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Securely Computing any Function

Main question: How can Alice and Bob securely compute any
function f over their private inputs x and y?

Solution: Using Yao’s garbled circuits with OT
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Garbled Circuits

A Garbling Scheme consists of two procedures (Garble,Eval):
Garble(C): Takes as input a circuit C and outputs a collection of
garbled gates Ĝ and garbled input wires În where

Ĝ = {ĝ1, . . . , ĝ|C|},

În = {în1, . . . , înn}.

Eval(Ĝ, Înx): Takes as input a garbled circuit Ĝ and garbled input
wires Înx corresponding to an input x and outputs z = C(x)
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Garbled Circuits: Ideas

Each wire i in the circuit C is associated with two keys (ki0, k
i
1) of

a secret-key encryption scheme, one corresponding to the wire
value being 0 and other for wire value being 1

For an input x, the evaluator is given the input wire keys
(k1x1

, . . . , knxn
) corresponding to x. Furthermore, for every gate g in

C, it is also given an “encrypted” truth table of g

We want the evaluator to use the input wire keys and the
encrypted truth tables to “uncover” a single key kiv for every
internal wire i corresponding to the value v of that wire. However,
ki1−v should remain hidden from the evaluator
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Special Encryption Scheme

Special Encryption Scheme: We need a secret-key encryption
scheme (Gen,Enc,Dec) with an extra property: there exists a negligible
function ν(·) s.t. for every n and every message m ∈ {0, 1}n,

Pr[k ← Gen(1n), k′ ← Gen(1n),Deck′(Enck(m)) = ⊥] > 1− ν(n)

That is, if a ciphertext is decrypted using the “wrong” key, then the
answer is always ⊥

Construction: Modify the secret-key encryption scheme discussed
earlier in the class s.t. instead of encrypting m, we encrypt 0n‖m.
Upon decrypting, check if the first n bits of the message are all 0’s; if
not, then output ⊥.
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Garbled Circuits: Construction

Let (Gen,Enc,Dec) be a special encryption scheme. Assign an index to
each wire in C s.t. the input wires have indices 1, . . . , n.

Garble(C):
For every non-output wire i in C, sample ki0 ← Gen(1n),
ki1 ← Gen(1n). For every output wire i in C, set ki0 = 0, ki1 = 1.
For every i ∈ [n], set ini = (ki0, k

i
1). Set In = (in1, . . . , inn)

For every gate g in C with input wires (i, j), output wire `:
First Input Second Input Output

ki0 kj0 z1 = Encki0(Enc
kj0

(k`g(0,0))

ki0 kj1 z2 = Encki0(Enc
kj1

(k`g(0,1))

ki1 kj0 z3 = Encki1(Enc
kj0

(k`g(1,0))

ki1 kj1 z4 = Encki1(Enc
kj1

(k`g(1,1))

Set ĝ = RandomShuffle(z1, z2, z3, z4). Output (Ĝ = (ĝ1, . . . , ĝ|C|), În)
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Garbled Circuits: Construction (contd.)

Think: Why is RandomShuffle necessary?

Eval(Ĝ, Înx):
Parse Ĝ = (ĝ1, . . . , ĝ|C|), Înx = (k1, . . . , kn)

Parse ĝi = (ĝ1i , . . . , ĝ
4
i )

Decrypt each garbled gate ĝi one-by-one, in a canonical order:
Let ki and kj be the input wire keys for gate g.
Repeat the following for every p ∈ [4]:

αp = Decki(Deckj (ĝpi ))

If ∃αp 6= ⊥, set k` = αp

Let outi be the value obtained for each output wire i. Output
out = (out1, . . . , outn)
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Secure Computation from Garbled Circuits

A plausible strategy for computing C(x, y) using Garbled Circuits:
A generates a garbled circuit for C(·, ·) along with garbled wire
keys for first and second input to C
A sends the garbled wire keys corresponding to its input x along
with the garbled circuit to B
However, in order to evaluate the garbled circuit on (x, y), B also
needs the garbled wire keys corresponding to its input y
Possible Solution: A sends all the wire keys corresponding to the
second input of C to B
Problem: In this case, B can not only compute C(x, y) but also
C(x, y′) for any y′ of its choice!
Solution: A will transmit the garbled wire keys corresponding to
B’s input using Oblivious Transfer!
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Secure Computation from Garbled Circuits: Details

Ingredients: Garbling scheme (Garble,Eval), 1-out-of-2 OT scheme
OT = (S,R)

Common Input: Circuit C for f(·, ·)
A’s input: x = x1, . . . , xn, B’s input: y = y1, . . . , yn

Protocol Π = (A,B):
A→ B: A computes (Ĝ, În)← Garble(C). Parse În = (în1, . . . , în2n)

where îni = (ki0, k
i
1). Set Înx = (k1x1

, . . . , knxn
). Send (Ĝ, Înx)

to B.

A↔ B: For every i ∈ [n], A and B run OT = (S,R) where A plays
sender S with input (kn+i

0 , kn+i
1 ) and B plays receiver R

with input yi. Let Îny = (kn+1
y1 , . . . , k2nyn ) be the outputs of

the n OT executions received by B.

B: B outputs Eval(Ĝ, Înx, Îny)
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Intuition for Security

Property 1: For every wire i, B only learns one of the two wire keys:
Input wires: For input wires corresponding to A’s input, it
follows from protocol description. For input wires corresponding to
B’s input, it follows from security of OT

Internal Wires: Follows from the security of the encryption
scheme

Property 2: B does not know whether the key corresponds to wire
value being 0 or 1 (except the keys corresponding to its own input
wires).

Overall, B only learns the output and nothing else. A does not learn
anything (in particular, B’s input remains hidden from A due to
security of OT)

Additional Reading: Read security proof from [Lindell-Pinkas’04]
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