+1‖bi+1 ← G(Xi)

Then, G′ is a PRG.

Proof. We first establish some notation. Let G′(s) = Gm(s), where

G0(x) = ε

Gi(x) = b‖Gi−1(x′) where x′‖b← G(x)

and ε denotes the empty string. FSOC, suppose ∃ a distinguisher D and a polynomial p(·) s.t.
∀n, D distinguishes {Um(n)}n and {G′(Un)}n with non-negligible probability 1

p(n) .
Let H i

n = Um(n)−i‖Gi(Un) be the hybrid distributions for i = 1, ...,m(n). Then, H0
n = Um(n)

andHm(n)
n = Gm(n)(Un) andD distinguishesH0

n andHm(n)
n with probability 1

p(n) . By the hybrid
lemma, ∀n, ∃i s.t. D distinguishes H i

n and H i+1
n with probability 1

m(n)p(n) . Then,

H i
n = Um−i‖Gi(Un)

= Um−i−1‖U1‖Gi(Un)
H i+1
n = Um−i−1‖Gi+1(Un)

= Um−i−1‖b‖Gi(x) where x‖b← G(Un)

Suppose ∃ a n.u. PPT M(y) that outputs from the following experiment:

bprev ← Um−i−1

b← y1

bnext ← Gi(y2...yn+1)
Output bprev‖b‖bnext

The output of D is distributed identically to the output of H i
n if the input was sampled from

Un+1 and H i+1
n if it was from G(Un). Since {Un+1}n ≈ {G(Un)}n with advantage 1

p(n)`(n) and
G runs in polynomial time, {H i

n}n ≈ {H i+1
n }n, which is a contradiction.

4.7 Going beyond Poly Stretch
PRGs can only generate polynomially long pseudorandom strings. What if we want exponen-
tially long pseudorandom strings? How can we efficiently generate them? One way to do this
is by using functions that index exponentially long pseudorandom strings.

Towards that end, let us start by defining a random function? Consider a function f :
{0, 1}n → {0, 1}n. If we write f as a table, where first column has input strings from 0n to 1n
and the second column has the function value against each input, each row of the table is of the
form (x, f(x)). Then, the size of the table is 2n×n = n2n. Thus, the total number of functions
that map n bits to n bits is 2n2n .

To define a random function, we can use one of the two methods:

22

1. Select a random function F uniformly at random from all 2n2n functions that map n bits
to n bits

2. Use a randomized algorithm to describe the function

• A randomized program M keeps a table T (initially empty) to implement a random
function F
• On input x,

– if x is not in the table, choose a random string y and add the entry (x, y) to T
– otherwise, M picks (x, y) corresponding to x from T , and outputs the entry

• The distribution of M ’s output is identical to that of F .

However, truly random functions are huge random objects. Neither of the methods allows
us to store the entire function efficiently. But with the second method, M will only need
polynomial space and time to store and query T , if one makes polynomial calls to the random
function.

Pseudorandom Functions (PRF): Intuition. PRF looks like a random function and is
described in polynomial bits. At first, it seems like a good idea to use computational indistin-
guishability to make PRF “look like" a Random Function. However, the main issue with this
idea is that a random function is of an exponential size. If D can’t even read the input efficiently,
then it can distinguish between PRFs and RFs by looking at its input size, and computational
indistinguishability is violated. One way to solve this issue is to allow D to only query the
function on inputs of its choice, and let it see the output. We’ll formalize this idea in the next
lecture.

4.8 Pseudorandom Functions (PRF)

PRFs look like random functions, but need only polynomial number of bits to be described and
emulated. What does “look like" really mean. Let us use computational indistinguishability to
define it. But the question that arises here is that, can the distinguisher, D be given the entire
description of a random function or a PRF.
Issue: Since the description of a random function is of exponential size, D might not even be
able to read the input efficiently in case of random function and can easy tell the difference just
be looking at the size of input.
Suggested Solution What if D is not given the description of functions as input, but is in-
stead allowed to only query the functions on inputs of its choice, and view the output. But the
question here is whether the entire implementation of the PRF is hidden from the distinguisher
or only a part of it.
Keeping the entire description of PRF secret from D, is similar to providing security by ob-
scurity which in general is not a good idea according to Kerchoff’s principle. Therefore we use
the notion of keyed functions. It is better to define PRFs as keyed functions. So only the key
remains secret while the PRF evaluation algorithm can be made public. This is in accordance
with Kerchoff’s principle. The security of PRF is defined via game base definition.

4.8.1 Security of PRF via Game Based Definition

There are 2 players a Challenger Ch and an Adversary/Distinguisher D

23

Ch D
b

$←− {0, 1}
if b == 0: Ch implements F as a PRF

else: Ch implements F as a random function
send queries x1, x2, ... to Ch one-by-one.

correctly replies F (x1), F (x2), ...
outputs his guess b′

i.e, whether F is random or a PRF.

If b == b′, D wins the game. Intuitively, we want that the adversary wins with only (1
2 +

negligible) probability

Definition 24 (Pseudorandom Functions) A family {Fk}k∈{0,1}n of functions, where Fk :
{0, 1}n → {0, 1}n for all k is pseudorandom if, it is:

• Easy to Compute: There is an efficient algorithm M such that ∀k, x : M(k, x) = Fk(x).

• Hard to Distinguish: For every non-uniform PPT D, there exists a negligible function
ν such that ∀n ∈ N :

|Pr[D wins GuessGame]− 1/2| ≤ ν(n)

GuessGame(1n) that incorporates D, can be formally defined as follows:

• The game chooses a key for PRF and a random bit b.

• It runs D, answering every query x as follows:

1. If b == 0: answer using PRF. Output Fk(x).
2. If b == 1: answer using random F. Keep a table T for all previous queries, if T [x]

exists, output T [x]. Else, choose a random n-bit string y, T [x] = y, output y.

• Game stops, when D halts and outputs a bit b′.

All queries in the game are answered using the same function (either PRF or random F). If
b′ == b, D wins the GuessGame.
Remark. We are ensuring that the challenger is efficient by implementing the random function
using the second method. It is important to construct challengers that are efficient, because
while building reductions, the reduction acts as the challenger. If the challenger is not efficient,
it would lead to the construction of an inefficient reduction. Since we only consider n.u. PPT
adversaries, an inefficient reduction would not be able to give us a contradiction.

4.8.2 PRF with 1-bit input

Intuitively, PRFs with 1- bit input, can be constructed using PRGs. Since PRFs are keyed
functions, the key of PRF can be used as the random seed for PRG. We can construct a PRF
Fk : {0, 1} → {0, 1}n using a length doubling PRG, G as follows:

• Let G be a length doubling PRG such that, G(s) = y0||y1, where |y0| = |y1| = n.

• For PRF, set s = k, and Fk(0) = y0, Fk(1) = y1

24

The security of PRFs constructed like this, can be argued by the security of PRGs.
Proof. Since this PRF is directly using the output of PRG, we can say that if there exists a
distinguisher A that can efficiently distinguish between a random F and this PRF, then another
distinguisher B can be constructed using A, that will be able to distinguish between PRG and
a random number generator in the following way:

1. B gets a 2n- bit input y which is either a random string or the output of G for some s.

2. The adversary A, which is a distinguisher for the PRF, is allowed to query on inputs of
its choice. So if A sends a query for input "0", B sends the first n-bits of y to A. On input
query "1", B sends the last n-bits of y to A.

3. Based on the queries and their responses, A either outputs "1" (if the function is a PRF)
or "0" (if the function is random).

4. B outputs "0" if the output of A was "0", and it outputs "1", if the output of B was "1".

Since the distinguisher A can distinguish between a random F and PRF with noticeable prob-
ability. From the above construction, it follows that B can also distinguish between a random
string and the output of a PRG with noticeable probability. But, we know that no such distin-
guisher for PRGs exists, therefore, no such distinguisher for this PRF can exist.

4.8.3 PRF with n-bit input

Total number of possible n-bit inputs are exponential. Since PRGs only stretch to poly(n) bits,
a single PRG with poly stretch can only be used for constructing PRFs with log(n) bit input.
Fk: {0, 1}log(n) → {0, 1}n can be constructed using G(s) = y1||y2||...||yL=poly(n), where |yi| =
n-bits.
However, For n-bit input, the "double and choose" policy used for constructing PRFs with 1-bit
input can be used multiple times, repeatedly.

Theorem 12 (Goldreich-Goldwasser-Micali (GGM)) If pseudorandom generators exist,
then pseudorandom functions exist.

Construction:
For a length doubling PRG G, we define G0 and G1 as: G(s) = G0(s)||G1(s).
For n-bit input x = x1x2...xn,

Fk(x) = Gxn(Gxn−1(.....(Gx1(k))..)

It is convenient to think of the construction of Fk as a binary tree of size 2n.
k denotes the root (chosen randomly). While kx1....xl

, denotes the the leaves of the tree at level
l.
At level l, there are 2l nodes, one for each path, denoted by kx1....xl

. The evaluation of function
Fk on an input string x1x2....xn can be thought of as a walk down the branches of the tree up
till the leaf nodes. Starting from the root, based on x0, either the path traverses through the
left branch or the right branch. Subsequently, the choice of branches is based on individual bits
of the input string. Every input would correspond to a unique path and a unique leaf node,
since atleast one bit (and correspondingly, one edge in the tree) would be different.

25

𝑘

𝑘0 = 𝐺0(𝑘) 𝑘1 = 𝐺1(𝑘)

𝑘00 = 𝐺0(𝑘0) 𝑘01 = 𝐺1(𝑘0) 𝑘10 = 𝐺0(𝑘1) 𝑘11 = 𝐺1(𝑘1)

𝑅𝑜𝑜𝑡 (𝐿𝑒𝑣𝑒𝑙 0)

𝐿𝑒𝑣𝑒𝑙 1

𝐿𝑒𝑣𝑒𝑙 2

𝑂𝑢𝑡𝑝𝑢𝑡(𝐿𝑒𝑣𝑒𝑙 𝑛)

Efficiency: Considering the efficiency of this construction, there is no need to store this
tree, the output values can be computed on the fly. To compute an output value,
RunningTime(Fk(x)) = n× RunningTime(G(.)) = n× poly(n) = poly′(n).

Proof Strategy:
The natural intuition is to prove using Hybrid arguments. The first idea to construct hybrids, is
to replace each node in the tree, from the output of a PRG to a random string one by one. But
since there are exponential number of nodes in the tree, this would result in exponential num-
ber of hybrids. While we know that the Hybrid Lemma, only works for polynomial number of
hybrids. To overcome this, we use an interesting observation, which is that any PPT adversary
is only allowed to make polynomial queries. Since each query corresponds to a unique path (of
n nodes), total number of nodes affected by all queries = n × poly(n) = poly(n). Therefore,
we only need to change polynomial number of nodes in the tree. We can achieve this by using
2 layers of nested hybrids.

Proof. Level 1 Hybrids:
H0 : Level 0 is random, level i > 0 is pseudorandom. (actual PRF)
H1 : Level 0,1 are random, level i > 1 is pseudorandom.
..
..
Hi : Levels ≤ i are random, levels > i are pseudorandom.
..
..
Hn : all levels are random. (random function)

Remark. By saying that level i is random or pseudorandom, we mean that all the nodes
at level i, that are affected by the adversary’s queries are random or pseudorandom respec-
tively. H0 corresponds to a PRF, while Hn corresponds to a random function. if we assume
that PRF and random function are distinguishable, then ∃D, such that it can differentiate
between H0 and Hn with noticable advantage ε(n), then by Hybrid Lemma, ∃i ∈ [n], such

26

that ∃D′Hi,Hi+1
that distinguishes between Hi and Hi+1 with advantage atleast ε(n)

n . The only
difference between Hi and Hi+1 is that:
- in Hi, level i+ 1 is pseudorandom.
- in Hi+1, level i+ 1 is random.
We need to create another set of hybrids between Hi and Hi+1.

To create these hybrids, we only need to replace the nodes that are affected by the queries
of the adversary. Since the number of queries are polynomial, changing polynomial number of
nodes is sufficient from adversary’s point of view. Let S be the set of nodes at level i that are
affected by the adversary/distinguisher’s input queries, i.e., |S| = poly(n).

Level 2 Hybrids (assuming all nodes in S are in lexicographic order):
Hi,j∈|S| : Same as Hi, except that all nodes at level i + 1, that are children of nodes ≤ j, are
random.
Hi,0 ≡ Hi (a dummy hybrid)
Hi,|S| ≡ Hi+1

Given D′Hi,Hi+1
, by Hybrid Lemma, ∃j ∈ |S| and ∃D′′Hi,j ,Hi,j+1

such that, it distinguishes be-
tween Hi,j and Hi,j+1 with advantage atleast ε(n)

n×|S| ≥
1

poly(n) (recall that ε(n) is noticeable (i.e.,
≥ 1

poly(n))). The only difference between Hi,j and Hi,j+1 is that:
- in Hi,j , node j in level i+ 1 is pseudorandom.
- in Hi,j+1, node j in level i+ 1 is random.
If D′′Hi,j ,Hi,j+1

can distinguish between Hi,j and Hi,j+1 with a noticeable advantage, then it is
possible to construct another adversary D′′′ that can efficiently distinguish between PRG and
a random number generator as follows:

1. D′′′ gets a 2n-bit input y0||y1 (|y0| = |y1|), that is sampled either as a random string or
as G(s) for some random string s.

2. In his mind, D′′′ chooses random n-bit strings for nodes that are affected by the adversary’s
queries, up till level i and for nodes at level i + 1 that are children of nodes < j. The
children of node j are substituted by y0 and y1 respectively. The remaining nodes in the
tree that are affected by the adversary’s queries as computed using the chosen random
values and y0 and y1. D′′′ replies to the queries of D′′Hi,j ,Hi,j+1

using this tree.

3. If y0 and y1 were pseudorandom the distribution of D′′′’s outputs would be similar to Hi,j

and they were random then, the output distribution would be similar to Hi,j+1.

4. If D′′Hi,j ,Hi,j+1
decides that the distribution of these nodes matches the distribution of Hi,j ,

then D′′′ decides that the input is pseudorandom, else if it matches the distribution of
Hi,j+1, then D′′′ decides that the input is random.

According to the above construction, B can efficiently distinguish between a random string and
the output of a PRG. Since we know that no such distinguisher for PRGs exists, therefore no
D′′Hi,j ,Hi,j+1

can exist. From earlier definitions and assumptions, it follows that no distinguisher
D′Hi,Hi+1

for Hi(Hi,0) and Hi+1(Hi,|S|) can exist. And subsequently no D that distinguishes
between a random function and a PRF can exist. Which implies that this construction of PRF
is indistinguishable.

27

28

Chapter 5

Secret-Key Encryption

5.1 Setting
We assume that Alice and Bob share a secret s ∈ {0, 1}n. We do not discuss here how they
were able to share that secret (this will be discussed in a later lecture). Alice wants to send
a private message to Bob, and we assume the “worst case” that the communication channel is
public such that a third party Eve can read all messages sent on the channel. Alice will use an
encryption scheme to communicate over the public channel with Bob.

5.2 Secret-key Encryption
Syntax A secret-key encryption consists of three algorithms described below:

• KGen(1n)→ s

• Enc(s,m)→ c

• Dec(s, c)→ m′

Each of these algorithms must run in polynomial time. In the above scenario, to send
a message m to Bob, Alice uses the encryption algorithm to compute Enc(s,m) → c
and sends c on the public channel to Bob. Bob then uses the decryption algorithm
Dec(s, c)→ m to recover the message.
A secret-key encryption scheme must satisfy the two properties described below:

Correctness For every m, Dec(s,Enc(s,m)) = m, where s $←− KGen(1n)

Security Intuitively Eve must not be able to decipher the message m from the ciphertext
c. More specifically, we require that she cannot distinguish between ciphertexts of two
different messages m and m′. To formalize this we introduce the notion of IND-CPA
Security (Indistinguishability under Chosen Plaintext Attack). Note here that n is known
as the "security parameter" which expresses the degree of security of the scheme.

Definition 25 (IND-CPA) A secret-key encryption scheme (KGen,Enc,Dec) is IND-CPA se-
cure if for all n.u. PPT adversaries A, there exists a negligible function µ(·) such that:

Pr

 s
$←− KGen(1n),

(m0,m1)← A(1n), : A(Enc(mb)) = b

b
$←− {0, 1}

 ≤ 1
2 + µ(n)

29

Note that this is a game based definition of security, where the game operates in the following
manner:

Challenger Adversary

s
$←− KGen(1n) choose m0,m1

b
$←− {0, 1}n m0,m1 such that ‖m0‖ = ‖m1‖

c← Enc(s,mb) c

b′

Adv. wins if b′ = b

Note the lengths of the messages must be the same to prevent a simple attack that inspects
the length of the ciphertext in order to differentiate.

Often it is easier to think of this definition as requiring computationally indistinguishability
of the ciphertexts:

Enc(m0) ≈c Enc(m1)

5.2.1 One-Time Pads

Consider the following encryption scheme:

• KGen(1n) := s
$←− {0, 1}n

• Enc(s,m) := s⊕m = c

• Dec(s, c) := s⊕ c = m

Since s is random, s⊕m is also random so m is hidden from an informational theoretic perspec-
tive. That is to say Enc(s,m) ≡ Un, which is to say that they are identically distibuted. Thus
two ciphertexts are more than just indistinguishable, they are in fact identically distributed.

Enc(s $←− {0, 1}n,m1) ≡ Enc(s $←− {0, 1}n,m2)

Note though that for two messages encrypted with the same key gives us c1 ⊕ c2 = (s⊕m1)⊕
(s⊕m1) = m1 ⊕m2 which can break the security.

5.2.2 Encryption using PRGs

In the above scheme, the length of the secret-key grows with the length of the message being
encrypted. We now discuss an encryption scheme where a secret-key of a fixed length can be
used to encrypt a polynomially long message.

We will construct such an encryption using pseudorandom generators (PRG) by relying on
the fact that the output of a PRG is computationally indistinguishable from uniform random.
Thus we can use PRGs to convert a random key of a fixed length into a pseudorandom key of
the necessary length to encrypt a message of arbitrary polynomially length.

Consider the following encryption scheme:

• KGen(1n) := s
$←− {0, 1}n

30

• Enc(s,m) := PRG(s)⊕m = c

• Dec(s, c) := PRG(s)⊕ c = m

For security we do not have the identical distribution to uniform random as we did with one-time
pads. We show security via indistinguishability.
Proposition 2 (Security of Encryption using PRGs)

Enc(s $←− {0, 1}n,m1) ≈c Enc(s $←− {0, 1}n,m2)

Proof. Security is proven via a hybrid argument. Rather than using the hybrid lemma
though we prove in the forward direction by using the fact that indistinguishability is transitive
over polynomial number of hybrids. Consider then the following list of hybrids:

H0 : s
$←− KGen(1n),Enc(s,m0) = m0 ⊕ PRG(s)

H1 : s
$←− KGen(1n),Enc(s,m0) = m0 ⊕R

$←− {0, 1}n, ‖R‖ = ‖m0‖
H2 : s

$←− KGen(1n),Enc(s,m1) = m1 ⊕R
H3 : s

$←− KGen(1n),Enc(s,m1) = m1 ⊕ PRG(s)

We claim that H0 ≈c H1 and show this is true via a reduction argument. Assume that an
adversary, A, exists that can distinguish between H0 and H1. Then we construct an adversary
B that can break the indistinguishability of the PRG.

A
m⊕ C

b

BC

b

The challenger to B flips a bit b $←− {0, 1} and then either sends C $←− {0, 1}n or C =
PRG(s). Then B sends C ⊕ m to A. Since A can distinguish between H0 and H0 it passes
back the corresponding bit. This is then passed back to the challenger and is correct with
non-negligible probability. The next pair of hybrids H1 and H2 are indistinguishable due to the
indistinguishability of one-time pads. Finally H2 and H3 are indistinguishable by a symmetric
argument toH0 andH1. Thus by transitivity,H0 andH3 are indistinguishable, which establishes
that the scheme is IND-CPA secure.

5.3 Multi-message Secure Encryption
So far, we have only discussed encryption schemes where a key can be used to encrypt a single
message. We now consider encryption schemes where a secret key can be used to encrypt
multiple messages.

Definition 26 (Multi-message Secure Encryption) A secret-key encryption scheme (KGen,Enc,Dec)
is multi-message IND-CPA secure if for all n.u. PPT adversaries A, for all polynomials q(·)
there exists a negligible function µ(·) such that:

Pr

s

$←− KGen(1n),{
(mi

0,m
i
1)
}q(n)
i=1 ← A(1n), : A

({
Enc(mi

b)
}q(n)
i=1

)
= b

b
$←− {0, 1}

 ≤ 1
2 + µ(n)

31

This definition is very similar to the first but now in the security game the adversary sends two
arrays of messages,(m1

0,m
2
0, . . . ,m

q(n)
0) and (m1

1,m
2
1, . . . ,m

q(n)
1) then the challenger encrypts one

of them and returns an array of ciphertext (c1, c2, . . . , cq(n)). Here q(·) is an arbitrary polynomial
chosen by the adversary A.

Theorem 13 (Stateful Multi-message Encryption) There exists a multi-message secret-
key encryption scheme based on PRGs where the encryption algorithm is stateful

The proof of the above theorem is straightforward and left as an exercise. Very roughly,
the idea is that we can expand the key to a sufficiently long pseudorandom string using PRG
(as in the previous construction) and then use different “chunks” of the randomness to encrypt
different messages. We need to keep track of which chunk is used to encrypt which message,
and therefore the encryption algorithm is stateful.

In practice, however, having a stateful encryption algorithm is not very desirable. Instead,
we would like to construct multi-message encryption schemes where the encryption algorithm
is stateless. The theorem below states that such an encryption scheme must also have a ran-
domized encryption procedure.

Theorem 14 (Randomized Encryption) A multi-message secure encryption scheme can-
not be deterministic and stateless.

Proof. Suppose such a scheme existed. Then an adversary could send

m1
0 m1

1
m2

0 m2
1

such that m1
0 = m2

0 and m1
1 6= m2

1, but since no state is kept and the algorithm is entirely
deterministic Enc(m1

0) = Enc(m2
0). So the adversary could just check if c1 = c2.

5.3.1 Encryption using PRFs

To construct a stateless multi-message secure encryption scheme, we will use a family of PRFs.
Consider the following encryption scheme:

Let fs : {0, 1}n ← {0, 1}n be a family of PRFs.

• KGen(1n) := s
$←− {0, 1}n

• Enc(s,m) := Pick r $←− {0, 1}n, Output (r, c = m⊕ fs(r))

• Dec(s, (r, c)) := c⊕ fs(r) = m

Theorem 15 Let (KGen,Enc,Dec) be based in PRFs as above, then it is a multi-message secure
encryption scheme.

Proof. The proof is done via a forward hybrid argument. Let RF be a purely random function.
Consider the following list of hybrids:

H0 : s
$←− KGen(1n), compute ∀i ∈ [q(n)],Enc(s,mi

0) = (ri,mi
0 ⊕ fs(ri))

H1 : s
$←− KGen(1n), compute ∀i ∈ [q(n)],Enc(s,mi

0) = (ri,mi
0 ⊕RF (ri))

H2 : s
$←− KGen(1n), compute ∀i ∈ [q(n)],Enc(s,mi

0) = (ri,mi
0 ⊕R

$←− {0, 1}n

H3 : s
$←− KGen(1n), compute ∀i ∈ [q(n)],Enc(s,mi

1) = (ri,mi
1 ⊕R

$←− {0, 1}n

H4 : s
$←− KGen(1n), compute ∀i ∈ [q(n)],Enc(s,mi

1) = (ri,mi
1 ⊕RF (ri))

H5 : s
$←− KGen(1n), compute ∀i ∈ [q(n)],Enc(s,mi

1) = (ri,mi
1 ⊕ fs(ri))

32

Using a similar argument to the one used in the PRG case, H0 ≈c H1 because a PRF is
computationally indistinguishable from a RF. If these two hybrids were distinguishable then
we could build an adversary that could distinguish between having oracle access to fs and RF .
Next, note that H1 and H2 are statistically indistinguishable: the only difference between them
is that in H2, we might sample the same string R for two different messages; however, this can
only happen with exponentially small probability. Now, H2 and H3 are indistinguishable by
the security of one-time pads. Now, by symmetry the remaining hybrids are indistinguishable
giving us our result.

33

34

Chapter 6

Public-Key Encryption

6.1 Semantic Security

We began lecture by formalizing the definition of Semantic Security for secret-key encryption
as follows:

Definition 27 A secret-key encryption scheme (Gen,Enc,Dec) is semantically secure if there
exists a PPT simulator algorithm S s.t. the following two experiments generate computationally
indistinguishable outputs:

(m, z)←M(1n),
s← Gen(1n),

Output (Enc(s,m), z)

 ≈
{

(m, z)→M(1n),
Output S(1n, z)

}

where M is a machine that randomly samples a message from the message space and arbitrary
auxiliary information.

Intuitively, semantic security promises that a PPT adversary does not learn any “new” informa-
tion about a message m by looking at its ciphertext than what it already knew before (denoted
as auxiliary information z). This is because adversary’s view (consisting of the ciphertext and
z) can be efficiently simulated given only z and no other information on m.

We now show that semantic security and IND-CPA security are, in fact, equivalent security
notions.

Theorem 16 Semantic security and IND-CPA security are equivalent.

Proof. We prove each case separately:

• SS→ IND: From SS, we have that for any m1, (Enc(m1), z) ≈ S(1n, z). Also from SS, for
any m2, we have that (Enc(m2), z) ≈ S(1n, z). Then, by transitivity, we get IND-CPA
security.

• IND-CPA → SS: From IND-CPA security, we have that encryptions of any two messages
are indistinguishable. Then, we simply construct a simulator that encrypts the all zeros
string, i.e., S(1n, z) = (Enc(0n), z). SS security immediately follows from IND-CPA
security.

35

6.2 Public Key Encryption
Recall that in the setting of private-key encryption, Alice and Bob were allowed to share a
secret before communication. In the public-key setting, Alice and Bob don’t share a secret any
more. Our goal is to be able to have Alice still send a message to Bob in such a manner that
no eavesdropper can distinguish between encryptions of m and m′. We formalize the notion of
public-key encryption that allows us to do this.

Syntax. A public-key encryption scheme consists of three algorithms:

• Gen(1n)→ (pk, sk)

• Enc(pk,m)→ c

• Dec(sk, c)→ m′ or ⊥

Where Gen(1n) generates a public key pk and a secret key sk. Encryption takes as input a
public key pk (which everyone including the adversary will have access to) and a message m
and outputs a cipher text. Decryption takes as input a ciphertext c and a secret key sk, and
outputs a message or ⊥.

We say that the encryption scheme is correct if Dec(sk,Enc(pk,m)) = m, meaning if you
encrypt and then decrypt a message with the public and secret key respectively, you should get
the original message back.

We now provide our definition of security. We start with a weak definition (also called
selective security):

Definition 28 A public key encryption scheme is weakly-indistinguishably secure under chosen
plaintext attack (IND-CPA) if for all n.u. PPT adversaries A there exists a negligible function
µ(·) such that the probability of

Pr

 (pk, sk)← Gen(1n),
(m0,m1)← A(1n), : A(pk,Enc(pk,mb)) = b

b
$←− {0, 1}

 ≤ 1
2 + µ(n)

What this means is that we generate two random keys, pk and sk, and allow the Adversary to
send us any two messages,m0 andm1. The adversaryA will be given the cipher text of a random
choice of the two messages and the public key. Given this the adversary will then be unable to
distinguish which message was encrypted, i.e., whether, c = Enc(pk,m1) or Enc(pk,m0).
We can then adapt this into the definition of strong security by changing a single point, we will
give the Adversary the public key before we have it send us messages.

Definition 29 A public key encryption is indistinguishably secure under chosen plaintext attack
(IND-CPA) if for all n.u. PPT adversaries A there exists a negligible function µ(·) s.t.:

Pr

 (pk, sk)← Gen(1n),
(m0,m1)← A(1n, pk), : A(pk,Enc(pk,mb)) = b

b
$←− {0, 1}

 ≤ 1
2 + µ(n)

This is stronger than the weak version because if you give A the public key before then it can
attempt to pick messages based on generated cipher texts.

Just as in the secret key encryption schemes we want to obtain multiple message security
as well. However examining our definition we can realize that

36

Lemma 17 One-message security implies multi-message security for public-key encryption

We now briefly sketch the proof. For simplicity, we only show that one-message security
implies two-message security. The general case can be derived in a similar manner.

Suppose that (m1
0,m

1
1) is the first message pair and (m2

0,m
2
1) is the second message pair.

Now, consider the following sequence of hybrid experiments:

• H0: This corresponds to the case when b = 0, i.e., c1 = Enc(pk,m1
0) and c2 = Enc(pk,m2

0)

• H1: We now change the first ciphertext to encryption of m1
1, but keep the second intact.

That is, c1 = Enc(pk,m1
1) and c2 = Enc(pk,m2

0)

• H2: This corresponds to the case when b = 1, i.e., c1 = Enc(pk,m1
1) and c2 = Enc(pk,m2

1)

We want to show that H0 is indistinguishable from H2, meaning that there is no PPT
adversary A that can correctly predict the challenge bit b except with probability 1

2 . We start
by proving that H0 and H1 are indistinguishable. The proof of indistinguishability of H1 and
H2 is analogous and left as an exercise. Combining the two, we obtain that H0 and H2 are
indistinguishable, as required.

Suppose that there is a PPT distinguisher A that distinguishes between H0 and H1 with
noticeable probability. Using A, we will construct an adversary A′ that breaks one-message
security of the encryption scheme.

First, A′ receives public key pk from its challenger and forwards it to A. Now, A sends
two message pairs: (m1

0,m
1
1) and (m2

0,m
2
1). A′ sets its own challenge message pair to (m0 =

m1
0,m1 = m1

1) and sends it to its challenger. Upon receiving a challenge ciphertext c, it sets
c1 = c and computes c2 ← Enc(pk,m2

0). It sends (c1, c2) to A. Whenever A responds with its
guess b′, A′ forwards it to its challenger.

Now, note that if c is an encryption of m0 = m1
0, then the above corresponds to H0,

otherwise, it corresponds to H1. Therefore, if A distinguishes with noticeable probability, then
so does A′. This contradicts the one-message security of the encryption scheme.

6.3 Trapdoor Permutations

We start by defining a collection of one-way functions and permutations, and then proceed to
give a definition of trapdoor permutations.

Definition 30 A collection of one way functions is a family of functions

F = {fi : Di → Ri}, i ∈ I

that satisfy the following conditions:

• Sampling Function: There exists a PPT Gen such that Gen(1n) outputs i ∈ I

• Sampling from Domain: There exists a PPT algorithm that on input i outputs a uniformly
random element of Di

• Evaluation: There exists a PPT algorithm that on input i ∈ Di outputs fi(x)

• Hard to invert: For every n.u. PPT adversary A, there exists a negligible function µ(·)
s.t.

Pr[i← Gen(1n), x← Di, y ← fi(x) : fi(A(1n, y, i)) = y] ≤ µ(·)

37

Theorem 18 There exists a collection of one-way functions iff there exists a strong one-way
function.

Proof. The forward direction is obvious. If there exists a strong one-way function we can have
the collection that is the single function, and therefore collections of one way functions exist.
The other direction we must construct a single one-way function given a collection F . To do
this define g(r1, r2) to be i, fi(x), where fi ∈ F , i is random bits generated from r1 and x is
sampled randomly from Di using r2. This is a strong one way function because the ability to
invert any single element of it would mean you could invert some fi ∈ F , which is not possible.

This leads us into our next definition, which is collections of One-way permutations.

Definition 31 A collection
F = {fi : Di → Ri i ∈ I}

is a collection of one-way permutations if F is a collections of OWF and for every i ∈ I, fi is
a one-way permutation.

Trapdoor Permutations. Next, we formalize the definition of a collection of Trapdoor per-
mutations.

Definition 32 A collection of trapdoor permutations is a family of permutations

F = {fi : Di → Ri i ∈ I}

satisfying the following conditions:

• Sampling Function: ∃ a PPT Gen s.t. Gen(1n)→ (i, t) ∈ I

• Sampling from Domain: : ∃ a PPT algorithm that on input i outputs a uniformly random
element of Di

• Evaluation: ∃ a PPT that on input i, x ∈ Di outputs fi(x)

• Hard to invert: ∀ n.u. PPT adversary A,∃ a negligble function µ(·) s.t.:

Pr[i← Gen(1n), x← Di, y ← fi(x) : fi(A(1n, i, y)) = y] ≤ µ(·)

• Inversion with a trapdoor: ∃ a PPT algorithm that given (i, t, y) will return f−1
i (y)

Roughly speaking, a trapdoor permutation is essentially a one way permutation that has a
"trapdoor" t, that allows you to invert. We will now show how to build a public key encryption
scheme from a family of one way trapdoor permutations.

6.4 Public-key Encryption from Trapdoor Permutations
Let F = {fi : Di → Ri} i ∈ I be a family of trapdoor permutations and let hi be the hardcore
predicate associated with fi:

• Gen(1n) : (fi, f−1
i)← GenT (1n) Outputs (pk, sk)← ((fi, hi), f−1

i)

• Enc(pk,m) : Pick r $←− {0, 1}n Outputs (fi(r), hi(r)⊕m)

38

• Dec(sk, (c1, c2)) : r ← f−1(c1). Outputs c2 ⊕ hi(r)

Theorem 19 (Gen,Enc,Dec) is an IND-CPA secure public encryption scheme.

Proof. Consider the following sequence of hybrids:

• H0 : b = 0, c = (fi(r), hi(r)⊕m0)

• H1 : b = 0, c = (fi(r), z ⊕m0)

• H2 : b = 1, c = (fi(r), z ⊕m1)

• H3 : b = 1, c = (fi(r), hi(r)⊕m1)

where z $← {0, 1} is a random bit. Note that in order to prove the IND-CPA security of the
encryption scheme, it suffices to prove that H0 and H3 are computationally indistinguishable.

The indistinguishability of H0 and H1 follows from the security of the one-time pad. Indeed,
note that the only difference between H0 and H1 is that in H0, the message m0 is masked using
hi(r), whereas it is masked with a random bit z in H1. Then, if there exists a PPT distinguisher
between H0 and H1, we can use it to construct an adversary for hard-core predicate hi. The
reduction is left as an exercise.

Next, the indistinguishability of H1 and H2 follows immediately from the security of one-
time pad. Finally, the indistinguishability of H2 and H3 can be argued in an analogous manner
as for H0 and H1.

Combining the above, we obtain that H0 and H3 are indistinguishable.

6.5 Trapdoor Permutations from RSA
The rest of the lecture was spent outlining trapdoor permutations from the RSA assumption.
We begin by defining the RSA collection.

Definition 33 RSA = {fi : Di → Ri} where:

• i = {(N, e)|N = p ∗ q s.t. p, q ∈
∏
n, e ∈ Z∗Φ(N)}

• Di = {x|x ∈ Z∗N}

• Ri = Z∗N
• Gen(1n)→ ((N, e), d) where (N, e) ∈ I and e * d mod Φ(N)

• fN,e(x) = xe mod N

• f−1
N,e(y) = yd mod N

It is easy to verify that that fN,e is a permutation.
Next, we describe the RSA assumption:

Definition 34 For any n.u. PPT adversary A, there exists a negligible function µ(·) s.t.:

Pr

[
p, q ←$

∏
n, N = p ∗ q, e←$ Z∗Φ(N)
y ←$ Z∗N ;x← A(N, e, y) : xe = y mod N

]
≤ 1

2 + µ(n)

Finally, we note that based on the RSA assumption, we can establish that the RSA collection
is a family of trapdoor permutations. The proof is left as an exercise.

Theorem 20 Assuming the RSA assumption, the RSA collection is a family of trapdoor per-
mutations.

39

40

Chapter 7

Authentication

7.1 Introduction
We begin by describing the setting. There are two parties, Alice and Bob. Alice wants to
send a message to Bob over a public channel such that an active adversary Eve cannot tamper
with the message without being detected. In particular, Eve should not be able to replace the
message sent by Alice with another message and trick Bob into thinking that it actually came
from Alice.

We will discuss two methods using which Bob will be able to verify whether or not the
message he receives is sent by Alice. The first method, called message authentication codes,
requires Alice and Bob to share a secret key. The second method, called digital signatures, is
the public-key analogue, where Alice will use a secret key and Bob will use a corresponding
public key.

Note: We will abbreviate Alice = A, Bob = B, Eve = E.

7.2 Private Key: MAC
We first consider the private key scenario. We will discuss message authenticated codes, or
MAC, where A and B share a private key that is used both for signing and verifying.

7.2.1 Algorithm overview

MACs have three relevant algorithms. First, a key generator Gen() that outputs a private key.
Second, we have a tag generator Tag() that takes as input a signing key and a message and
outputs a signature. Finally, there is a verification algorithm that takes as input a verification
key, a message and a signature and outputs 1 if the signature is valid, and 0 otherwise.

• Key Generation: k ← Gen(1n), generates a secret key

• Signing: σ ← Tagk(m), computes a tag for the message m

• Verification: Verk(m, σ) = 1 iff σ is a valid tag of m over k, else 0.

MACs also have the following two properties: Correctness, and Security. With respect to
security, we will discuss Unforgability under Chosen-Message Attack (UF-CMA).

Definition 35 (MAC) Given a key k and a signature σ, MACs have the following properties:

41

• Correctness: Pr[k ← Gen(1n), σ ← Tagk(m) : Verk(m,σ) = 1] = 1

• Security: ∀ nu PPT adversary A, ∃ a negligible function µ(·) such that:
Pr[k ← Gen(1n), (m,σ) ← ATagk(·)(1n) : A did not query m ∧ Verk(m,σ) = 1] ≤ µ(n)

Another way of looking at the security of MACs is via the following security game. Let Ch
= Challenger, A = Adversary.

1. Ch generates a key: k ← Gen(1n)

2. A sends a message mi to Ch

3. Ch generates a tag: σi ← Tagk(mi)

4. Ch sends σi to A

5. A and Ch repeat steps 2 to 4 multiple times

6. A finally sends Ch (m∗, σ∗)

A wins if, for all i, m∗ 6= mi, and Verk(m∗, σ∗) = 1. Unforgeability under Chosen-Message
Attack (UF-CMA) security states that the probability that A wins the above game is negligible.

7.3 Construction of MAC
We now construct a MAC scheme based on pseudorandom functions (PRFs).

Theorem 21 PRF ⇒ MAC

In order to prove the above theorem, we start by giving a construction of MAC scheme
based on PRFs.

Construction. Let {fk} be a family of PRFs. The MAC scheme is described below:

1. Gen(1n) : Output k $←− {0, 1}n

2. Tagk(m) : Output fk(m)

3. Verk(m, σ) : Output fk(m) ?= σ

We now prove the security of the above construction.

Proof of Security. Let AMAC be a PPT adversary that breaks the security of MAC. We
want to construct an adversary APRF that uses AMAC to break the security of PRFs and thus
reach a contradiction and conclusion.

Whenever AMAC queries APRF with a message mi, APRF queries its challenger oracle with
xi = mi. APRF will receive the oracle’s output yi. APRF will then forward σi = yi to AMAC .
This process repeats several times. Now, AMAC outputs (m∗, σ∗). At this point, APRF queries
its challenger on x∗ = m∗ and obtains y∗. If σ∗ = y∗, then APRF outputs "PRF", else it outputs
"RF".

If the Challenger oracle is random, then AMAC has no information on the PRF key, and
therefore the probability that it can output a valid signature σ∗ is negligible.

If the Challenger oracle is pseudo-random, then our AMAC above will be able to output a
valid σ with non-negligible probability. This is a contradiction on the security of PRFs.

42

7.3.1 One Time MACs

We can also consider MACs with a weaker security definition where the adversary is only allowed
one signing query to the challenger. The advantage is that we can construct one-time MACs
with unconditional security. This is the analogue to One Time Pads for authentication.

7.4 Public Key: Digital Signature
Now, we discuss the public key scenario, or digital signatures. The intuition here is that “A
uses a private key to sign, and B uses a public key to verify.”

7.4.1 Algorithm overview

Like MACs, we have three relevant algorithms: a key generator, a sign generator, and a verifier.
Note the differences below.

Our key generator now produces a pair containing a secret key sk and a public key pk. The
tag generator produces a signature using the secret key. Our verifier verifies the message using
the public key.

• Key Generation: (sk, pk)← Gen(1n)

• Signing: σ ← Signsk(m), a signature

• Verification: Verpk(m,σ): M × S → {0, 1}, where M is the message space and S the
signature space

Definition 36 (Digital Signatures) Given a key (sk, pk) and a signature σ, Digital Signa-
tures have the following properties:

• Correctness: Pr[(sk, pk) ← Gen(1n), σ ← Signsk(m) : Verpk(m,σ) = 1] = 1

• Security: UF-CMA as described above.
∀ nu PPT adversaries A, ∃ a negligible function µ(·) such that:
Pr[(sk, pk) ← Gen(1n), (m,σ) ← ASignsk(·)(1n) : A did not query m ∧ Verpk(m,σ) = 1
] ≤ µ(n)

7.5 One Time Signatures
Next, we move on into a discussion of One Time Signatures, which is a digital signature scheme
where the adversary can only make one signature query. Below we discuss Lamport’s one-time
signature scheme based on one-way functions.

Lamport’s Construction of OTS. Let f be a OWF. We make the assumption that we will
only sign n-bit messages.

• Key Generation:

sk =
[
x0

1 x0
2 . . . x0

n

x1
1 x1

2 . . . x1
n

]

Where xbi
$←− {0, 1}n, ∀i ∈ [n] and b← {0, 1}.

43

pk =
[
y0

1 y0
2 . . . y0

n

y1
1 y1

2 . . . y1
n

]

Where ybi = f(xbi).

• Signing: Signsk(m) : σ := (xm1
1 , xm2

2 , . . . , xmn
n)

Where | σ |= n. Basically, for every column of sk, select one of the two xbi depending on
mi.

• Verification: Verpk(m,σ) : ∧i∈[n]f(σi)
?= ymi

i .

Proof of Security. We will prove security w.r.t. a weaker security definition called selective
security. We describe the security game below:

1. Adversary A states what message m∗ it is going to forge and sends that to Challenger Ch.

2. Ch generates and sends back a public key pk.

3. A queries Ch with a message mi.

4. Ch returns with a sign σi.

5. A and Ch repeat steps 3 and 4 multiple times.

6. A finally sends Ch a σ∗.

We now prove that Lamport’s construction is selectively secure.
For the sake of contradiction, suppose there is a PPT adversary AOTS that can break the

OTS security scheme. We construct a PPT adversary AOWF that uses AOTS to invert a OWF.

1. AOWF receives y = f(x) as input. This input will be embedded into an input for AOTS .
This latter input will be a public key that we will generate.

2. AOWF runs AOTS and gets m∗ = m∗1 . . .m
∗
n where each m∗i is one bit.

3. Choose i $←− [n], and set b∗ = m∗i .

4. Set yb∗i = y. For all j 6= i, b ∈ {0, 1}, choose an xbj
$←− {0, 1}n and calculate ybj = f(xbj .

Further, choose x1−b∗
i

$←− {0, 1}n and calculate y1−b∗
i = f(x1−b∗

i).

Now, set pk to be the matrix of all y’s as computed above.

5. Send this pk to AOTS .

6. Now, AOTS may send a signing query m. If mi = m∗i , then halt. Otherwise, answer the
signing query as σ = (xm1

1 , . . . , xmn
n).

7. AOTS outputs some σ∗ as its forgery. AOWF will then set its x = σ∗i as its inversion.

44

Thus, if AOTS generates a valid forgery with noticeable probability ε, then AOWF can invert f
with probability at least ε

n , which is still noticeable. This is a contradiction.
Note that the adversary AOTS declared the message m∗ that it was going to forge at the

beginning. The reduction didn’t know the signing query m that A will send after that, therefore
it guessed i such that mi 6= m∗i . We want this guess to be correct with noticeable probability,
since otherwise, our reduction will fail almost always. If we choose i at random, then our guess
will be correct with probability 1

n . This is because A has no clue what i is, which is necessary
- otherwise he may choose mi = m∗i every time and thus the reduction will always fail.

So far, we have discussed authentication schemes for fixed length messages. But we continue
our discussion for the case of arbitrary length messages. In order to construct signature schemes
for arbitrary length messages, we first study the notion of collision-resistant hash functions
(CRHFs).

7.6 Collision-Resistant Hash Function
A hash function is a compression function that shrinks a long message to a fixed length message.
For our purposes, we need a hash function that ensures minimal collisions when shrinking
messages. In particular, we want a hash function h where it is computationally hard to find
two different inputs x and x′ having the same outputs h(x) and h(x′).

Definition 37 (CRHF Family) A family H = {hi : Di → Ri}i∈I is a collision resistant hash
function family if:

• Easy to Sample: ∃ a PPT Gen algo s.t. i← Gen(1n), i ∈ I

• Compression: | Ri |<| Di |

• Easy to Evaluate: ∃ a polytime algorithm Eval s.t. given x ∈ Di, i ∈ I, Eval(x, i) = hi(x)

• Collision Resistance: ∀ nu PPT adversary A, ∃ negligible function µ s.t.

Pr[i $← Gen(1n), (x, x′)← A(1n, i) : x 6= x′ ∧ hi(x) = hi(x′)] ≤ µ(n)

A couple of remarks on hash functions: first, hash functions with one-bit compression can
be transformed to hash functions with arbitrary compression. One such mechanism is called
Merkle trees. Note, however, that the output size of the hash must be large enough to prevent
easy collisions.

One-time Signatures for Long Messages. Using CRHFs, we can transform Lamport’s
OTS scheme into a new OTS scheme where we can sign arbitrarily long messages. To sign a
message m, we first hash it using hi(m) and then use the signing algorithm in Lamport signing
scheme. We rely on the collision resistance of h to argue security.

Universal One-way Hash Functions. While CRHFs are not known based on one-way
functions, there is a weaker notion of hash function that can be based on one-way functions
and turns out to be sufficient for constructing digital signature schemes for long messages. This
notion is called a universal one-way hash function (UOWHF), and it is defined in the same
manner as a CRHF, except that the collision-resistance property is described as follows:

Definition 38 (Universal One-Way Hash Function (UOWHF))

Pr[(x, state)← A(1n), i $← Gen(1n), x′ ← A(i, state) : x 6= x′ ∧ hi(x) = hi(x′)] ≤ µ(n)

45

7.7 Multi-message Signatures
We end with a discussion on multi-message signatures. The definition of multi-message signa-
tures is in the class lecture slides, as are relevant extra readings. A stateful construction of
multi-message signatures can be constructed by creating a “chain” of one-time signatures (the
construction is given in the class slides). Further, even stateless construction of multi-message
signatures are possible, however they will not be covered in this course.

46

Chapter 8

Zero-Knowledge Proofs

8.1 What is a Proof?

Generally speaking, a proof is a demonstration of the veracity of statement through a line of
deductive reasoning. In the realm of mathematics, this involves reducing the statement into a
series of axioms and assumptions that are known to be valid.

Properties of Proofs. Here are two natural properties that a proof must satisfy: first, a
verifier should accept the proof if the statement is true. This is known as Correctness. Second,
if the statement is false, then any proof should be rejected by the verifier. This is known as
Soundness.

It is also important that a proof can be efficiently verified. In particular, a proof that would
clearly show if a statement is true, but cannot be verified efficiently is not acceptable. For
example, consider the following proof for the existence of infinite primes: a list containing all
primes. Clearly, both the generation of the proof and the verification would take an undefined
amount of time, so this proof is not useful.

To ensure that proofs can be efficiently verified, we require that the verifier must be poly-
nomial time in the length of the statement.

Must a proof be non-interactive? In exploring the structure of a proof, an important
question that arises is whether a proof must be non-interactive? Or, can can a proof be in the
form of a conversation between a prover and verifier, where at the end of the conversation the
verifier is convinced.

Indeed, we will now formalize the notion of interactive proofs and show that they are ex-
tremely powerful!

8.2 Interactive Protocols

We start by establishing some notation and definitions related to interactive protocols.

Definition 39 (Interactive Turing Machine) An interactive Turing machine (ITM) is a
Turing machine with two additional tapes: a read-only tape to receives messages and a write-
only one to send messages.

Definition 40 (Interactive Protocol) An interactive protocol is a pair of ITMs such that
the read tape of the first ITM is the send tape of the second and vice-versa. An interactive

47

protocol proceeds in rounds, where in each round only one ITM is active, while the other is idle.
The protocol is finished when both machines halt.

Definition 41 (Protocol execution) A (randomized) execution of an interactive protocol
(M1,M2) refers to the ITMs executing all the rounds of the protocol until they halt. An ex-
ecution of (M1,M2) on inputs (x1, x2) and auxiliary inputs (z1, z2) is denoted as M1(x1, z1)↔
M2(x2, z2).

Definition 42 (Protocol Output) The output ofMi in an execution e of (M1,M2) is denoted
as OutMi(e)

Definition 43 (View of ITM) The view of Mi in an execution e of (M1,M2) consists of
its input, random tape, auxiliary tape and all the protocol messages it sees. It is denoted as
V iewMi(e).

8.3 Interactive Proofs
Interactive proofs involve a pair of ITMs P and V , where P denotes the prover and V denotes
the verifier.

Definition 44 (Interactive Proofs) A pair of ITMs (P,V) is an interactive proof system for
a language L if V is a PPT machine and the following properties hold:

• Completeness: For every x ∈ L,

Pr[OutV [P (x)↔ V (x)] = 1] = 1

• Soundness: There exists a negligible function ν(·) s.t. ∀x /∈ L and for all adversarial
provers P ∗,

Pr[OutV [P ∗(x)↔ V (x)] = 1] ≤ ν(|x|)

Remark 1 In this definition, the prover does not have to be efficient. The restriction of efficient
provers will be visited later.

Remark 2 Note, however, that an adversarial prover can be unbounded

What this definition is saying is that to satisfy the Completeness property, the output of
V in the execution of the interactive protocol between P and V should always be accept as
long as the statement x is a valid member of the language L of statements. In order to met
the Soundness property, regardless of the adversarial prover P ∗’s strategy, if x is not a valid
statement then, the probability that the output of V in the execution of the interactive protocol
between P ∗ and V is accept must be negligible.

8.3.1 Why Interactive Proofs?

A natural question that we should ask at this point is, why should we consider interactive
proofs?

Indeed, for languages that are in NP, for each statement in the language there exists a
polynomial sized witness. Specifically, for any NP language L with associated relation R and
any statement x ∈ L, there exists a witness w s.t. checking R(x,w) = 1 confirms that x ∈ L.
This means that w is a non-interactive proof for x.

48

Example. A simple example of non-interactive proofs using witnesses is Graph Isomorphism.
Two Graphs are isomorphic if there is a permutation that maps one graph to the other. In
this situation the permutation is the witness, as if a permutation can be shown then clearly a
mapping must exist between the two graphs.

In light of the above, the question is why even bother with interactive proofs? Why not
always use non-interactive proofs?
There are two main reasons for using interactive proofs:

• Proving statements for languages not known to be in NP (i.e., when a “short” witness is
not available).

• Achieving a privacy guarantee for the prover

In particular, here are some known results that establish the power of interaction:

• Shamir proved that IP = PSPACE. That is the space of languages with interactive proof
systems (with a single prover) is equivalent to the space of languages decidable in poly-
nomial space.

• Babai-Fortnow-Lund established that MIP = NEXP. That is the space of languages with
Multi-prover interactive proof systems is equivalent to the space of languages decidable
in non-deterministic exponential time.

• Goldwasser-Micali-Rackoff presented the notion of Zero Knowledge, where verifier learns
nothing from the proof beyond the validity of the statement.

In what follows, we will demonstrate the power of interaction by constructing interactive
proofs for a language in co-NP, and then later, we will formalize the notion of zero knowledge.

Below, we first establish some general notation for graphs that we will later use.

8.4 Notation for Graphs
Definition 45 (Graph) A Graph G = (V, E) where V is a set of vertices and E is a set of
edges s.t. |V | = n, |E| = m

Definition 46 Πn is the set of all permutations π over n vertices.

Definition 47 (Graph Isomorphism) G0 = (V0, E0) and G1 = (V1, E1) are isomorphic if
there exists a permutation π s.t:

• V1 = {π(v)|v ∈ V0}

• E1 = {(π(v1), π(v2))|(v1, v2) ∈ E0}

Remark 3 We will also use the notation G1 = π(G0)

Graph Isomorphism is an NP problem, so even if we did not explain what the witness for this
problem is, we know it must have one and thus can be proved non-interactively. However, there
is a related problem that is not known to be in NP and thus cannot be efficiently proved using
a witness.

Definition 48 (Graph Non-Isomorphism) G0 and G1 are non-isomorphic if there exists
no permutation π ∈ Πn s.t. G1 = π(G0)

49

8.5 Interactive Proof for Graph Non-Isomorphism

Suppose we want to prove that two graphs G0 and G1 are not isomorphic. Note that graph
non-isomorphism is in co-NP, and not known to be in NP.

A naive way to prove this is by enumerating all possible permutations over n vertices and
showing that there is no permutation π,G1 6= π(G0). Note, however, that this cannot be verified
efficiently.

Fortunately this is where the power of interaction comes in. We now demonstrate an inter-
active proof system for graph non-isomorphism.
Common Input: x = (G0, G1)
Protocol (P,V): Repeat the following procedure n times using fresh randomness

Verifier Prover

Chooses a random b ∈ {0, 1},
π ∈ Πn. Compute H = π(Gb)

send H

Compute b’ s.t. H and Gb′
are isomorphic

Send b′

V(x,b,b’): V outputs 1 if b’=b and 0 otherwise.

We now argue that protocol (P, V) is an interactive proof. As per the definition, we have to
establish that it satisfies the properties of Completeness and Soundness:

• Completeness: If G0 and G1 are not isomorphic, then an unbounded prover can always
find b’ s.t. b’=b. This is because H would only be isomorphic to one of the two graphs.

• Soundness: If G0 and G1 are isomorphic, then H is isomorphic to both G0 and G1. Thus
in a single iteration, an unbounded prover can guess b with probability at most 1/2. Since
each iteration is independent, over n iterations, the probability of prover success is at most
2−n, which is negligible.

• Additionally, the verifier is clearly efficient.

8.6 Interactive Proofs with Efficient Provers

Up until this point, the provers we were dealing with were inefficient. If there were not, then
the previous protocol would have established that graph non-isomorphism is in NP.

However, what if we want Interactive proofs with efficient provers? One reason for this is
because now, we can hope to implement prover strategies using standard computers or human
beings (who are PPT machines). Further, we can hope to construct interactive proofs that are
also zero knowledge.

50

In order to construct interactive proofs with efficient provers, we can only deal with languages
in NP. In particular, for any statement x, we will provide a witness w for x as a private input to
the prover. Then, we require that the prover strategy is be efficient when it is given a witness
w for the statement x that it attempts to prove.

Definition 49 An interactive proof system (P,V) for a language L witness relation R is said to
have an efficient prover if P is a PPT and the completeness condition holds for every w ∈ R(X)

Remark 4 Even though honest P is efficient, we still require soundness guarantee against all
possible adversarial provers.

8.6.1 Interactive proof for Graph Isomorphism

We now construct an interactive proof for proving that two graphs G0 and G1 are isomorphic.
At first, this may seem a little strange since as discussed earlier, there exists a simple non-
interactive proof for the same: the prover simply sends the permutation that maps G0 to G1
to the verifier. Indeed, if the prover is provided this permutation as input, then it is already
efficient.

The problem, however, with this protocol is that V learns the permutation π. Now using
this permutation, it is able to repeat the proof to someone else.

This raises the natural question whether there is a way to interactively prove isomorphism
without revealing the witness. Even better yet, can we construct construct a proof that reveals
nothing to V beyond the validity of the statement?

Below, we construct such an interactive proof system for graph isomorphism.

Common Input: x = (G0, G1)

P’s witness: G1 = π(G0)

Protocol (P,V): Repeat the following procedure n times using fresh randomness.

Prover Verifier

Chooses a random σ ∈ Πn,
Compute H = π(G0)

send H

Choose random bit b ∈ {0, 1}
send b

if b=0, sends σ

else send φ = σ · π−1

V(x,b,b’): V outputs 1 iff H = φ(Gb)

Proof of Completeness: If G0 and G1 are isomorphic, then V always accepts since σ(G0) = H
and σ(π−1(G1)) = σ(G0) = H.

51

Proof of Soundness: If G0 and G1 are not isomorphic, then H is isomorphic to one of the
graphs but not both. Since b is chosen randomly after fixing H, H is not isomorphic to Gb with
probability 1/2. Thus an unbounded adversarial prover can succeed with probability at most
1/2. Over n independent iterations, the prover can succeed with probability at most 2−1.

In this protocol, one can see that intuitively, V obtained no information other than a random
permutation of Gb. This is something he could have generated on its own, so intuitively, the
protocol does not reveal any information.

Below, we formalize the idea of zero knowledge and then later, we will prove that the graph
isomorphism protocol constructed above is in fact zero knowledge.

8.7 Zero Knowledge
Intuitively, a protocol is zero knowledge if the verifier does not “gain any knowledge” from
interacting with the prover besides the validity of the statement. Towards formalizing this idea,
the first natural question is how to formalize “does not gain any knowledge?”

Here are some rules to help in this direction:

• Rule 1: Randomness is for free

• Rule 2: Polynomial-time computation is for free

In other words, learning the result of a random process or a polynomial time computation
gives us no knowledge.

The next question, however, is what is knowledge? To answer this question, let us understand
when knowledge is conveyed.

• Scenario 1: Someone tells you he will sell you a 100-bit random string for $1000.

• Scenario 2: Someone tells you he will sell you the product of two prime numbers of your
choice for $1000.

• Scenario 3: Someone tells you he will sell you the output of an exponential time compu-
tation (e.g., isomorphism between two graphs) for $1000.

Which of these offers should you accept?
Note that in the first scenario, we can generate a random string for free by flipping a

coin. The second scenario can also be obtained for free since multiplying is a polynomial-time
operation. However, since an exponential-time operation is hard to compute for a PPT machine,
scenario 3 is the best one to consider.

The moral of the story is that we do not gain any information from an interaction if we
could have performed it on our own. This leads us to the correct intuition for zero knowledge:
Intuition for Zero Knowledge: A protocol (P, V) is zero knowledge if V can generate a
protocol transcript on its own, without talking to P. If this transcript is indistinguishable from
a real execution, then clearly V does not learn anything by talking to P.

To formalize this intuition, we will use the idea of a Simulator as we did when defining
semantic security for encryption.

Definition 50 (Honest Verifier Zero Knowledge) An interactive proof (P,) for a language
L with witness relation R is said to be honest verifier zero knowledge if there exists a PPT
simulator S s.t. for ever n. u. PPT distinguisher D, there exists a negligible function ν(·) s.t.
for every x ∈ L,w ∈ R(x), z ∈ 0, 1∗, D distinguishes between the following distributions with
probability at most ν(n):

52

• {V iewV [P (x,w)↔ V (x, z)]}

• {S(1n, x, z)}

In other words what V sees throughout the protocol is something that could have come up
with on its own (by simply running the simulator with input x and z).

Remark 5 The auxiliary input z to V captures any a priori information V may have about x.
Definition promises that V does not gain any other knowledge.

Issue. A problem with the above definition is that it promises security only of the verifier V
follows the protocol. What if V is malicious and deviates from the honest strategy? In this
case, we need a simulator S for every, possibly malicious (efficient) verifier strategy V ∗.

We now present a definition of zero-knowledge for this case. For technical reasons, we allow
the simulator to run in expected polynomial time.

Definition 51 (Zero Knowledge) An interactive proof (P,V) for a language L with witness
relation R is said to be zero knowledge if for every n.u. PPT adversary V ∗, there exists an
expected PPT simulator S s.t. for every n.u. PPT exists an expected PPT a negligible function
ν(·) s.t. for every x ∈ L,w ∈ R(x), z ∈ 0, 1∗, D distinguishes between the following distributions
with probability at most ν(n):

• {V iewV ∗ [P (x,w)↔ V ∗(x, z)]}

• {S(1n, x, z)}

Remark 6 If the distributions are statistically close, then we call it statistical zero knowledge.
If they are identical then it is know as perfect zero knowledge.

We see that in this revised definition, no matter the verifier’s strategy, the view of V ∗ is
indistinguishable from the output of the simulator.

Theorem 22 Sequential repetition of any protocol is also .

A proof sketch, which is skipped here, can be seen in section 7.2.1 of [?].
To prove a single iteration of the interactive proof is perfect , we need to perform the

following steps:

• Construct a simulator for every PPT V ∗.

• Prove that the expected run time of is polynomial.

• Prove that the output distribution of is indistinguishable from the real execution.

The simulator is defined below,

(x, z)

b′
$←−{0, 1}, σ $←−Πn

H = σ(Gb′)
Emulate execution of V ∗(x, z) by feeding it H. Let b be its response.
If b = b′

Feed σ to V ∗ and output its view.
Else
Restart above procedure.

53

We briefly discuss the need to restart the procedure in the simulator. In the case that b 6= b′,
the correct response would require the knowledge of π, which the simulator doesn’t know (if
it did, the adversary has all the ‘knowledge’ it needs). So the procedure is restarted with the
hope that we will have b = b′ eventually.

The following lemma will aid us in performing the remaining two steps.

Lemma 23 In the execution of (x, z),

• H is identically distributed to σ(G0), and

• Pr[b = b′] = 1
2

Proof. Since G0 is isomorphic to G1, for a random σ
$←−Πn, the distributions σ(G0) and σ(G1)

are identically distributed. Thus, H has a distribution that is independent of b′. Therefore, H
has the same distribution as σ(G0).

The simulator chooses b′ independently from x and z. When we emulate the execution of
V ∗(x, z) on feeding H, x, z and H (as argued earlier) are independent of b′. Thus the output
of V ∗ will be independent of b′. Since b′ is chosen at random, Pr[b = b′] = 1

2 .

Run time: From the above lemma, we see that a single iteration of has a success probability of
1
2 . Thus the expected number of iterations before succeeds is 2. Since each iteration emulates
a PPT adversary V ∗ in addition to some other polynomial time operations, it takes polynomial
time. This in turn implies that the expected running time of is polynomial.

Indistinguishability of Simulated View: The above lemma also shows that H has the
same distribution as σ(G0). If we could always output σ, then the output distribution of would
match the distribution in the real execution. This is taken care of when we check if b = b′, and
outputs H and σ only if it is true. But since H is independent of b′, this does not change the
output distribution.

8.8 Reflections on Zero Knowledge
The proof of zero-knowledge property using a simulator may seem a little paradoxical for the
following reasons:

• Protocol execution convinces V of the validity of x.

• But V could have generate the protocol transcript on his own.

To understand why there is no paradox, consider the following story:
Alice and Bob run the above protocol on input (G0, G1) where Alice acts as P and Bob as V.

Now, Bob goes to Eve and tells her that G0 and G1 are isomorphic. Eve is skeptical about what
Bob knows and asks how he knew this to be true. Bob then shows her the accepting transcript.
But Eve knows all about simulators and doesn’t believe Bob. She tells him that anyone could have
come up with the transcript without actually knowing the isomorphism. Bob is now annoyed,
and persists by telling her that he computed the transcript talking to Alice, who answered his
every query correctly. But Eve remains unmoved.

The two most important points of the above story are:

• Bob participated in a “live" conversation with Alice, and was convinced how the transcript
was generated.

• Eve on the other hand did not see the live conversation, and has no way to tell if the
transcript is from a real execution or produced by a simulator.

54

Thus, is about transcripts while soundness is about “live" executions because of the random
challenges.

8.9 Zero-knowledge Proofs for NP

We now prove a powerful theorem assuming the existence of one-way permutations. The theorem
essentially states that anything that can be proved (and verified efficiently), can also be proved
in . The formal statement is,

Theorem 24 If one-way permutations exist, then every language in NP has a interactive proof.

Remark 7 The assumption of one-way permutations in the above theorem can be relaxed to
only one-way functions.

Now, let us consider how we could prove the above theorem. Could we achieve this by con-
structing a proof for each language in NP? That would be ridiculously inefficient. Instead we
focus on NP-complete languages, and rely on their ‘completeness’ property.

Proof. The proof proceeds in two steps:

Step 1: Construct a proof for an NP-complete language. We will consider Graph 3-Coloring,
which is the language of all graphs whose vertices can be colored using only three colors
such that no two connected vertices have the same color.

Step 2: To construct proof for any NPlanguage L, do the following

– Given instance x and witness w, P and V reduce x into an instance x′ of Graph 3-
Coloring using Cook’s deterministic reduction. The determinism ensures that both
P and V end up with the same value x′.

– P also applies the reduction to the witness w to obtain witness w′ for x′.

– Now, P and V can run the proof from Step 1 on the common input x′.

We shall first show a “physical" proof. Here the colors are represented by numbers {1, 2, 3}.
Let Π{1,2,3} denote the set of all permutations over {1, 2, 3} and colori refers to the ‘color’ of
vertex vi ∈ V where |V | = n. We also define colori to be a locked box containing colori. As
with any locked box, it has a key keyi which locks and unlocks it. Obviously, it should be hard,
if not impossible, to open or view the contents of this locked box without the key (we assume
the box is opaque). The physical interactive proof follows below,

55

Interactive proof for Graph Isomorphism

Repeat the following procedure n|E| times using fresh randomness

P(G, (color1, · · · , colorn)) V(G, z)

π
$←−Π{1,2,3}

∀i ∈ [n], c̃olori = π(colori)

∀i ∈ [n], c̃olori
lock−−→
keyi

c̃olori (
c̃olori , · · · , c̃olori

)

(u, v) $←−E

(u, v)

keyu, keyv

c̃oloru
unlock−−−−→
keyu

c̃oloru

c̃olorv
unlock−−−−→
keyv

c̃olorv

If c̃oloru 6= c̃olorv Accept; else Reject

The completeness is trivial, and the intuitions for soundness follows from the fact that in
each iteration, a cheating prover is caught with probability 1

|E| (we shall explain this later). For
, in each iteration, V only sees something it knew before - two random but different colors.

To “digitize" the above proof, we need some way to implement these locked boxes. Specifi-
cally, we need the two following properties about locked boxes:

• Hiding: V should not be able to see the contents inside a locked box.

• Binding: P should not be able to modify the content inside a box once it is locked.

Why do we even care about the second property? It’s something that’s so obvious about
“physical” locked boxes that we often forget it exists. But this is what stops P from cheating
when it doesn’t know a correct coloring. If this property wasn’t present, P on receiving (u, v)
could modify the contents in the locked boxes containing the colorings of u and v to always
unlock to different values. This would let P always convince V even without knowing the solution
(coloring), thus violating the soundness requirement.

8.10 Commitment Schemes
The digital analogue of ‘locked’ boxes contains of two phases: A Commit phase: where the
sender locks a value v inside a box. And a reveal phase: where the sender unlocks the box
and reveals v. This can be implemented using interactive protocols, but we will consider the
non-interactive case where both commit and reveal phases will consist of a single message. We
call the digital analogue “commitment schemes" and formally define them,

56

Definition 52 (Commitment) A randomized polynomial-time algorithm Com is called a com-
mitment scheme for n-bit strings if it satisfies the following properties:

• Binding: For all v0, v1 ∈ {0, 1}n and r0, r1 ∈ {0, 1}n it holds that

Com(v0; r0) 6= Com(v1; r1).

• Hiding: For every non-uniform PPT distinguisher D, there exists a negligible function
ν(·) such that for every v0, v1 ∈ {0, 1}n, D distinguishes between the following distribution
with probability at most ν(n){

r
$←−{0, 1}n : Com(v0; r)

}
and

{
r

$←−{0, 1}n : Com(v1; r)
}
.

The above definition talks about perfect binding and computational hiding. Why don’t we
have perfect binding and perfect hiding? This is unfortunately impossible. It’s left as an exercise
to the reader to see why this is the case.

This definition only guarantees hiding for a single commitment. What about multi-value
hiding? We sketch its definition here, similar to multi-message secure encryption schemes.
Specifically, the adversary A needs to guess the bit b chosen by the challenger below.

Challenger A(
(v0

1 , v
1
1), · · · , (v0

l , v
1
l)
)

b
$←−{0, 1}

∀i ∈ [l], r $←−{0, 1}n;Ci = Com(vb
i ; ri)

(C1, · · · , Cn)

b′

For security we require that the adversary A has only a negligible advantage in guessing
b. We now claim that any commitment scheme satisfies multi-value hiding. Like public-key
encryption, commitment schemes do not have any ‘key’, and we follow the same technique.
The formal proof is left as an exercise. The corollary to this claim is that one-bit commitment
implies string commitment.

Construction. The following theorem shows us how to construct a bit commitment scheme
based on one-way permutations. Other such constructions based on pseudorandom generators,
among others, exist too[?].

Theorem 25 If one-way permutations exist, then commitment schemes exist.

Proof. Let f be a one-way permutation and h be the hard core predicate for f . We shall use
these primitives to construct a bit-commitment scheme.

Commit phase: For this phase the sender computes C = Com(b; r) = (f(r), h(r)⊕ b). The bit b
is being masked by h(r).

Open phase: Sender reveals (b, r). Receiver accepts if C = (f(r), h(r)⊕ b), and reject otherwise.

57

Binding follows from the fact that f is a permutation. Hence f(r1) = f(r2) ⇐⇒ r1 = r2. The
hard core bit is deterministic once r is fixed, thus ensuring binding.
For hiding we follow the proof for proving a secure single bit encryption scheme based on
trapdoor permutation. For us, the trapdoor makes no difference to the binding or hiding
properties and thus follows immediately.

Now that we have our digital “locked boxes", we can proceed to our proof for Graph 3-
coloring.

8.11 Zero-knowledge Proof for Graph 3-coloring
The protocol for the interactive proof is presented below,

Interactive proof for Graph Isomorphism

Repeat the following procedure n|E| times using fresh randomness

P(G, (color1, · · · , colorn)) V(G, z)

π
$←−Π{1,2,3}

∀i ∈ [n], c̃olori = π(colori)

∀i ∈ [n], Ci = Com(c̃olori; ri)

(C1, · · · , Cn)

(u, v) $←−E

(u, v)

(c̃oloru; ru), (c̃olorv; rv)

If Cu, Cv are valid

and c̃oloru 6= c̃olorv Accept
else Reject

The completeness trivially follows from the fact that knowledge of the right coloring ensures
that the prover never fails. We need to prove the soundness and for for the interactive proof.
Proof of Soundness:

Let G be the graph that is not 3-colorable. Then any coloring color1, · · · , colorn will have at
least one edge which have the same colors on both endpoints. Let one such edge be (i∗, j∗). From
the binding property of Com, we know that C1, · · · , Cn have unique openings c̃olor1 · · · , c̃olorn.
In each iteration P chooses (u, v) = (i∗, j∗) with probability 1

|E| . There might be other such
edges too, but we take the pessimistic approach of assuming only one such edge. The cheating
P only succeeds if it is able to cheat in every iteration. Therefore, the probability P successfully
cheats in every one of the n|E| iterations is at most:(

1− 1
|E|

)n|E|
≈ e−n.

58

Proof of Zero Knowledge:

Intuition. In each iteration of the protocol, V only sees two random colors. The hiding
property of Com guarantees that everything else remains hidden from V .

Simulator S(x=G,z):

1. Choose a random edge (i′, j′) $←− E and pick random colors color′i′ , color′j′
$←− {1, 2, 3} such

that color′i′ 6= color′j′ . For every other k ∈ [n]\{i′, j′}, set color′k = 1.

2. For every ` ∈ [n], computer C` = Com(color′`)

3. Emulate execution of V ∗(x, z) by feeding it (C1, ..., Cn). Let (i, j) denote its response.

4. If (i, j) = (i′, j′), then feed the openings of Ci, Cj to V ∗ and output its view. Otherwise,
restart the above procedure at most n|E| times.

5. If simulation has not succeeded after n|E| attempts, then output fail.

Correctness of Simulation. We will prove this using hybrid experiments.
H0: Real execution
H1 : Hybrid simulator S′ that acts like the real prover using witness (color1, ..., colorn), except
that it also chooses (i′, j′) $←− E at random and if (i′, j′) 6= (i, j) in all n|E| trials , then it
outputs fail.
H2 : Simulator S
Now, we want to show that H0 is indistinguishable from H2. First, we will show that H0 and
H1 are indistinguishable. If S′ does not output fail, then H0 and H1 are identical. Since (i, j)
and (i′, j′) are independently chosen, S′ fails with probability at most (1− 1

|E|)
n|E| ≈ e−n.

Now, we will show that H1 and H2 are indistinguishable. The only difference between H1
and H2 is that for all k ∈ [n] {i′, j′}, Ck is a commitment to π(colork) in H1 and a commitment
to 1 in H2. Then, from the multi-value hiding property of Com, it follows that H1 ≈ H2.

59

60

Chapter 9

Secure Computation

9.1 Introduction

Consider two billionaires Alice and Bob with net worths x and y, respectively. They want to
find out who is richer by computing the following function :

f(x, y) =
{

1 if x > y
0 otherwiseOtherwise

One potential solution is that Alice sends x to Bob, who sends y to Alice. They each compute
f on their own. However, this means that Alice learns Bob’s net worth (and vice-versa). There
is no privacy here. This presents the question: Can Alice and Bob compute f in a “secure
manner” such that they only learn the output of f and nothing more?

To generalize this, consider two parties A and B, with private inputs x and y, respectively.
They want to securely compute a function f over their inputs. If both A and B are honest,
then they should learn the output f(x, y). Further, even if one party is adversarial, it should
not learn anything beyond the output (and its own input). How can we formalize this security
requirement? Can we promise that the only thing that the parties learn is the output of the
function (and their own respective inputs)?

9.2 Adversary Models

There are two types of adversaries:

Definition 53 (Honest but curious (aka semi-honest)) Such an adversary follows the in-
structions of the protocol, but will later analyze the protocol transcript to learn any "extra in-
formation" about the input of the other party

Definition 54 (Malicious) Such an adversary can deviate from the protocol instructions and
follow an arbitrary strategy

In the context of secure computation, we will only consider semi-honest adversaries. There
are generic transformations to amplify security against semi-honest adversaries to security
against malicious adversaries.

61

9.3 Definition

Intuition. We want to formalize the concept that no semi-honest adversary learns anything
from the protocol execution beyond its input and the (correct) output. The idea is to use simu-
lation paradigm, as in zero-knowledge proofs. The view of adversary in the protocol execution
can be efficiently simulated given only its input and output, and without the input of the honest
party.

Definition 55 (Semi-Honest Secure Computation) A protocol π = (A,B) securely com-
putes a function f in the semi-honest model if there exists a pair of non-uniform PPT simulator
algorithms SA,SB such that for every security parameter n, and all inputs x, y ∈ {0, 1}n, it holds
that:

{SA(x, f(x, y)), f(x, y)} ≈ {e← [A(x)↔ B(y)] : V iewA(e), OUTB(e)}

{SB(y, f(x, y)), f(x, y)} ≈ {e← [A(x)↔ B(y)] : V iewB(e), OUTA•(e)}

We talk about two simulators because we want privacy for both sides. In the case of zero
knowledge, we didn’t need any privacy against a cheating prover since the verifier has no private
input.

Remarks on Definition. Recall that in zero-knowledge, we only require indistinguishability
of simulated view and adversary’s view in the real execution. Here, indistinguishability is with
respect to the joint distribution over the adversary’s view and the honest party’s output.

This is necessary for correctness. It implies that the output of the honest party in the
protocol execution must be indistinguishable from the correct output f(x, y). This guarantees
that when the honest party talks to a corrupted party, the output is still always correct. If we
remove this requirement, then a clearly wrong protocol where parties are instructed to output
y would be trivially secure! We not only want security, we also want correctness of the output
of the honest party.

9.4 Oblivious Transfer

Consider the following functionality, called, 1-out-of-two oblivious transfer (OT). There are two
parties, a sender A and receiver B. A’s input is a pair of bits (a0, a1), and B’s input is a bit b.
B’s output is ab and A receives no output.

This is bit OT because the inputs of sender are bits, but it can be easily generalized to
string OT.

We define security for OT using Definition 55. Note that the definition promises that in a
secure OT protocol, A does not learn b and B does not learn a1−b.

62

9.5 Importance of Oblivious Transfer
OT can be realized from physical channels, as shown byWiener and Rabin. In particular, a noisy
channel can be used to implement OT. Furthermore, OT is complete for secure computation.
This means that given a secure protocol for OT, any function can be securely computed. Finally,
OT is also necessary for secure computation.

9.5.1 Construction

Let {fi}i∈I be a family of trapdoor permutations with sampling algorithm Gen. Let h be a
hardcore predicate for fi.

A B
Samples (fi, f−1

i)← Gen(1n)
fi

[-.7ex -.3ex]−−−−−−−−−−−−−−−−−−B Sample x $←− {0, 1}n and compute yb = fi(x)
Sample y1−b

$←− {0, 1}n
(y0, y1)

[-.7ex -.3ex]C−−−−−−−−−−−−−−−−−−

zj = hi(f−1
i (yj))⊕ aj

(z0, z1)
[-.7ex -.3ex]−−−−−−−−−−−−−−−−−−B Output ab = zb ⊕ h(x)

9.6 Proof of Security
Intuition. Let’s first consider security against adversarial A. Note that both y0 and y1 are
uniformly distributed and therefore independent of b. Thus, b is hidden from A.

Next, let’s consider security against adversarial B. We want to argue that a1−b is hidden.
We will use the fact that B does not know the pre-image of y1−b. By the security of hardcore
predicates, we know that hi(f−1

i (y1−b) will look random to B. If B could learn a1−b, then it
would be able to predict the hardcore predicate. In particular, hi(f−1

i (y1−b)) appears to be
random for B.

Remark 8 (Malicious Receiver) This protocol is not secure against a malicious receiver.
Indeed, a malicious B can easily learn a1−b by deviating from the protocol strategy. B can
choose y1−b by first choosing a pre-image x′ and then computing h(x′).

To formally prove semi-honest security, we will construct simulators for both cases.

Simulator SA((a0, a1),⊥):

1. Fix a random tape rA for A. Run honest emulation of A using (a0, a1) and rA to obtain
the first message fi.

2. Choose two random strings y0, y1 ∈ {0, 1}n as B’s message

3. Run honest emulation of A using (y0, y1) to obtain the third message (z0, z1).

4. Stop and output ⊥

Lemma 26 The following two distributions are identical:

{SA((a0, a1),⊥), ab}, and

{e← [A(a0, a1)↔ B(b)] : V iewA(e), OutB(e)}.

63

Proof. The only difference between SA and real execution is in step 2. However, since f is a
permutation, y0, y1 are identically distributed in both cases. In the real case, yb is computed by
first sampling a random preimage and then computing fi over it whereas in the simulation, it
is sampled at random. Both of these have the same distribution.

Simulator SB(b, ab):

1. Sample fi, f−1
i .

2. Choose random tape rB for B. Run honest emulation of B using b, rB, fi) to produce
(x, y0, y1) s.t. yb = fi(x) and y1−b ← {0, 1}n.

3. Compute zb = h(x)⊕ ab and z1−b ← {0, 1}

4. Output (z0, z1) as third message and stop

Lemma 27 The following two distributions are indistinguishable:

{SB(b, ab),⊥}, and

{e← [A(a0, a1)←→ B(b)] : V iewB(e), OUTA(e)}.

Proof. The only difference is in step 3, where SB computes z1−b as a random bit. However, since
h(f−1

i (y1−b)) is indistinguishable from random (even given y1−b), this change is indistinguishable

9.7 Remarks
Extension to 1-out-of-k OT. The previous protocol can be easily generalized to construct
1-out-of-k OT for k > 2.

Security against Malicious Adversaries. In reality, adversary may be malicious and not
semi-honest. Goldreich-Micali-Widgerson [GMW] gave a compiler to transform any protocol
that is secure against semi-honest adversaries into one secure against malicious adversaries.
This is a general compiler and can be applied to any protocol. Below, we briefly discuss the
main ideas in their compiler.

Once we have security against semi-honest adversaries, there are two main additional things
that we have to worry about against a malicious adversary.

• First, a malicious adversary may choose a random tape so that the tape is biased. In
this case, the protocol may not remain secure. The transformation of GMW uses coin-
flipping to make sure that adversary’s random tape is truly random. A simple coin-flipping
protocol is described below:

P1 P2
Com(r2)

[-.7ex -.3ex]C−−−−−−−−−−−−−−−−−−−−−−−−−−
r1

[-.7ex -.3ex]−−−−−−−−−−−−−−−−−−−−−−−−−−B

The random tape of P2 is r1⊕r2, which is indistinguishable from random, and also hidden
from P1. Similarly, we can do coin-tossing to fix the random tape of P1.

64

• A malicious adversary may also deviate from the protocol. In this case, all bets are off.
For example, in the OT protocol, if B computed y1−b from a pre-image, then it could
learn a1−b.
One way to ensure that the parties do not deviate from the protocol instructions is to
require them to attach a proof with every message to establish that it is following the
protocol instructions. This way, each party can verify that the other party was acting
semi-honestly. Furthermore, this proof must be zero knowledge or else it might reveal the
inputs.

Securely Computing any Function Extending this to any functionality. The main question
is how to enable the parties to compute any arbitrary function on their private inputs. 2 possible
solutions for this are:

• Goldreich- Micali-Wigderson (GMW): This is a highly interactive solution. It extends
naturally to multiparty case.

• Yao’s Garbled Circuits: This requires relatively less interaction, but is tailored to only
2-party case.

9.8 Goldreich- Micali-Wigderson (GMW) Protocol

9.8.1 Circuit Representation

The Function f(x, y) can be written as a boolean circuit C:

• Input: Input wires of C correspond to inputs x and y to f

• Gates: C contains AND and NOT gates, where each gate has fan in at most 2 and
arbitrary fan out.

• Output: Output wires of C correspond to output of f(x, y).

9.8.2 Secret Sharing

A k-out-of-n secret sharing scheme allows for "dividing“ a secret value s into n parts s1, ..., sn
s.t.

• Correctness: Any subset of k shares can be "combined“ to reconstruct the secret s.

• Privacy: The value s is completely hidden from anyone who only has at most k−1 shares
of s

Definition 56 (Secret Sharing) A (k, n) secret-sharing consists of a pair of PPT algorithms
(Share,Reconstruction) s.t.:

• Share(s) produces an n tuple (s1, ..., sn)

• Reconstruct(s′i1 , ..., s
′
ik

) is s.t. if {s′i1 , ..., s
′
ik
} ⊆ {s1, ..., sn}, then it outputs s

• For any two s and s̃, and for any subset of at most k− 1 indices X ⊂ [1, n], |X| < k, the
following two distributions are statistically close:

{(s1, ..., sn) ← Share(s) : (si|i ∈ X)},

{(s̃1, ..., s̃n) ← Share(s̃) : (s̃i|i ∈ X)}.

65

Construction

1. An (n, n) secret-sharing scheme for s ∈ {0, 1} based on XOR:

• Share(s) : Sample random bits (s1, ..., sn) s.t. s1 ⊕ ...⊕ sn = s

• Reconstruct(s′1, ..., s′n) : Output s′1 ⊕ ...⊕ s′n

2. Shamir’s secret-sharing scheme: A (k, n) secret-sharing using polynomials

9.8.3 Protocol Notations

• Protocol Ingredients: A (2,2) secret-sharing scheme (Share, Reconstruct), and a 1-out-
of-4 OT scheme (OT=(S,R))

• Common Input: Circuit C for function f(., .) with two n-bit inputs and an n-bit output.

• A’s input: x = x1, ..., xn where xi ∈ {0, 1}

• B’s input: y = y1, ..., yn where yi ∈ {0, 1}

Protocol Invariant: For every wire in C(x, y) with value w ∈ {0, 1}, A and B have shares wA
and wB, respectively, s.t. Reconstruct(wA, wB) = w

9.8.4 Protocol Details

Protocol Π = (A,B): The GMW protocol consists of three phases:

1. Input Sharing: Each party secret-shares its input into two parts and sends one part to
the other party.

• A computes (xAi , xBi) ← Share(xi) for every i ∈ [n] and sends (xB1 , ...xBn) to B. B
acts analogously.

2. Circuit Evaluation: The parties evaluate the circuit in a gate-by-gate fashion in such
a manner that for every internal wire w in the circuit, each party holds a secret share of
the value of wire w.

• Run the CircuitEval sub-protocol. A obtains outAi and B obtains outBi for every
output wire i.

3. Output Phase: Finally, the parties exchange the secret shares of the output wires. Each
party then, on its own, combines the secret shares to compute the output of the circuit.

• For every output wire i, A sends outAi to B, and B sends out outBi to A. Each party
computes

outi = Reconstruct(outAi , outBi) (9.1)

The output is out = out1, ..., outn

66

9.8.5 CircuitEval
NOT Gate: Input u, output w

• A holds uA, B holds uB

• A computes wA = uA ⊕ 1

• B computes wB = uB

The shares that the two parties A and B now have, are shares of ū (wA⊕wB = uA⊕1⊕uB = ū)

AND Gate: Inputs u, v, output w

• A holds uA, vA, B holds uB

• A samples wA $←− {0, 1} and computes wB1 , ..., wB4 as follows:
to 0.8 | X[2 cm] | X[2 cm] | X[8 cm] |
uB vB wB

0 0 wB1 = wA ⊕ ((uA ⊕ 0).(vA ⊕ 0))

0 1 wB1 = wA ⊕ ((uA ⊕ 0).(vA ⊕ 1))

1 0 wB1 = wA ⊕ ((uA ⊕ 1).(vA ⊕ 0))

1 1 wB1 = wA ⊕ ((uA ⊕ 1).(vA ⊕ 1))

• A and B run OT = (S,R) where A acts as sender S with inputs (wB1 , ..., wB4) and B acts
as receiver R with input b = 1 + 2uB + vB

9.8.6 Security

For every wire in C (except the input and output wires), each party only holds a secret share
of the wire value. Security of NOT gate follows from construction. The security of AND gate
follows from the security of OT. Simulator for Π can be constructed using the Simulator for OT
to prove indistinguishability.

9.9 Yao’s Garbled Circuits
Definition 57 A Garbling Scheme consists of two procedures, Garble and Eval:

• Garble(C): Takes a circuit C as input and will output a collection of garbled gates Ĝ and
garbled input wires În where

Ĝ = {ĝ1, ... , ĝ|c|}

În = {în1, ... , înn}

• Eval(Ĝ, Înx): Takes as input a garbled circuit Ĝ and garbled input wires În corresponding
to an input x and outputs z = C(x)

67

Now we will outline how Garbling Schemes work.

• Each wire i in the circuit C is associated with two keys (ki0, ki1) of a secret-key encryption
scheme, one corresponding to the wire value being 0 and other for wire value being 1

• For an input x, the evaluator is given the input wire keys (k1
x1 , ... , k

n
xn

) corresponding
to x. Also for every gate g ∈ C, it is also given an encrypted truth table of g, which is
something we will show later.

• We want the evaluator to use the input wire keys and the encrypted truth tables to uncover
a single key kiv for every internal wire i corresponding to the value v of that wire. However,
ki1−v should remain hidden from the evaluator.

In order to implement this we will have to define a special encryption scheme.

Definition 58 Special Encryption Scheme : We need a secret-key encryption scheme (Gen,Enc,Dec)
with an extra property: there exists a negligible function ν(·) s.t. for every n and every message
m ∈ {0, 1}n,

Pr[k ← Gen(1n), k′ ← Gen(1n), Deck(Enck(m)) = ⊥] < 1− ν(n)

Essentially this is saying if a ciphertext is decrypted using a different or “wrong” key, then
answer is always ⊥
Construction : In order to create this special secret encryption simply modify the secret-key
encryption scheme discussion in the secret lecture, except instead of encryption m, we encrypt
0n||m. Upon decrypting we check if the first n bits of the message are all 0’s; if they aren’t we
output ⊥

9.9.1 Garbled Circuits Construction

We are now going to define Garble and Eval for our Garbled Circuit. Let (Gen, Enc, Dec) be a
special encryption scheme (as defined above). Assign an index to each wire in C s.t. the input
wires have indices 1, ..., n.

Garble(C):

• For every non-output wire i in C, sample ki0 ← Gen(1n), ki1 ← Gen(1n). For every output
wire i in C, set ki0 = 0, ki1 = 1.

• For every i ∈ [n], set îni = (ki0, ki1). Set În = (în1, ... , înn)

• For every gate g in C with input wire (i

First Input Second Input Output
ki0 kj0 z1 = Encki

0
(Enc

kj
0
(klg(0,0)))

ki0 kj1 z2 = Encki
0
(Enc

kj
1
(klg(0,1)))

ki1 kj0 z3 = Encki
1
(Enc

kj
0
(klg(1,0)))

ki1 kj1 z4 = Encki
1
(Enc

kj
1
(klg(1,1)))

Set ĝ = RandomShuffle(z1, z2, z3, z4). Output (Ĝ = (ĝ1, ... , ĝ|C|), În)

68

Why is the random shuffle necessary? If we do not randomly shuffle the outputs an
Adversary would know information about the combination of ki, kj used to achieve the output
just based on the index of the returned value.

Eval(Ĝ, Înx):

• Parse Ĝ = (ĝ1, ... , ĝ|C|). Înx = (k1, ... , kn)

• Parse ĝi = (ĝ1, ... , ĝ4)

• Decrypt each garbled gate ĝi one-by-one in canonical order:

– Let ki and kj be the input wire keys for gate g.
– Repeat the following for every p ∈ [4]:

αp = Decki(Deckj (ĝpi))

if ∃αp 6= ⊥, set kl = αp

• Let outi be the value obtained for each output wire i. Output out = (out1, ... , outn)

9.9.2 Secure Computation from Garbled Circuits

Let us discuss a plausible approach for securely computing C(x, y) using Garbled Circuits.
A generates a garbled circuit for C(·, ·) along with garbled wire keys for first and second

input to C. It then sends the garbled wire keys corresponding to its input x along with the
garbled circuit to B. Note, however, that in order to evaluate the garbled circuit on (x, y),B
also needs the garbled wire keys corresponding to its input y.

A possible solution is for A to send all the wire keys corresponding to the second input of
C to B. At first, this may seem to be a good idea. However this would mean B can not only
compute C(x, y) but also C(x, y′) for any y′ of its choice. This is clearly an insecure solution!

To solve this problem A will transmit the garbled wire keys corresponding to B’s input by
using oblivious transfer. Below, we describe the solution in detail.

Ingredients: Garbling Scheme (Garble, Eval), 1-out-of-2 OT scheme OT = (S, R) as defined
in previous lecture on secure computation.

Common Input: Circuit C for f(·, ·)

A’s input: x = x1, ... , xn

B’s input: y = y1, ... , yn

Protocol Pi = (A,B):

A→ B
A computes (Ĝ, În) Parse În = (în1, ... , în2n) where
îni = (ki0, ki1). Set Înx = (kx1 , ... , k

n
xn

). Send (Ĝ, Înx)
to B

A↔ B

For every i ∈ [n], A and B run OT = (S,R) where
A plays sender S with input (kn+i

0 , kn+i
1) and B plays

reciever R with in put yi. Let Îny = (kn+1
y1 , ... , k2n

yn
)

be the outputs of the n OT executions received by B.
B B outputs Eval(Ĝ, Înx, Îny)

69

In order to argue the security of the construction, we use two properties.

Property 1: For every wire i, B only learns one of the two wire keys:

• Input Wires: For input wires corresponding to A′s input, it follows from protocol descrip-
tion. For input wires corresponding to B’s input it follows from security of OT

• Internal Wires: Follows from the security of the encryption scheme

Property 2: B does not know whether the key corresponds to wire value being 0 or 1 (except
the keys corresponding to its own input wires).

From this we can notice that B only learns the output and nothing else. A does not learn
anything (in particular, B’s input remains hidden from A due to the security of OT). The full
proof of security can be found in [?].

70

Chapter 10

Non-Interactive Zero Knowledge

10.1 Introduction
So far we have discussed the case of interactive proofs. But what if Alice has the resource
to send only a single message to Bob? This proof will now become “non-interactive". But 1-
message is only possible for languages in BPP. This is because any simulator that can simulate
the “single" message can use this as a witness for x. But this is pretty useless, at the very least
we want to be able to prove statements for languages in NP.

Fortunately, our savior is a “random string in the sky". This means that both Alice and
Bob have access to a common random string that was honestly generated by someone they
both trust. This string is something beyond the influence of either participant. While this is
a departure from the model we have been considering, how can we hope to prove statements
non-interactively using the common random string?

Let us start by formally defining non-interactive proofs,

10.2 Non-Interactive Proofs
Definition 59 A non-interactive proof system for a language L with witness relation R is a
tuple of algorithms (K,P,V) such that:

1. Setup: σ ← K(1n) outputs a common random string.

2. Prove: π ← P(σ, x, w) takes as input a common random string σ and a statement x ∈ L
and a witness w and outputs a proof π.

3. Verify: V(σ, x, π) outputs 1 if it accepts the proof and 0 otherwise.

A non-interactive proof system must satisfy completeness and soundness properties given below.

Completeness: ∀x ∈ L,∀w ∈ R(x) :

Pr[σ ← K(1n); π ← P(σ, x, w) : V(σ, x, π) = 1] = 1

Non-Adaptive Soundness: There exists a negligible function ν(·) such that ∀x 6∈ L

Pr[σ ← K(1n); ∃ π s.t. V(σ, x, π) = 1] ≤ ν(n)

Adaptive Soundness: There exists a negligible function ν(·) such that

Pr[σ ← K(1n); ∃ (x, π) s.t. x 6∈ L ∧ V(σ, x, π) = 1] ≤ ν(n)

71

The reader should note, in non-adaptive soundness, the adversary chooses x before seeing
the common random string whereas in adaptive soundness, it can choose x depending upon the
common random string. Adaptive soundness is a stronger notion of soundness.

Similar to soundness, we will define two variants of Non-interactive Zero Knowledge (NIZK).
Before we proceed, we note that we can transform any NIZK proof system with non-adaptive
soundness into one that achieves adaptive soundness in a manner similar to the hardness am-
plification done earlier in the course. The details can be found in [?].

Since each statement can have multiple witnesses, we define the following set for each x ∈ L:

R(x) = {w | R(x,w) = 1}

where R is the relation for the language L.

Definition 60 (Non-Adaptive NIZK) A non-interactive proof system (K,P,V) for a lan-
guage L with witness relation R is non-adaptive if there exists a PPT simulator s.t. for every
x ∈ L,w ∈ R(x), the output distribution of the following two experiments are computationally
indistinguishable:

REAL(1n, x, w)

σ ← K(1n)
π ← P(σ, x, w)
Output (σ, π)

IDEAL(1n, x)

(σ, π)← (1n, x)

Output (σ, π)

Here the simulator generates both the common random string and the simulated proof given
the statement x as input. The simulated common random string can depend on x and thus can
be used only for a single proof.

We proceed to define the adaptive variant below.

Definition 61 (Adaptive NIZK) A non-interactive proof system (K,P,V) for a language L
with witness relation R is adaptive if there exists a PPT simulator = (0,1) s.t. for every
x ∈ L,w ∈ R(x), the output distribution of the following two experiments are computationally
indistinguishable:

REAL(1n, x, w)

σ ← K(1n)
π ← P(σ, x, w)
Output (σ, π)

IDEAL(1n, x)

(σ, τ)← 0(1n)
π ←1 (σ, τ, x)
Output (σ, π)

Here τ is the “trapdoor" for the simulated common random string σ that is used by 1 to
generate an accepting proof for x without knowing the witness. This definition also captures
the definition of reusable common random strings.

Recall, unlike the definition of (interactive) , we don’t define the property over “all non-
uniform PPT adversary V ∗". We leave it to the reader to see why it is the case.

We make a few remarks about the NIZK definition before we proceed further,

• In NIZK, the simulator is given the seemingly extra power to choose the common random
string along with a possible trapdoor that allows for simulation without a witness.

• In the interactive case, we gave the simulator the extra power to “reset" the verifier. Is
this extra power inherent?

72

• It turns out that a simulator must always have some extra power over the normal prover,
otherwise, the definition would be impossible to realize for languages outside BPP.

• We justify the extra power since we require indistinguishability of the joint-distribution
over the common random string and the proof.

Lemma 28 There exists an efficient transformation from any non-interactive proof system
K,P,V with non-adaptive soundness into a non-interactive proof system K′,P′,V′ with adaptive
soundness.

10.3 NIZKs for NP
I. Non-adaptive Zero Knowledge: We first construct NIZKs for NP with non-adaptive
property using the following two steps:

1. Construct a NIZK proof system for NP in the hidden-bit model. This step is uncon-
ditional.

2. Using trapdoor permutation, transform any NIZK proof system for language in the hidden-
bit model to a non-adaptive NIZK proof system in the common random string model.

In today’s class we shall define NIZKs in the hidden-bit model, and show a transformation from
NIZKs in hidden-bit model to NIZKs in the common-random string model. In the next class
we shall build NIZKs for NP in the hidden-bit model.

II. Adaptive Zero Knowledge: Next, we transform non-adaptive NIZKs for NP into adap-
tive NIZKs for NP. This step only requires one-way functions, which are implied by trapdoor
permutations. This will be a part of the homework.

Putting all the steps together, we obtain adaptive NIZKs for NP based on trapdoor per-
mutations.

10.4 The Hidden-Bit Model
In this section we shall describe the hidden-bit model and define NIZK in the hidden-bit model.
It is important to note that this model provides a step towards our ultimate goal of building
NIZKs for NP, and is not meant to be realistic.

In this model, the prover is given some sequence of bits that are hidden from the verifier. To
prove some statement x ∈ L, the prover may choose to reveal some of some of these bits to the
verifier. The remaining bits remain hidden from the verifier. Also, the prover cannot tamper
these bits before revealing them to the verifier.

Definition 62 A non-interactive proof system for a language L with witness relation R in the
hidden-bit model is a tuple of algorithms (KHB,PHB,VHB) such that:

1. Setup: r ← K(1n) outputs a common random string.

2. Prove: π ← PHB(r, x, w) generates the indices I ⊆ [|r|] of r to reveal along with a proof
π.

3. Verify: VHB(I, {ri}i∈I , x, π) outputs 1 if it accepts the proof and 0 otherwise.

We define below. A non-interactive proof system must satisfy completeness and soundness
properties defined earlier.

73

Definition 63 (NIZK in Hidden-Bit Model) A non-interactive proof system (KHB,PHB,VHB)
for a language L with witness relation R in the hidden-bit model is (non-adaptive) if there exists
a PPT simulator HB s.t. for every x ∈ L,w ∈ R(x), the output distribution of the following two
experiments are computationally indistinguishable:

REAL(1n, x, w)

r ← KHB(1n)
(I, π)← PHB(r, x, w)
Output (I, {ri}i∈I , π)

IDEAL(1n, x)

(I, {ri}i∈I , π)← HB(1n, x)

Output (I, {ri}i∈I , π)

10.5 From NIZK in HB model to NIZK in CRS model

We sketch our intuition for the construction. We need to transform a “public" random string
into a “hidden" random string. If the prover samples a trapdoor permutation (f, f−1) with
hardcore predicate h. Given a common random string σ = σ1, · · · , σn, the prover can compute
r = r1 · · · , rn where:

ri = h(f−1(σi)).

Since f is a permutation and h is a hard-core predicate, r is guaranteed to be random. Then
we can treat r as the hidden random string, revealing only parts of it to V. We now proceed to
the construction.

Construction. Let F = {f, f−1} be a family of 2n trapdoor permutations with hardcore
predicate h. We assume that it is easy to test membership of F . Let (KHB,PHB,VHB) be a
NIZK proof system for L in the hidden-bit model with soundness error 1

22n . The procedures for
K,P and V are given below.

K(1n)

1 : for every i ∈ [n]

2 : σi
$←−{0, 1}n

3 : Output σ = σ1σ2 · · ·σn

P(σ, x, w)

1 : (f, f−1) $←−F(1n)
2 : for every i ∈ [n]
3 : αi = f−1(σi)
4 : for every i ∈ [n]
5 : ri = h(αi)
6 : (I,Φ)← PHB(r, x, w)
7 : Output π = (σ, f, I, {αi}i∈I ,Φ)

74

V(σ, x, π)

1 : (σ, f, I, {αi}i∈I ,Φ)← π

2 : Check f ∈ F
3 : Check for every i ∈ I
4 : f(αi) = σi

5 : for every i ∈ I
6 : ri = h(αi)
7 : Output VHB(I, {αi}i∈I , x,Φ)

Theorem 29 Given that (KHB,PHB,VHB) is a NIZK proof system for L in the hidden-bit model
with soundness error 1

22n , then our construction (K,P,V) above is a NIZK proof system for L
in the CRS model.

Proof. We need to argue that each property of the NIZK proof system in the CRS model is
satisfied.
Completeness

We sample each σi uniformly at random, and since f−1 is a permutation, αi will be uniform
random. For completeness, by definition, we assume that the prover is honest and thus picks f
and f−1 correctly. Since h is a hardcore predicate, each ri is also random. Since the sampling and
computations are done independently, we get r to be uniformly distributed. Now this reduces
to the hidden-bit model. Completeness follows from the completeness of (KHB, PHB, VHB)
Soundness

When we fix f to be f0, r is uniformly distributed. Thus, from the (non-adaptive) soundness
of (KHB,PHB,VHB), we have

Pr[σ ← K(1n) : P∗ can cheat using f0] ≤ 1
22n

There are only 2n possible choices for f , and the verifier checks if f is indeed from F . By
the union bound, we have

Pr[σ ← K(1n) : P∗ can cheat] = Pr[σ ← K(1n) : P∗ can cheat for some f] ≤ 1
2n

Zero-Knowledge
Let HB be the simulator for (KHB,PHB,VHB). The simulator is,

(1n, x)

1 : (I, {ri}i∈I ,Φ) $←− HB(1n, x)

2 : (f, f−1) $←−F
3 : for every i ∈ I
4 : αi = h−1(ri)
5 : for every i ∈ I
6 : σi = f(αi)
7 : for every i 6∈ I

8 : σi
$←−{0, 1}n

9 : Output (σ, f, I, {αi}i∈I ,Φ)

75

Here h−1(ri) denotes sampling from the pre-image of ri, which can be done efficiently by
simply trying random αi’s until h(αi) = ri. This method has low expected number of attempts
as we are trying to match just one bit ri. To prove , we build a sequence of hybrids below.
We argue the computational indistinguishability of the hybrids at the end. Changes from the
previous hybrid are marked with a box.

H0(1n, x, w) = REAL(1n, x, w)

1 : σ
$←−K(1n) where σ = σ1, · · · , σn

2 : (f, f−1) $←−F
3 : for every i ∈ [n]
4 : αi = f−1(σi)
5 : for every i ∈ [n]
6 : ri = h(αi)
7 : (I,Φ)← PHB(r, x, w)
8 : Output (σ, f, I, {αi}i∈I ,Φ)

H1(1n, x, w)

1 : αi
$←−{0, 1}n for every i ∈ [n]

2 : (f, f−1) $←−F
3 : for every i ∈ [n]

4 : σi = f(αi)

5 : for every i ∈ [n]
6 : ri = h(αi)
7 : (I,Φ)← PHB(r, x, w)
8 : Output (σ, f, I, {αi}i∈I ,Φ)

H2(1n, x, w)

1 : ri
$←−{0, 1}n for every i ∈ [n]

2 : (f, f−1) $←−F
3 : for every i ∈ [n]

4 : αi = h−1(ri)

5 : for every i ∈ [n]
6 : σi = f(αi)
7 : (I,Φ)← PHB(r, x, w)
8 : Output (σ, f, I, {αi}i∈I ,Φ)

H3(1n, x, w)

1 : ri
$←−{0, 1}n for every i ∈ [n]

2 : (f, f−1) $←−F
3 : for every i ∈ [n]
4 : αi = h−1(ri)
5 : (I,Φ)← PHB(r, x, w)

6 : for every i ∈ I

7 : σi = f(αi)

8 : for every i 6∈ I

9 : σi
$←−{0, 1}n

10 : Output (σ, f, I, {αi}i∈I ,Φ)

H4(1n, x) = IDEAL(1n, x)

1 : (I, {ri}i∈I ,Φ) $←− HB(1n, x)

2 : (f, f−1) $←−F

3 : for every i ∈ I

4 : αi = h−1(ri)
5 : for every i ∈ I
6 : σi = f(αi)
7 : for every i 6∈ I

8 : σi
$←−{0, 1}n

9 : Output (σ, f, I, {αi}i∈I ,Φ)

76

H0 ≈ H1 : In H1, we sample αi at random and then compute σi. This is in contrast to
H0 where we sample σi before computing αi. Since f is a permutation, H1 induces the same
distribution as H0.

H1 ≈ H2 : In H2, we first sample ri before sampling αi from the pre-image of ri. This
distribution is identical to H1.

H2 ≈ H3 : In H3, we output a random σi for i 6∈ I. From the security of the hard-core
predicate h, it follows that

{f(h−1(ri))} ≈c Un

Indistinguishability of H2 and H3 follows using the above equation.
H3 ≈ H4 : In H4, we swap PHB with HB. Indistinguishability follows from the property

of (KHB,PHB,VHB).
Thus H0 ≈ H4. This gives us the proof.
Next we shall construct NIZKs for all languages in NP in the hidden-bit model.

10.6 Hamiltonian Graphs

A Hamiltonian graph is a graph that consists a Hamiltonian cycle. In other words, there exists
a cycle formed by edges in the graph that visits each vertex exactly once. More formally:

Definition 64 (Hamiltonian Graph) Let G = (V,E) be a graph with |V | = n. We say that
G is a Hamiltonian graph if it has a Hamiltonian cycle, i.e. there are v1, ..., vn ∈ V such that
for all i ∈ [n] :

(vi, v(i+1) mod n) ∈ E

Fact: Deciding whether a graph is Hamiltonian in NP-Complete. Let LH be the language of
Hamiltonian graphs G = (V,E) s.t. |V | = n

Any graph can be represented as an adjacency matrix. The number of rows and columns of
this matrix is the same as the number of vertices in the graph. A value of 1 at a given position
represents the presence of an edge between the vertices corresponding to the row and column.
More specifically:

Definition 65 (Adjacency Matrix) A graph G = (V,E) with |V | = n, can be represented as
an n× n adjacency matrix MG of boolean values such that:

M [i, j] =
{

1 if (i, j) ∈ E
0 otherwise

Definition 66 (Cycle Matrix) A cycle matrix is a boolean matrix that corresponds to a graph
that contains a Hamiltonian cycle and no other edges.

Definition 67 (Permutation Matrix) A permutation matrix is a boolean matrix such that
each row and each column has exactly one entry equal to 1.

Note: Every cycle matrix is a permutation matrix, but the converse is not true. For every n,
there are n! permutation matrices, but only (n− 1)! cycle matrices.

Note that a consequence of the above is that if we pick a permutation matrix at random, it
is also a cycle matrix with probability 1

n .

77

10.7 NIZKs for LH in Hidden-Bit Model
We want to come up with NIZKs for the Hamiltonian graph problem in the HB model. We are
going to do this in two steps:

Step I: NIZK (K1, P1, V1) for LH in hidden-bit model where K produces (hidden) strings r
with a specific distribution: each r represents an n× n cycle matrix.

This first step is a simplified case. In the HB model we had a truly random string. The
prover gets to see this random string, but the verifier only gets to see some part of this random
string that is decided by the prover. What we are doing in the first step is considering a
simplified model where we will allow the string to have a very particular distribution. It will
not be truly random, but biased. In particular, we will consider NIZKs for the Hamiltonian
graph problem where the algorithm will produce strings that will represent a n× n matrix.

Step II: Modify the above construction to obtain K2, P2, V2) where the (hidden) string r is
uniformly random

Once we have the construction from the previous step, we will show how to extend this
construction so that we can move to the real world where the string is supposed to be uniform.
At high level, we will use a very large random string and the come up with some deterministic
algorithm which will give us a way to convert such a long random string into a small random
string which will have the desired distribution with very high probability.

10.7.1 Step I

Construction of K1, P1, V1) for LH : We describe the algorithms below.

K1(1n) : Output r ← {0, 1}n2 s.t. it represents an n× n cycle matrix MC

In other words, K takes the security parameter and outputs a string r with a very particular
distribution such that r represents a cycle matrix. This represents the input given to the prover.

P1(r, x, w) : Execute the following steps:

• Parse x = G = (V,E) s.t. |V | = n, and w = H where H = (v1, ..., vn) is a Hamiltonian
cycle in G. To be more specific, instance X corresponds to a graph supposedly Hamilto-
nian, and w is some witness represented by a Hamiltonian cycle in the graph.

• Choose a permutation ϕ : V → {1, ..., n} that maps H to the cycle in MC ,
i.e., for every i ∈ [n]:

MC [ϕ(vi), ϕ(v(i+1) mod n)] = 1

• Define I = {ϕ(u), ϕ(v)|MG[u, v] = 0} to be the set of non-edges in G

• Output (I, ϕ)

To summarize, the prover first picked a permutation that maps the witness to the cycle in the
random string r. It wants to be given some evidence that it actually has a cycle. It is going
to show that all non-edges in ϕ(G) are mapped to a 0 value. The verifier can accomplish this
task. The idea is that if G does not actually have a cycle, then no matter what mapping we

78

come up with, at least one non-edge in G will get mapped to an edge in the cycle graph and
then the verifier will catch it. (MG is the adjacency matrix of G).

V1(I, rI , ϕ) : Execute the following steps:
• Parse rI = {MC [u, v]}(u,v)∈I

• Check that for every (u, v) ∈ I,MC [u, v] = 0

• Check that for every (u, v) ∈ I,MG(ϕ−1(u), ϕ−1(v)) = 0

• If both the checks succeed, then output 1 and 0 otherwise

Completeness: An honest prover P can always find a correct mapping ϕ that maps H to the
cycle in MC .

Soundness: IfG = (V,E) is not a Hamiltonian graph, then for any mapping ϕ→ {1, ..., n}, ϕ(G)
will not cover all the edges in MC . There must exist at least one non-zero entry in MC that is
revealed as a non-edge of G.

Zero Knowledge: Simulator S performs the following steps:
• Sample a random permutation ϕ : V → {1, ..., n}

• Compute I = {ϕ(u), ϕ(v)|MG[u, v] = 0}

• For every (a, b) ∈ I, set MC [a, b] = 0

• Output (I, {MC [a, b]}(a,b)∈I , ϕ)
It is easy to verify that the above output distribution is identical to the real experiment.
Note that here, the simulator can choose the set rI , so it controls the string r seen by the

verifier. Therefore, this simulator is non-adaptive. When we transform such a NIZK in HB
model to a NIZK in the CRS model, this non-adaptivity property carries over which makes the
CRS non-reusable.

10.7.2 Step II

We start by describing the strategy in this step:
• Define a deterministic procedure Q that takes as input a (polynomially long) random
string r and outputs a biased string s that corresponds to a cycle matrix with inverse
polynomial probability 1

l(n) . We want to come up with a way to amplify this probability
and make it closer to 1.

• If we feed Qn · l(n) random inputs, then with high probability, at least one of the outputs
will correspond to a cycle matrix

• In the NIZK construction, the (hidden) random string will be r = r1, . . . , rn·l(n)

• For every i, the prover will try to compute a proof using si = Q(ri). In other words, it
will take a chunk from the random string rI , apply the deterministic procedure Q on it
to obtain some string si, and now with this much probability si will be a cycle matrix

• At least one si will contain a cycle matrix, so we can use the NIZK proof system from
Step 1

We now explain the deterministic procedure Q.

79

Procedure Q(r):

• Parse r = r1, ..., rn4 s.t. ∀i, |ri| = d3 logne

• Compute s = s1, ..., sn4 , where:

si =
{

1 if ri = 111 · · · 1
0 otherwise

• Define an n2 × n2 boolean matrix M consisting of entries from s

• If M contains an n× n sub-matrix MC s.t. MC is a cycle matrix, then output (M,MC),
else output (M,⊥).

Analysis of Q: Let GOOD be the set of outputs of Q(·) that contain a cycle matrix and
BAD be the complementary set.

Lemma 30 For a random input r, PR[Q(r) ∈ GOOD] ≥ 1
3n3

Let M be an n2× n2 matrix computed by Q on a random input r. We will prove the above
lemma via a sequence of claims:

Claim 1: M contains exactly n 1’s with probability at least 1
3n

Claim 2: M contains a permutation sub-matrix with probability at least 1
3n2

Claim 3: M contains a cycle sub-matrix with probability at least 1
3n3

Proof of Claim 1: Let X be the random variable denoting the number of 1’s in M .

• X follows the binomial distribution with N = n4, p = 1
n3

• E(X) = N · p = n

• V ar(X) = Np(1− p) < n

• Recall Chebyshev’s Inequality: Pr[|X − E(X)| > k] ≤ V ar(X)
k2

Setting k = n, we have:

Pr[|X − n| > n] ≤ 1
n

• Observe:

2n∑
i=1

Pr[X = i] = 1− Pr[|X − n| > n] > 1− 1
n

• Pr[X = i] is maximum at i = n

• Observe:

Pr[X = n] ≥
∑2n
i=1 Pr[X = i]

2n

≥ 1
3n

80

Proof of Claim 2: We want to bound the probability that each of the n ’1’ entries in M is
in a different row and column.

• After k ’1’ entries have been added to M ,

Pr[new ’1’ entry is in different row and column] =
(
1− k

n2

)2

• Multiplying all:

Pr[no collision] ≥
(
1− 1

n2

)2
· · ·

(
1− n−1

n2

)2

≥ 1
n

• Combining the above with Claim 1:

Pr[M contains a permutation n× n submatrix] ≥ 1
3n2

Proof of Claim 3 We want to bound the probability that M contains an n × n cycle sub-
matrix

• Observe:

Pr[n× n permutation matrix is a cycle matrix] = 1
n

• Combining the above with Claim 2,

Pr[M contains a cycle n× n submatrix ≥ 1
3n3

Construction of (K2, P2, V2) for LH : We now describe the algorithms

K2(1n) : Output r ← {0, 1}L where L = d3 logne · n8

P2(r, x, w) : Parse r = r1, ..., rn4 s.t. for every i ∈ [n4], |ri| = d3 logne · n4.
For every i ∈ [n4]:

• If Q(ri) = (M i,⊥),set Ii = [|ri|](i.e., reveal the entire ri), and πi = ∅

• Else, let (M i,M i
C) ← Q(ri). Compute(I ′i, ϕi) ← P1(M i

C , x, w). Set Ii = I ′i ∪ Ji where Ji
is the set of indices s.t. ri restricted to Ji yields the residual M i after removing M i

C , and
πi = ϕi

Output (I = {Ii}, π = {πi})

V2(I, rI , π) : Parse I = I1, ..., In4 , and π = π1, ..., πn4 . For every i ∈ [n4]:

• If Ii is the complete set, then check that Q(si) = (·,⊥)

• Otherwise, parse Ii = I ′i ∪ Ji. Parse si = s1
i , s

2
i and check that s2

i is the all 0 string. Also,
check that V1(I ′i, s1

i , πi) = 1.

If all the checks succeed, then output 1 and 0 otherwise.

81

Completeness: It follows from completeness of the construction in Step I.

Soundness: For random r = r1, ..., rn4 , Q(ri) ∈ GOOD for at least one ri with high probabil-
ity. Soundness then follows from the soundness of the construction in Step I.

Zero-Knowledge: For i s.t. Q(Ri) ∈ GOOD, V does not learn any information from the
zero-knowledge property of the construction in Step 1. For i s.t. Q(ri) ∈ BAD, V does not see
anything besides ri.

82

Chapter 11

CCA Security

11.1 Definition
Motivation: IND-CPA is not secure enough if an adversary is able to find an oracle that
decrypts ciphertexts, which could be real-world possible attack. Hence we need to augment
IND-CPA security to allow the adversary to make decryption queries of its choices. We then
get two kinds of CCA security definitions.

Definition 68 (IND-CCA-1 Security) A public key encryption scheme (, ,) is IND-CCA-1 se-
cure if for all n.u. PPT adversaries A, there exists a negligible function µ(n) s.t. for all
auxiliary inputs z ∈ {0, 1}∗:

|Pr[ExptCCA1
A (1, z) = 1]− Pr[ExptCCA1

A (0, z) = 1]| ≤ µ(n)

where ExptCCA1
A (b, z) is defined as:

ExptCCA1
A (0, z)

• st = z

• (pk, sk)← (1n)

• Decryption query phase (repeated polynomial times)

– c← A(pk, st)
– m← (sk, c)
– st = (st,m)

• (m0,m1)← A(pk, st)

• c∗ ← (pk,mb)

• Output b′ ← A(pk, c∗, st)

Definition 69 (IND-CCA-2 Security) A public key encryption scheme (, ,) is IND-CCA-2 se-
cure if for all n.u. PPT adversaries A, there exists a negligible function ν(n) s.t. for all
auxiliary inputs z ∈ {0, 1}∗:

|Pr[ExptCCA2
A (1, z) = 1]− Pr[ExptCCA2

A (0, z) = 1]| ≤ ν(n)

where ExptCCA2
A (b, z) is defined as:

ExptCCA2
A (0, z)

83

• st = z

• (pk, sk)← (1n)

• Decryption query phase 1 (repeated polynomial times)

– c← A(pk, st)
– m← (sk, c)
– st = (st,m)

• (m0,m1)← A(pk, st)

• c∗ ← (pk,mb)

• Decryption query phase 2 (repeated polynomial times)

– c← A(pk, c∗, st)
– If c = c∗, output reject
– m← (sk, c)
– st = (st,m)

• Output b′ ← A(pk, c∗, st)

Note: CCA-2 is stronger than CCA-1 as it can make queries not only before challenge (as
CCA-1) and also after challenge. And to prevent trivial attacks, decryption queries c should be
different from the challenge ciphertext c∗.

11.2 IND-CCA-1 Construction
Main Challenge When building IND-CCA-1 secure PKE starting from IND-CPA secure
PKE, we should not use the secret key in the secure experiment. However, we need the secret
key to answer the decryption queries of the adversary. Thus the main idea is to use two copies
of the encryption scheme.

Main Idea We could encrypt a message twice, using each of the two copies of the encryption
scheme. To answer a decryption query (c1, c2), we only need to decrypt one of the two ciphertext.
That means, we only need to know one of the secret key to answer the decryption queries. We
can then use the IND-CPA security of another encryption scheme whose secret key is not used
to answer decryption queries. Then switch the secret key and use IND-CPA security of the
other one.

But there’s a problem. What if the adversary sends (c1, c2) such that c1 and c2 are ciphertext
of different messages? To solve this, we modify the scheme such that the encryption of messages
m contains a NIZK proof that proves that c1 and c2 encrypts same message m.

Theorem 31 (Naor-Yung) Assuming that NIZKs in the CRS model and IND-CPA secure
public-key encryption, the encryption scheme (′,′ ,′) below is IND-CCA-1 secure public-key en-
cryption.

Let (, ,) be an IND-CPA encryption scheme.
Let (K,P,V) be an adaptive NIZK with Simulator S = (S0,S1).
′(1n):

84

• Compute (pk1, sk1) and (pk2, sk2) using (1n)

• Compute σ ← K(1n)

• Output pk′ = (pk1, pk2, σ), sk′ = sk1

′(pk′,m):

• Compute ci ← (pki,m; ri) for i ∈ [2]

• Compute π ← P(σ, x, w) where x = (pk1, pk2, c1, c2), w = (m, r1, r2) and R(x,w) = 1 iff
c1 and c2 encrypts the same message m.

• Output C =)c1, c2, π

′(sk′, c′): If V(σ, π) = 0, output ⊥. Else, output (sk1, c1).

Proof. We use Hybrid Lemma to prove the theorem. We construct hybrids as follows:

85

Hybrids H0: = ExptCCA1
A (0, z)

• (pki, ski)← (1n) for i ∈ [2]

• σ ← K(1n)

• pk′ = (pk1, pk2, σ), sk′ = sk1

• On receiving a decryption query c =
(c1, c2, π) from A(z, pk′), if V(σ, x =
(c1, c2), π) = 1, return (sk′ = sk1, c1)

• (m0,m1)← A(z, pk′)

• c∗1 ← (pk1,m0; r∗1)

• c∗2 ← (pk2,m0; r∗2)

• π∗ ← P(σ, x∗ = (c∗1, c∗2), w∗ = (m0, r1, r2))

• Output A(z, pk′, C = (c∗1, c∗2, π∗))

Hybrids H2:

• (pki, ski)← (1n) for i ∈ [2]

• (σ, τ)← S0(1n)

• pk′ = (pk1, pk2, σ), sk′ = sk1

• On receiving a decryption query c =
(c1, c2, π) from A(z, pk′), if V(σ, x =
(c1, c2), π) = 1, return (sk′ = sk1, c1)

• (m0,m1)← A(z, pk′)

• c∗1 ← (pk1,m0; r∗1)

• c∗2 ← (pk2,m1; r∗2)

• π∗ ← S1(σ, τ, x∗ = (c∗1, c∗2))

• Output A(z, pk′, C = (c∗1, c∗2, π∗))

Hybrids H1:

• (pki, ski)← (1n) for i ∈ [2]

• (σ, τ)← S0(1n)

• pk′ = (pk1, pk2, σ), sk′ = sk1

• On receiving a decryption query c =
(c1, c2, π) from A(z, pk′), if V(σ, x =
(c1, c2), π) = 1, return (sk′ = sk1, c1)

• (m0,m1)← A(z, pk′)

• c∗1 ← (pk1,m0; r∗1)

• c∗2 ← (pk2,m0; r∗2)

• π∗ ← S1(σ, τ, x∗ = (c∗1, c∗2))

• Output A(z, pk′, C = (c∗1, c∗2, π∗))

Hybrids H3:

• (pki, ski)← (1n) for i ∈ [2]

• (σ, τ)← S0(1n)

• pk′ = (pk1, pk2, σ), sk′ = sk2

• On receiving a decryption query c =
(c1, c2, π) from A(z, pk′), if V(σ, x =
(c1, c2), π) = 1, return (sk′ = sk2, c2)

• (m0,m1)← A(z, pk′)

• c∗1 ← (pk1,m0; r∗1)

• c∗2 ← (pk2,m1; r∗2)

• π∗ ← S1(σ, τ, x∗ = (c∗1, c∗2))

• Output A(z, pk′, C = (c∗1, c∗2, π∗))

86

Hybrids H4:

• (pki, ski)← (1n) for i ∈ [2]

• (σ, τ)← S0(1n)

• pk′ = (pk1, pk2, σ), sk′ = sk2

• On receiving a decryption query c =
(c1, c2, π) from A(z, pk′), if V(σ, x =
(c1, c2), π) = 1, return (sk′ = sk2, c2)

• (m0,m1)← A(z, pk′)

• c∗1 ← (pk1,m1; r∗1)

• c∗2 ← (pk2,m1; r∗2)

• π∗ ← S1(σ, τ, x∗ = (c∗1, c∗2))

• Output A(z, pk′, C = (c∗1, c∗2, π∗))

Hybrids H5:

• (pki, ski)← (1n) for i ∈ [2]

• (σ, τ)← S0(1n)

• pk′ = (pk1, pk2, σ), sk′ = sk1

• On receiving a decryption query c =
(c1, c2, π) from A(z, pk′), if V(σ, x =
(c1, c2), π) = 1, return (sk′ = sk1, c1)

• (m0,m1)← A(z, pk′)

• c∗1 ← (pk1,m1; r∗1)

• c∗2 ← (pk2,m1; r∗2)

• π∗ ← S1(σ, τ, x∗ = (c∗1, c∗2))

• Output A(z, pk′, C = (c∗1, c∗2, π∗))

Hybrids H6: = ExptCCA1
A (0, z)

• (pki, ski)← (1n) for i ∈ [2]

• σ ← K(1n)

• pk′ = (pk1, pk2, σ), sk′ = sk1

• On receiving a decryption query c =
(c1, c2, π) from A(z, pk′), if V(σ, x =
(c1, c2), π) = 1, return (sk′ = sk1, c1)

• (m0,m1)← A(z, pk′)

• c∗1 ← (pk1,m1; r∗1)

• c∗2 ← (pk2,m1; r∗2)

• π∗ ← P(σ, x∗ = (c∗1, c∗2), w∗ = (m1, r1, r2))

• Output A(z, pk′, C = (c∗1, c∗2, π∗))

In short, the changes in hybrids are:

- H0 : ExptCCA1
A (1, z).

- H1: Simulate the CRS in public-key and simulate the proof in challenge ciphertext.

- H2: Modify c∗2 in challenge ciphertext to be an encryption of m1.

- H3: Change the decryption key to sk2.

- H4: Modify c∗2 in challenge ciphertext to be an encryption of m1.

- H5: Change the decryption key back to sk1.

87

- H6 : ExptCCA1
A (0, z):

Now we argue the indistinguishability of these hybrids.

H0 ≈ H1 : This follows from the zero knowledge property of NIZK. Suppose that A′ can
distinguish H0 and H1 with at least a noticeable probability 1

p(n) where p(n) is a polynomial
function. Then we can build a distinguisher D against the zero-knowledge property of NIZK:
on input (σ, π), D runs the experiment with (σ) and π∗ replaced by input. D runs as follows:
D(σ, π)

- (pki, ski)← (1n) for i ∈ [2]

- pk′ = (pk1, pk2, σ), sk′ = sk1

- Receive decryption queries from A: c = (c1, c2, π) from A(z, pk′), if V(σ, x = (c1, c2), π) =
1, return (sk′ = sk1, c1)

- (m0,m1)← A(z, pk′)

- c∗1 ← (pk1,m0; r∗1)

- c∗2 ← (pk2,m0; r∗2)

- Pass the output A(z, pk′, C = (c∗1, c∗2, π)) to A′. If A′ says the output is sampled from H0,
output "real proof". Else if A′ says the output is from H1, output "simulated proof".

Notice that Pr[D outputs real proof] = Pr[A′ output H0] and that Pr[D outputs simulated proof] =
Pr[A′ output H1]. It follows that D can distinguishes the real and simulated proof with notice-
able probability 1

p(n) . This contradicts the zero-knowledge property of NIZK.
Actually, notice that even though x /∈ L, simulator (S0,S1) can still come up with a simulated

proof. Otherwise, simulator can actually decide L in polynomial time!

H1 ≈ H2 : This follows from the IND-CPA security of (, ,) with sk2. Suppose that A′ can
distinguish H1 and H2 with at least a noticeable probability 1

p(n) where p(n) is a polynomial
function. Then we can build an adversary B against the IND-CPA security. B runs as follows:

- (pk1, sk1)← (1n).

- Let pk2 be the public key B got from challenger.

- (σ, τ)← S0(1n)

- pk′ = (pk1, pk2, σ), sk′ = sk1

- Receive decryption queries from A: c = (c1, c2, π) from A(z, pk′), if V(σ, x = (c1, c2), π) =
1, return (sk′ = sk1, c1)

- Run A to get message query (m0,m1) and pass (m0,m1) to challenger.

- c∗1 ← (pk1,m0; r∗1)

- Let c∗2 be the cipher text B got from challenger.

- Pass the output A(z, pk′, C = (c∗1, c∗2, π)) to A′. If A′ says the output is sampled from H1,
output b = 0. Else if A′ says the output is from H2, output b = 1.

88

When challenger choose to encrypt m0, the output passed to A′ is identical to that in H1; if
it is m1 that is encrypted, the output is identical to H2. Note that B can handle the decryption
queries from A because B generates (pk1, sk1) itself. Also, it doesn’t matter that B has no
access to the randomness used to encrypt m0, as the simulator S1 doesn’t need r2 to simulate
the proof (unlike the real prover). Thus

Pr[B distinguishes encryption of m0 and m1] = Pr[A distinguishes H1 and H2] ≥ 1
p(n)

This contradicts the IND-CPA security of the PKE.

H2 ≈ H3 : This follows from the soundness of NIZK. Notice that the adversary can only makes
successful decryption queries (c1, c2) if c1 and c2 encrypts the same message. Suppose A′ can
distinguishes H2 and H3 with noticeable probability. Then Pr[A distinguishes H2 and H3] =
Pr[E] where E denotes the event that c1 and c2 encrypts different messages but V (σ, (c1, c2), π) =
1. Let L = {(c1, c2)|c1 and c2 encrypts same message}. According to the soundness property of
NIZK, there exists ν(n) such that

Pr[σ ← K(1n), ∃(x, π)s.t.x /∈ L ∧ V (σ, x, π) = 1] ≤ ν(n)

Now we argue that

Pr[(σ, τ)← S0(1n), ∃(x, π)s.t.x /∈ L ∧ V (σ, x, π) = 1] ≤ ν(n)

If not, suppose the probability above is at least 1
p(n) where p(·) is a polynomial function. We

can then build distinguisher B that can tell the random string and the simulated string apart.
On input σ, B runs as follows:

- (pki, ski)← (1n) for i ∈ [2].

- pk′ = (pk1, pk2, σ), sk′ = sk1

- On each decryption query c = (c1, c2, π) from A(z, pk′), if (sk′ = sk1, c1) 6= (sk′ = sk2, c2)
but V(σ, x = (c1, c2), π) = 1, return 1. Otherwise, repeat dealing with next query.

It’s obvious that if σ is real random string, then the probability B outputs 1 is negligible. If σ
is generated by simulator, then the probability B outputs 1 is at least 1− (1− 1

p(n))N where N
is the number of queries made by A. Hence B could distinguish the real random string with the
one simulated by the simulator, which is a contradiction that NIZK is zero-knowledge. Hence
Pr[E] is negligible, which implies that H2 ≈ H3.

H3 ≈ H4 : follows in the same manner as H1 ≈ H2.

H4 ≈ H5 : follows in the same manner as H2 ≈ H3.

H3 ≈ H4 : follows in the same manner as H0 ≈ H1. Notice that now c∗1 and c∗2 are encrypting
same message, hence P can come up with a valid proof.

Above all, H0 ≈ H6, which implies the IND-CCA-1 security of the scheme ′,′ ,′.

89

11.3 IND-CCA-2 Security

We begin by defining the challenge experiment ExptCCA2
A (b, z) for an adversary in the CCA-2

Security model.

ExptCCA2
A (b, z) :

• st = z

• (pk, sk)← Gen(1n)
• Decryption query phase 1 (repeated poly times):

· c← A(pk, st)
· m← Dec(sk, c)
· st = (st, m)

• (m0,m1)← A(pk, st)
• c∗ ← Enc(pk,mb)
• Decryption query phase 2 (repeated poly times):

· c← A(pk, c∗ st)
· If c = c∗, output reject.
· m← Dec(sk, c)
· st = (st, m)

• Output b′ ← A(pk, c∗, st)

Definition 70 IND-CCA-2 Security:
A public-key encryption scheme (Gen,Enc,Dec) is IND-CCA-1 secure if for all n.u. PPT ad-
versaries A, there exists a negligible function µ(.), s.t. for all auxiliary inputs z ∈ {0, 1}∗:

|Pr[ExptCCA2
A (1, z) = 1]− Pr[ExptCCA2

A (0, z) = 1]| ≤ µ(n)

A CCA-1 secure encryption scheme does not necessarily guarantee security in the CCA-2 model.
This is mainly because in CCA-2, the challenge ciphertext is known to the adversary before
the second decryption query phase. Thus, the adversary may be able to “maul" the challenge
ciphertext into another ciphertext and then request decryption in the second phase. This is
called malleability attack.
Such attacks can be prevented, if we make the encryption non-malleable, i.e., ensure that
the adversary’s decryption query is “independent" of (instead of just being different from) the
challenge ciphertext.

11.4 CCA-2 Secure Public-Key Encryption

The first construction of CCA-2 secure encryption scheme was given by Dolev-Dwork-Naor.
The following cryptographic primitives are required for this construction:

• An IND-CPA secure encryption scheme (Gen,Enc,Dec)
• An adaptive NIZK proof (K,P,V)

90

• A strongly unforgeable one-time signature (OTS) scheme (Setup, Sign,Verify). Recall, that
for a strongly unforgeable signature scheme we require, that it should be computationally
hard for an adversary to come up with a new signature on a message, even if a signature
corresponding to that message is already known to him. We assume, without loss of
generality that, verification keys in OTS scheme are of length n.

Remark. Note that apart from the primitives used in the construction a CCA-1 secure en-
cryption scheme, we also require a signature scheme. This is mainly required to cater to the
additional requirement of non-malleability of the encryption scheme in the CCA-2 model.

11.4.1 Construction

Assuming we have an IND-CPA secure encryption scheme (Gen,Enc,Dec), an adaptive NIZK
proof (K,P,V) and a strongly unforgeable OTS scheme (Setup,Sign,Verify), we construct an
encryption scheme (Gen′,Enc′,Dec′) as follows:

Gen′(1n) : Execute the following steps:

• Compute CRS for NIZK:
σ ← K(1n)

• Compute 2n key pairs of IND-CPA encryption scheme:

(pkji , sk
j
i)← Gen(1n)

where j ∈ {0, 1}, i ∈ [n].

• Output pk′ = (
[
pk0

1 pk0
2 . . . pk0

n

pk1
1 pk1

2 . . . pk1
n

]
, σ), sk′ =

[
sk0

1
sk1

1

]

Enc′(pk′,m) : Execute the following steps:

• Compute key pair for OTS scheme:

(SK, V K)← Setup(1n)

• Let V K = V K1,V Kn. For every i ∈ [n], encrypt m using pkV Ki
i and randomness ri:

ci ← Enc(pkV Ki
i ,m; ri)

• Compute proof that each ci encrypts the same message:

π ← P(σ, x, w)

where x = ({pkV Ki
i }, {ci}), w = (m, {ri}) and R(x,w) = 1 iff every ci encrypts the same

message m.

• Sign everything:
Φ← Sign(SK,M)

where M = ({ci}, π)

• Output c′ = (V K, {ci}, π,Φ)

91

Dec′(sk′, c′) : Execute the following steps:

• Parse c′ = (V K, {ci}, π,Φ)

• Let M = ({ci}, π)

• Verify the signature: Output ⊥ if

Verify(V K,M,Φ) = 0

• Verify the NIZK proof: Output ⊥ if

V(σ, x, π) = 0

where x = ({pkV Ki
i }, {ci})

• Else, decrypt the first ciphertext component:

m′ ← Dec(skV K1
1 , c1)

• Output m′

Remark. Note that key pair for the signature scheme is not generated in Gen′(.), because we
want to construct a public key encryption scheme. If the key pair for signature scheme, were to
be generated in Gen′(.), the signing key SK, would have to be kept hidden. As a result (because
of the structure of ciphertext in this construction), given only the public key, not everybody
would be able to encrypt messages, which would make it a secret key encryption scheme.

11.4.2 Security

Theorem 32 The encryption scheme presented above, is CCA-2 secure if (Gen,Enc,Dec) is an
IND-CPA secure encryption scheme, (K,P,V) is an adaptively-secure NIZK proof system, and
(Setup,Sign,Verify) is a strongly- unforgeable OTS scheme.

Proof. We begin by outlining the intuition to argue security of the above construction. Con-
sider the decryption queries in the second phase, i.e., after the adversary receives the challenge
ciphertext C∗. Let C 6= C∗ be a decryption query. Then the following two cases are possible:

• Case 1: V K = V K∗

The verification key V K in C and the verification key V K∗ in C∗ are same.
⇒ ({c∗i }, π∗,Φ∗) 6= ({ci}, π,Φ)
If this is the case, then we have been able to generate different signatures corresponding
to the same verification key and thus, can break the strong unforgeability of the OTS
scheme.

• Case 2: V K 6= V K∗

In this case, V K and V K∗ must differ in atleast one position ` ∈ [n]:

– Answer decryption query using the secret key skV Ki
`

– Knowledge of secret keys skV K
∗
i

i , for i ∈ [n] is not required.
– Reduce to IND-CPA security of underlying encryption scheme (Gen,Enc,Dec).

92

We now construct the following hybrids, to prove security of the above construction in CCA-2
attack model.

H0 := ExptCCA2
A (0, z) (Honest Encryption of m0)

• σ ← K(1n)

• (pkji , sk
j
i)← Gen(1n) for j ∈ {0, 1}, i ∈ [n].

• pk′ = ({pk0
i , pk

1
i }, σ), sk′ = (sk0

1, sk
1
1).

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, z),
if Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,
return Dec(skV K1

1 , c1)

• (m0,m1)← A(pk, z)

• (SK∗, V K∗)← Setup(1n), V K∗ = V K∗1 , ..., V K
∗
n

• c∗i ← Enc(pkV K
∗
i

i ,m0; r∗i)

• π∗ ← P(σ, x∗ = ({pkV K
∗
i

i }, {c∗i }), w∗ = (m0, {r∗i }))

• Φ∗ ← Sign(SK∗,M∗ = ({ci}, π))

• c∗ = (V K∗, {c∗i }, π∗,Φ∗)

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, c∗, z),
if c 6= c∗ and Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,
return Dec(skV K1

1 , c1)

• Output A(pk′, c∗, z)

H1 : Compute CRS σ in public key and proof π in challenge ciphertext using NIZK simulator

• (σ, τ)← S0(1n)

• (pkji , sk
j
i)← Gen(1n) for j ∈ {0, 1}, i ∈ [n].

• pk′ = ({pk0
i , pk

1
i }, σ), sk′ = (sk0

1, sk
1
1).

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, z),
if Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,
return Dec(skV K1

1 , c1)

• (m0,m1)← A(pk, z)

• (SK∗, V K∗)← Setup(1n), V K∗ = V K∗1 , ..., V K
∗
n

• c∗i ← Enc(pkV K
∗
i

i ,m0; r∗i)

• π∗ ← S1(σ, τ, x∗ = ({pkV K
∗
i

i }, {c∗i }), w∗ = (m0, {r∗i }))

• Φ∗ ← Sign(SK∗,M∗ = ({ci}, π))

• c∗ = (V K∗, {c∗i }, π∗,Φ∗)

93

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, c∗, z),
if c 6= c∗ and Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,
return Dec(skV K1

1 , c1)

• Output A(pk′, c∗, z)

H2 : Choose V K∗ in the beginning during Gen′

• (σ, τ)← S0(1n)

• (SK∗, V K∗)← Setup(1n), V K∗ = V K∗1 , ..., V K
∗
n

• (pkji , sk
j
i)← Gen(1n) for j ∈ {0, 1}, i ∈ [n].

• pk′ = ({pk0
i , pk

1
i }, σ), sk′ = (sk0

1, sk
1
1).

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, z),
if Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,
return Dec(skV K1

1 , c1)

• (m0,m1)← A(pk, z)

• c∗i ← Enc(pkV K
∗
i

i ,m0; r∗i)

• π∗ ← S1(σ, τ, x∗ = ({pkV K
∗
i

i }, {c∗i }), w∗ = (m0, {r∗i }))

• Φ∗ ← Sign(SK∗,M∗ = ({ci}, π))

• c∗ = (V K∗, {c∗i }, π∗,Φ∗)

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, c∗, z),
if c 6= c∗ and Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,
return Dec(skV K1

1 , c1)

• Output A(pk′, c∗, z)

H3 :

• (σ, τ)← S0(1n)

• (SK∗, V K∗)← Setup(1n), V K∗ = V K∗1 , ..., V K
∗
n

• (pkji , sk
j
i)← Gen(1n) for j ∈ {0, 1}, i ∈ [n].

• pk′ = ({pk0
i , pk

1
i }, σ)

•

On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, z), if
Verify(V K,M = ({ci}, π),Φ) = 1:

– If V K = V K∗, then abort.

– Else, let ` ∈ [n] be such that V K∗ and V K in c differ at position `. Set
sk′ = sk

V K∗i
i , i ∈ [n], where V K∗i = 1− V K∗i .

If V(σ, x = ({pkV Ki
i }, {ci}), π) = 1, return Dec(skV K

∗
`

` , c`)

• (m0,m1)← A(pk, z)

94

• c∗i ← Enc(pkV K
∗
i

i ,m0; r∗i)

• π∗ ← S1(σ, τ, x∗ = ({pkV K
∗
i

i }, {c∗i }), w∗ = (m0, {r∗i }))

• Φ∗ ← Sign(SK∗,M∗ = ({ci}, π))

• c∗ = (V K∗, {c∗i }, π∗,Φ∗)

•

On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, c∗z), if
Verify(V K,M = ({ci}, π),Φ) = 1 and c 6= c∗:

– If V K = V K∗, then abort.

– Else, let ` ∈ [n] be such that V K∗ and V K in c differ at position `. Set
sk′ = sk

V K∗i
i , i ∈ [n], where V K∗i = 1− V K∗i .

If V(σ, x = ({pkV Ki
i }, {ci}), π) = 1, return Dec(skV K

∗
`

` , c`)

• Output A(pk′, c∗, z)

H4 : Change every c∗i in C∗ to be encryption of m1

• (σ, τ)← S0(1n)

• (SK∗, V K∗)← Setup(1n), V K∗ = V K∗1 , ..., V K
∗
n

• (pkji , sk
j
i)← Gen(1n) for j ∈ {0, 1}, i ∈ [n].

• pk′ = ({pk0
i , pk

1
i }, σ)

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, z), if Verify(V K,M =
({ci}, π),Φ) = 1:

– If V K = V K∗, then abort.

– Else, let ` ∈ [n] be such that V K∗ and V K in c differ at position `. Set sk′ = sk
V K∗i
i ,

i ∈ [n], where V K∗i = 1− V K∗i .
If V(σ, x = ({pkV Ki

i }, {ci}), π) = 1, return Dec(skV K
∗
`

` , c`)

• (m0,m1)← A(pk, z)

• c∗i ← Enc(pkV K
∗
i

i ,m1; r∗i)

• π∗ ← S1(σ, τ, x∗ = ({pkV K
∗
i

i }, {c∗i }), w∗ = (m1, {r∗i }))

• Φ∗ ← Sign(SK∗,M∗ = ({ci}, π))

• c∗ = (V K∗, {c∗i }, π∗,Φ∗)

• On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, c∗z), if Verify(V K,M =
({ci}, π),Φ) = 1 and c 6= c∗:

– If V K = V K∗, then abort.

– Else, let ` ∈ [n] be such that V K∗ and V K in c differ at position `. Set sk′ = sk
V K∗i
i ,

i ∈ [n], where V K∗i = 1− V K∗i .
If V(σ, x = ({pkV Ki

i }, {ci}), π) = 1, return Dec(skV K
∗
`

` , c`)

95

• Output A(pk′, c∗, z)

H5 := ExptCCA2
A (1, z) (Honest Encryption of m1)

• σ ← K(1n)

• (pkji , sk
j
i)← Gen(1n) for j ∈ {0, 1}, i ∈ [n].

• pk′ = ({pk0
i , pk

1
i }, σ), sk′ = (sk0

1, sk
1
1).

•
On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, z),
if Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,
return Dec(skV K1

1 , c1)

• (m0,m1)← A(pk, z)

• (SK∗, V K∗)← Setup(1n), V K∗ = V K∗1 , ..., V K
∗
n

• c∗i ← Enc(pkV K
∗
i

i ,m1; r∗i)

• π∗ ← P(σ, x∗ = ({pkV K
∗
i

i }, {c∗i }), w∗ = (m1, {r∗i }))

• Φ∗ ← Sign(SK∗,M∗ = ({ci}, π))

• c∗ = (V K∗, {c∗i }, π∗,Φ∗)

•
On receiving a decryption query c = (V K, {ci}, π,Φ) from A(pk′, c∗, z),
if c 6= c∗ and Verify(V K,M = ({ci}, π),Φ) = 1 and V(σ, x = ({pkV Ki

i }, {ci}), π) = 1,
return Dec(skV K1

1 , c1)

• Output A(pk′, c∗, z)

We now argue indistinguishability of the above hybrids:

• H0 ≈ H1 : Since the only difference between the two hybrids is that in H1, CRS σ and
proof π are computed using NIZK simulator. The indistinguishability of these hybrids
follows from the Zero Knowledge property of NIZK.

• H1 ≈ H2 : From an adversary’s point of view, generating V K∗ early or later does not
change the distribution.

• H2 ≈ H3 : We argue indistinguishability of these hybrids as follows:

– Case 1: The protocol is aborted.
We claim that the probability of aborting is negligible. By the definition of CCA-2,
c 6= c∗. So if V K = V K∗, then it must be that ({ci}, π,Φ) 6= ({c∗i }, π∗,Φ∗). Now,
if Verify(V K, ({ci}, π),Φ) = 1, then we can break strong unforgeability of the OTS
scheme.

– Case 2: The protocol is not aborted.
Let ` be the position s.t. V K` 6= V K∗` . Note that the only difference in H2 and
H3 in this case might be the answers to the decryption queries of adversary. In
particular, in H2, we decrypt c1 in c using skV K1

1 . In contrast, in H3, we decrypt c`
in c using skV K

∗
`

` . Now, from soundness of NIZK, it follows that except with negligible
probability, all the c′is in c encrypt the same message. Therefore decrypting c` instead
of c1 does not change the answer.

96

• H3 ≈ H4 : Indistinguishability of these hybrids follows from the IND-CPA security if
underlying PKE (Gen,Enc,Dec)

• H4 ≈ H5 : Combining the above steps, we get H0 ≈ H3. Indistinguishability of these
hybrids (H4 and H5) can be argued in a similar manner (in the reverse order).

Combining the above we get H0 ≈ H5.
Hence, Encryption of m0 is computationally indistinguishable from the encryption of m1 in the
CCA-2 model.

97

	Introduction
	Adversary Model
	Algorithms and Running Times

	One-Way Functions
	Introduction
	Formal Definition of One-way Functions
	Factoring Problem
	Weak to strong OWF

	Hard Core Predicate
	Introduction
	Hard Core Predicate via Inner Product
	Final Remarks on OWFs

	Pseudorandomness
	Introduction
	Computational Indistinguishability and Prediction Advantage
	Next-Bit Test
	Pseudorandom Generators (PRG)
	PRG with 1-bit Stretch
	PRG with Poly-Stretch
	Going beyond Poly Stretch
	Pseudorandom Functions (PRF)
	Security of PRF via Game Based Definition
	PRF with 1-bit input
	PRF with n-bit input

	Secret-Key Encryption
	Setting
	Secret-key Encryption
	One-Time Pads
	Encryption using PRGs

	Multi-message Secure Encryption
	Encryption using PRFs

	Public-Key Encryption
	Semantic Security
	Public Key Encryption
	Trapdoor Permutations
	Public-key Encryption from Trapdoor Permutations
	Trapdoor Permutations from RSA

	Authentication
	Introduction
	Private Key: MAC
	Algorithm overview

	Construction of MAC
	One Time MACs

	Public Key: Digital Signature
	Algorithm overview

	One Time Signatures
	Collision-Resistant Hash Function
	Multi-message Signatures

	Zero-Knowledge Proofs
	What is a Proof?
	Interactive Protocols
	Interactive Proofs
	Why Interactive Proofs?

	Notation for Graphs
	Interactive Proof for Graph Non-Isomorphism
	Interactive Proofs with Efficient Provers
	Interactive proof for Graph Isomorphism

	Zero Knowledge
	Reflections on Zero Knowledge
	Zero-knowledge Proofs for NP
	Commitment Schemes
	Zero-knowledge Proof for Graph 3-coloring

	Secure Computation
	Introduction
	Adversary Models
	Definition
	Oblivious Transfer
	Importance of Oblivious Transfer
	Construction

	Proof of Security
	Remarks
	Goldreich- Micali-Wigderson (GMW) Protocol
	Circuit Representation
	Secret Sharing
	Protocol Notations
	Protocol Details
	CircuitEval
	Security

	Yao's Garbled Circuits
	Garbled Circuits Construction
	Secure Computation from Garbled Circuits

	Non-Interactive Zero Knowledge
	Introduction
	Non-Interactive Proofs
	NIZKs for NP
	The Hidden-Bit Model
	From NIZK in HB model to NIZK in CRS model
	Hamiltonian Graphs
	NIZKs for LH in Hidden-Bit Model
	Step I
	Step II

	CCA Security
	Definition
	IND-CCA-1 Construction
	IND-CCA-2 Security
	CCA-2 Secure Public-Key Encryption
	Construction
	Security

