
Secure Computation - III

CS 601.642/442 Modern Cryptography

Fall 2018

CS 601.642/442 Modern Cryptography Secure Computation - III Fall 2018 1 / 12

Securely Computing any Function

How can a group of parties securely compute any function over their
private inputs?

Last time: Yao’s Garbled Circuits based solution. Requires little
interaction, but only tailored to two-party case.

Today: Goldreich-Micali-Wigderson (GMW) solution. Highly
interactive. But extends naturally to n > 2 parties (where up to
n− 1 parties may be corrupted).

CS 601.642/442 Modern Cryptography Secure Computation - III Fall 2018 2 / 12

Circuit Representation

Function f(x, y) can be written as a boolean circuit C:
Input: Input wires of C correspond to inputs x and y to f

Gates: C contains AND and NOT gates, where each gate has fan
in at most 2 and arbitrary fan out

Output: Output wires of C correspond to output of f(x, y)

CS 601.642/442 Modern Cryptography Secure Computation - III Fall 2018 3 / 12

Secret Sharing

A k-out-of-n secret sharing scheme allows for “dividing” a secret value s
into n parts s1, . . . , sn s.t.

Correctness: Any subset of k shares can be “combined” to
reconstruct the secret s

Privacy: The value s is completely hidden from anyone who only
has at most k − 1 shares of s

Think: How to formalize?

CS 601.642/442 Modern Cryptography Secure Computation - III Fall 2018 4 / 12

Secret Sharing: Definition

Definition
A (k, n) secret-sharing consists of a pair of PPT algorithms
(Share,Reconstruct) s.t.:

Share(s) produces an n tuple (s1, . . . , sn)

Reconstruct(s′i1 , . . . , s
′
ik

) is s.t. if {s′i1 , . . . , s
′
ik
} ⊆ {s1, . . . , sn}, then

it outputs s
For any two s and s̃, and for any subset of at most k − 1 indices
X ⊂ [1, n], |X| < k, the following two distributions are statistically
close: {

(s1, . . . , sn)← Share(s) : (si|i ∈ X)
}
,{

(s̃1, . . . , s̃n)← Share(s̃) : (s̃i|i ∈ X)
}
.

CS 601.642/442 Modern Cryptography Secure Computation - III Fall 2018 5 / 12

Secret Sharing: Construction

An (n, n) secret-sharing scheme for s ∈ {0, 1} based on XOR:
Share(s): Sample random bits (s1, . . . , sn) s.t. s1 ⊕ · · · ⊕ sn = s

Reconstruct(s′1, . . . , s
′
n): Output s′1 ⊕ · · · ⊕ s′n

Think: Security?

Additional Reading: Shamir’s (k, n) secret-sharing using polynomials

CS 601.642/442 Modern Cryptography Secure Computation - III Fall 2018 6 / 12

GMW Protocol: Outline

GMW protocol consists of three phases:
Input Sharing: Each party secret-shares its input into two parts
and sends one part to the other party

Circuit evaluation: The parties evaluate the circuit in a
gate-by-gate fashion in such a manner that for every internal wire w
in the circuit, each party holds a secret share of the value of wire w

Output reconstruction: Finally, the parties exchange the secret
shares of the output wires. Each party then, on its own, combines
the secret shares to compute the output of the circuit

CS 601.642/442 Modern Cryptography Secure Computation - III Fall 2018 7 / 12

GMW Protocol: Details

Notation:
Protocol Ingredients: A (2, 2) secret-sharing scheme
(Share,Reconstruct), and a 1-out-of-4 OT scheme (OT = (S,R))

Common input: Circuit C for function f(·, ·) with two n-bit
inputs and an n-bit output

A’s input: x = x1, . . . , xn where xi ∈ {0, 1}
B’s input: y = y1, . . . , yn where yi ∈ {0, 1}

Protocol Invariant: For every wire in C(x, y) with value w ∈ {0, 1},
A and B have shares wA and wB, respectively, s.t.
Reconstruct(wA, wB) = w

CS 601.642/442 Modern Cryptography Secure Computation - III Fall 2018 8 / 12

GMW Protocol: Details (contd.)

Protocol Π = (A,B):
Input Sharing: A computes (xAi , x

B
i)← Share(xi) for every i ∈ [n] and

sends (xB1 , . . . , x
B
n) to B. B acts analogously.

Circuit Evaluation: Run the CircuitEval sub-protocol. A obtains outAi
and B obtains outBi for every output wire i.

Output Phase: For every output wire i, A sends outAi to B, and B
sends outBi to A. Each party computes

outi = Reconstruct(outAi , out
B
i)

The output is out = out1, . . . , outn

CS 601.642/442 Modern Cryptography Secure Computation - III Fall 2018 9 / 12

CircuitEval: NOT Gate

NOT Gate: Input u, output w
A holds uA, B holds uB

A computes wA = uA ⊕ 1

B computes wB = uB

Observe: wA ⊕ wB = uA ⊕ 1⊕ uB = ū

CS 601.642/442 Modern Cryptography Secure Computation - III Fall 2018 10 / 12

CircuitEval: AND Gate

AND Gate: Inputs u, v, output w
A holds uA, vA, B holds uB, vB

A samples wA $←{0, 1} and computes wB
1 , . . . , w

B
4 as follows:

uB vB wB

0 0 wB
1 = wA ⊕

(
(uA ⊕ 0) · (vA ⊕ 0)

)
0 1 wB

2 = wA ⊕
(
(uA ⊕ 0) · (vA ⊕ 1)

)
1 0 wB

3 = wA ⊕
(
(uA ⊕ 1) · (vA ⊕ 0)

)
1 1 wB

4 = wA ⊕
(
(uA ⊕ 1) · (vA ⊕ 1)

)
A and B run OT = (S,R) where A acts as sender S with inputs
(wB

1 , . . . , w
B
4) and B acts as receiver R with input b = 1 + 2uB + vB

CS 601.642/442 Modern Cryptography Secure Computation - III Fall 2018 11 / 12

Intuition for Security

For every wire in C (except the input and output wires), each party
only holds a secret share of the wire value:

NOT gate: Follows from construction

AND gate: Follows from security of OT
At the end, the parties only learn the values of the output wires

Exercise: Construct Simulator for Π using Simulator for OT and prove
indistinguishability

CS 601.642/442 Modern Cryptography Secure Computation - III Fall 2018 12 / 12

