
Secure Computation - I

CS 601.642/442 Modern Cryptography

Fall 2018

CS 601.642/442 Modern Cryptography Secure Computation - I Fall 2018 1 / 14



Motivating Example

Consider two billionaires Alice and Bob with net worths x and y,
respectively:

They want to find out who is richer by computing the following
function

f(x, y) =

{
1 if x > y
0 otherwise

Potential Solution: Alice sends x to Bob, who sends y to Alice.
They each compute f on their own.

Problem: Alice learns Bob’s net worth (and vice-versa). No
privacy!

Main Question: Can Alice and Bob compute f in a “secure
manner” s.t. they only learn the output of f , and nothing more?

CS 601.642/442 Modern Cryptography Secure Computation - I Fall 2018 2 / 14



General Setting

Two parties A and B, with private inputs x and y, respectively:
They want to “securely” compute a function f

If both A and B are honest, then they should learn the output
f(x, y)

Even if one party is adversarial, it should not learn anything
beyond the output (and its own input)

Think: How to formalize this security requirement?

CS 601.642/442 Modern Cryptography Secure Computation - I Fall 2018 3 / 14



Types of Adversaries

Two types of adversaries:
Honest but curious (a.k.a. semi-honest): Such an adversary
follows the instructions of the protocol, but will later analyze the
protocol transcript to learn any “extra information” about the
input of the other party

Malicious: Such an adversary can deviate from the protocol
instructions and follow an arbitrary strategy

Note: We will only consider semi-honest adversaries

CS 601.642/442 Modern Cryptography Secure Computation - I Fall 2018 4 / 14



Secure Computation: Intuition

Want to formalize that no semi-honest adversary learns anything
from the protocol execution beyond its input and the (correct)
output

Idea: Use simulation paradigm, as in zero-knowledge proofs

View of adversary in the protocol execution can be efficiently
simulated given only its input and output, and without the input
of the honest party

CS 601.642/442 Modern Cryptography Secure Computation - I Fall 2018 5 / 14



Secure Computation: Definition

Definition (Semi-honest Secure Computation)

A protocol π = (A,B) securely computes a function f in the
semi-honest model if there exists a pair of non-uniform PPT simulator
algorithms SA,SB such that for every security parameter n, and all
inputs x, y ∈ {0, 1}n, it holds that:{
SA(x, f(x, y)), f(x, y)

}
≈
{
e← [A(x)↔ B(y)] : ViewA(e),OutB(e)

}
,{

SB(y, f(x, y)), f(x, y)
}
≈
{
e← [A(x)↔ B(y)] : ViewB(e),OutA(e)

}
.

CS 601.642/442 Modern Cryptography Secure Computation - I Fall 2018 6 / 14



Remarks on Definition

In addition to the above security requirement, we also need
protocol correctness property, namely, that the outputs of the
parties corresponds to the correct function evaluation on the
inputs when all the parties are honest

Since semi-honest adversary behaves honestly during the protocol,
the above property implies that outputs of honest parties are
correct even when some parties are semi-honest

More tricky in the case of malicious adversaries (security definition
much more non-trivial)

CS 601.642/442 Modern Cryptography Secure Computation - I Fall 2018 7 / 14



Oblivious Transfer

Consider the following functionality, called, 1-out-of-2 oblivious transfer
(OT):

Two parties: Sender A, and Receiver B

Inputs: A’s input is a pair of bits (a0, a1), and B’s input is a bit b

Outputs: B’s output is ab, and A receives no output

Note: Definition of secure computation promises that in a secure OT
protocol, A does not learn b and B does not learn a1−b

CS 601.642/442 Modern Cryptography Secure Computation - I Fall 2018 8 / 14



Importance of Oblivious Transfer

Can be realized from physical channels [Wiener,Rabin]

OT is complete: given a secure protocol for OT, any function
can be securely computed

OT is necessary: OT is the minimal assumption for secure
computation

CS 601.642/442 Modern Cryptography Secure Computation - I Fall 2018 9 / 14



Oblivious Transfer: Construction

Let {fi}i∈I be a family of trapdoor permutations with sampling
algorithm Gen. Let h be a hardcore predicate for any fi.

Sender’s input: (a0, a1) where ai ∈ {0, 1}
Receiver’s input: b ∈ {0, 1}
Protocol OT = (A,B):

A→ B: A samples (fi, f−1i )← Gen(1n) and sends fi to B

B → A: B samples x $←{0, 1}n and computes yb = fi(x). It also
samples y1−b

$←{0, 1}n. B sends (y0, y1) to A

A→ B: A computes the inverse of each value yj and XORs the
hard-core bit of the result with aj :

zj = h(f−1i (yj))⊕ aj

A sends (z0, z1) to B

B(x, b, z0, z1): B outputs h(x)⊕ zb
CS 601.642/442 Modern Cryptography Secure Computation - I Fall 2018 10 / 14



OT = (A,B) is Semi-honest Secure : Intuition

Security against A: Both y0 and y1 are uniformly distributed and
therefore independent of b. Thus, b is hidden from A

Security against B: If B could learn a1−b, then it would be able to
predict the hardcore predicate

Note: A malicious B can easily learn a1−b by deviating from the
protocol strategy

CS 601.642/442 Modern Cryptography Secure Computation - I Fall 2018 11 / 14



OT = (A,B) is Semi-honest Secure : Simulator SA

Simulator SA((a0, a1),⊥):
1 Fix a random tape rA for A. Run honest emulation of A using

(a0, a1) and rA to obtain the first message fi
2 Choose two random strings y0, y1 ∈ {0, 1}n as B’s message
3 Run honest emulation of A using (y0, y1) to obtain the third

message (z0, z1)

4 Stop and output ⊥

Claim: The following two distributions are identical:{
SA((a0, a1),⊥), ab

}
and{

e← [A(a0, a1)↔ B(b)] : ViewA(e),OutB(e)
}

Proof: The only difference between SA and real execution is in step 2.
However, since f is a permutation, y0, y1 are identically distributed in
both cases.

CS 601.642/442 Modern Cryptography Secure Computation - I Fall 2018 12 / 14



OT = (A,B) is Semi-honest Secure : Simulator SB

Simulator SB(b, ab):
1 Sample fi
2 Choose random tape rB for B. Run honest emulation of B using

(b, rB, fi) to produce (x, y0, y1) s.t. yb = fi(x) and y1−b
$←{0, 1}n

3 Compute zb = h(x)⊕ ab and z1−b
$←{0, 1}

4 Output (z0, z1) as third message and stop

Claim: The following two distributions are indistinguishable:{
SB(b, ab),⊥

}
and

{
e← [A(a0, a1)↔ B(b)] : ViewB(e),OutA(e)

}
Proof: The only difference is in step 3, where SB computes z1−b as a
random bit. However, since h(f−1i (y1−b)) is indistinguishable from
random (even given y1−b), this change is indistinguishable

CS 601.642/442 Modern Cryptography Secure Computation - I Fall 2018 13 / 14



Remarks

1-out-of-k OT:
The previous protocol can be easily generalized to construct
1-out-of-k OT for k > 2

Semi-honest vs Malicious:
In reality, adversary may be malicious and not semi-honest

Goldreich-Micali-Wigderson [GMW] gave a compiler to transform
any protocol secure against semi-honest adversary into one secure
against malicious adversary

The transformation uses coin-flipping (to make sure that
adversary’s random tape is truly random) and zero-knowledge
proofs (to make sure that adversary is following the protocol
instructions)

Details outside the scope of this class

CS 601.642/442 Modern Cryptography Secure Computation - I Fall 2018 14 / 14


