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Zero-Knowledge Proofs for NP

Theorem
If one-way permutations exist, then every language in NP has a
zero-knowledge interactive proof.

The assumption can in fact be relaxed to just one-way functions
Think: How to prove the theorem?
Construct ZK proof for every NP language?
Not efficient!
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Zero-Knowledge Proofs for NP (contd.)

Proof Strategy:
Step 1: Construct a ZK proof for an NP-complete language. We

will consider Graph 3-Coloring: language of all graphs
whose vertices can be colored using only three colors s.t.
no two connected vertices have the same color

Step 2: To construct ZK proof for any NP language L, do the
following:

Given instance x and witness w, P and V reduce x
into an instance x′ of Graph 3-coloring using Cook’s
(deterministic) reduction
P also applies the reduction to witness w to obtain
witness w′ for x′

Now, P and V can run the ZK proof from Step 1 on
common input x′
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Physical ZK Proof for Graph 3-Coloring

Consider graph G = (V,E). Let C be a 3-coloring of V given to P
P picks a random permutation π over colors {1, 2, 3} and colors G
according to π(C). It hides each vertex in V inside a locked box
V picks a random edge (u, v) in E
P opens the boxes corresponding to u, v. V accepts if u and v have
different colors, and rejects otherwise
The above process is repeated n|E| times
Intuition for Soundness: In each iteration, cheating prover is
caught with probability 1

|E|
Intuition for ZK: In each iteration, V only sees something it
knew before – two random (but different) colors
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Towards ZK Proof for Graph 3-Coloring

To “digitze” the above proof, we need to implement locked boxes

Need two properties from digital locked boxes:
Hiding: V should not be able to see the content inside a locked box
Binding: P should not be able to modify the content inside a box
once its locked
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Commitment Schemes

Digital analogue of locked boxes

Two phases:
Commit phase: Sender locks a value v inside a box
Open phase: Sender unlocks the box and reveals v

Can be implemented using interactive protocols, but we will
consider non-interactive case. Both commit and reveal phases will
consist of single messages
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Commitment Schemes: Definition

Definition (Commitment)
A randomized polynomial-time algorithm Com is called a commitment
scheme for n-bit strings if it satisfies the following properties:

Binding: For all v0, v1 ∈ {0, 1}n and r0, r1 ∈ {0, 1}n, it holds that
Com(v0; r0) 6= Com(v1; r1)

Hiding: For every non-uniform PPT distinguisher D, there exists
a negligible function ν(·) s.t. for every v0, v1 ∈ {0, 1}n, D
distinguishes between the following distributions with probability
at most ν(n){

r
$←{0, 1}n : Com(v0; r)

}{
r

$←{0, 1}n : Com(v1; r)
}
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Commitment Schemes: Remarks

The previous definition only guarantees hiding for one commitment

Multi-value Hiding: Just like encryption, we can define
multi-value hiding property for commitment schemes

Using hybrid argument (as for public-key encryption), we can
prove that any commitment scheme satisfies multi-value hiding

Corollary: One-bit commitment implies string commitment

CS 601.642/442 Modern Cryptography Zero-Knowledge Proofs - II Fall 2018 8 / 16



Construction of Bit Commitments

Construction: Let f be a OWP, h be the hard core predicate for f

Commit phase: Sender computes Com(b; r) = f(r), b⊕ h(r). Let C
denote the commitment.

Open phase: Sender reveals (b, r). Receiver accepts if
C = (f(r), b⊕ h(r)), and rejects otherwise

Security:

Binding follows from construction since f is a permutation

Hiding follows in the same manner as IND-CPA security of
public-key encryption scheme constructed from trapdoor
permutations
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ZK Proof for Graph 3-Coloring

Common Input: G = (V,E), where |V | = n

P ’s witness: Colors color1, . . . , colorn ∈ {1, 2, 3}
Protocol (P, V ): Repeat the following procedure n|E| times using
fresh randomness

P → V : P chooses a random permutation π over {1, 2, 3}. For
every i ∈ [n], it computes Ci = Com(c̃olori) where
c̃olori = π(colori). It sends (C1, . . . , Cn) to V

V → P : V chooses a random edge (i, j) ∈ E and sends it to P

P → V : Prover opens Ci and Cj to reveal (c̃olori, c̃olorj)

V : If the openings of Ci, Cj are valid and c̃olori 6= c̃olorj , then
V accepts the proof. Otherwise, it rejects.
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Proof of Soundness

If G is not 3-colorable, then for any coloring color1, . . . , colorn,
there exists at least one edge which has the same colors on both
endpoints

From the binding property of Com, it follows that C1, . . . , Cn have
unique openings c̃olor1, . . . , c̃olorn

Combining the above, let (i∗, j∗) ∈ E be s.t. c̃olori∗ = c̃olorj∗

Then, with probability 1
|E| , V chooses i = i∗, j = j∗ and catches P

In n|E| independent repetitions, P successfully cheats in all
repetitions with probability at most(

1− 1

|E|

)n|E|
≈ e−n
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Proving Zero Knowledge: Strategy

Will prove that a single iteration of (P, V ) is zero knowledge
For the full protocol, use the following (read proof online):

Theorem

Sequential repetition of any ZK protocol is also ZK

To prove that a single iteration of (P, V ) is ZK, we need to do the
following:

Construct a Simulator S for every PPT V ∗

Prove that expected runtime of S is polynomial
Prove that the output distribution of S is correct (i.e.,
indistinguishable from real execution)

Intuition for proving ZK for a single iteration: V only sees two
random colors. Hiding property of Com guarantees that everything
else remains hidden from V .
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Proving Zero Knowledge: Simulator

Simulator S(x = G, z):

Choose a random edge (i′, j′)
$← E and pick random colors

color′i′ , color
′
j′

$←{1, 2, 3} s.t. color′i′ 6= color′j′ . For every other
k ∈ [n] \ {i′, j′}, set color′k = 1

For every ` ∈ [n], compute C` = Com(color′`)

Emulate execution of V ∗(x, z) by feeding it (C1, . . . , Cn). Let (i, j)
denote its response
If (i, j) = (i′, j′), then feed the openings of Ci, Cj to V ∗ and output
its view. Otherwise, restart the above procedure, at most n|E|
times
If simulation has not succeeded after n|E| attempts, then output
fail
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Correctness of Simulation

Hybrid Experiments:

H0: Real execution

H1: Hybrid simulator S′ that acts like the real prover (using
witness color1, . . . , colorn), except that it also chooses (i′, j′) $← E
at random and if (i′, j′) 6= (i, j), then it outputs fail

H2: Simulator S
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Correctness of Simulation (contd.)

H0 ≈ H1: If S′ does not output fail, then H0 and H1 are
identical. Since (i, j) and (i′, j′) are independently chosen, S′ fails
with probability at most:(

1− 1

|E|

)n|E|
≈ e−n

Therefore, H0 and H1 are statistically indistinguishable

H1 ≈ H2: The only difference between H1 and H2 is that for all
k ∈ [n] \ {i′, j′}, Ck is a commitment to π(colork) in H1 and a
commitment to 1 in H2. Then, from the multi-value hiding
property of Com, it follows that H1 ≈ H2
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Additional Reading

Zero-knowledge Proofs for Nuclear Disarmament
[Glaser-Barak-Goldston’14]

Non-black-box Simulation [Barak’01]

Concurrent Composition of Zero-Knowledge Proofs
[Dwork-Naor-Sahai’98, Richardson-Kilian’99,
Kilian-Petrank’01,Prabhakaran-Rosen-Sahai’02]

Non-malleable Commitments and ZK Proofs
[Dolev-Dwork-Naor’91]
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