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What is a Proof?

e An argument (or sufficient evidence) that can convince a reader of
the truth of some statement

o Mathematical proof: Deductive argument for a statement, by
reducing the validity of the statement to a set of axioms or
assumptions

@ Desirable features in a proof:

e The verifier should accept the proof if the statement is true
o The verifier should reject any proof if the statement is false
o Proof must be finite (or succinct) and efficiently verifiable

o E.g., Proof that there are infinitely many primes should not simply
be a list of all the primes. Not only would it take forever to
generate that proof, it would also take forever to verify it
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What is a Proof? (contd.)

@ Question 1: How to model efficient verifiability?
e Verifier must be polynomial time in the length of the statement

@ Question 2: Must a proof be non-interactive?

o Or can a proof be a conversation? (i.e., interactive)
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Interactive Protocols

o Interactive Turing Machine (ITM): A Turing machine with two
additional tapes: a read-only communication tape for receiving
messages, a write-only communication tape for sending messages.

e An interactive protocol (Mj, Ms) is a pair of ITMs that share
communication tapes s.t. the send-tape of the first ITM is the
receive-tape of the second, and vice-versa

@ Protocol proceeds in rounds. In each round, only one I'TM is
active, the other is idle. Protocol ends when both ITMs halt

o Mi(x1,21) <> Ma(xg,22): A (randomized) protocol execution
where z; is input and z; is auxiliary input of M;

e Outyy, (e): Output of M; in an execution e

o Viewyy, (e): View of M; in an execution e consists of its input,
random tape, auxiliary input and all the protocol messages it sees.
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Interactive Proofs

Definition (Interactive Proofs)

A pair of ITMs (P, V) is an interactive proof system for a language L if
V is a PPT machine and the following properties hold:

e Completeness: For every xz € L,
Pr [outV[P(x) o V()] = 1} —

e Soundness: There exists a negligible function v(-) s.t. Va ¢ L and
for all adversarial provers P*,

Pr [OutV[P*(a:) o V() = 1} < v(|z))

Remark: In the above definition, prover is not required to be efficient.
Later, we will also consider efficient provers.
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Why Interactive proofs?

Let L be a language in NP and let R be the associated relation

e For any = € L, there exists a “small” (polynomial-size) witness w

e By checking that R(z,w) = 1, we can verify that z € L

Therefore, w is a non-interactive proof for x

E.g. Graph Isomorphism: Two graphs Gg and G are isomorphic if
there exists a permutation 7 that maps the vertices of Gy onto the
vertices of G.

So why use interactive proofs after all?
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Why Interactive proofs? (contd.)

Two main reasons for interaction:

@ Proving statements in languages not known to be in NP
o Single prover [Shamir|: IP = PSPACE
o Multiple provers [Babai-Fortnow-Lund]: MIP = NEXP

© Achieving privacy guarantee for prover

o Zero knowledge [Goldwasser-Micali-Rackoff]: Verifier learns nothing
from the proof beyond the validity of the statement!
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Notation for Graphs

e Graph G = (V, E) where V is set of vertices and F is set of edges
o |V|=mn, |El=m
o II,, is the set of all permutations 7w over n vertices

e Graph Isomorphism: Gy = (Vp, Ep) and Gy = (Vi, E) are
isomorphic if there exists a permutation 7 s.t.:
o Vi={m(v) | veVy}
o By ={(m(v1),m(v2)) | (v1,v2) € Eo}
o Alternatively, G1 = 7(Gy)
o Graph Isomorphism is in NP

601.642/442 Modern Cryptographj Zero-Knowledge Proofs Fall 2018 8 /22



Notation for Graphs (contd.)

e Graph Non-Isomorphism: Gy and (G; are non-isomorphic if there
exists no permutation 7 € II,, s.t. G1 = 7(Gyp)

V4 V3 Vs Vi
W ) @ )
Vo Vg Va V3
Gy Gz

o Graph Non-Isomorphism is in co-NP, and not known to be in NP
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How to Prove Graph Non-Isomorphism?

e Suppose P wants to prove to V that Gy and G are not isomorphic

@ One way to prove this is to write down all possible permutations
over n vertices and show that for every =, G1 # m(Gp). However,
this is not efficiently verifiable

e How to design an efficiently verifiable interactive proof?
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Interactive Proof for Graph Non-Isomorphism

Common Input: z = (Go,G1)

Protocol (P,V): Repeat the following procedure n times using fresh
randomness

V — P: V chooses a random bit b € {0,1} and a random
permutation 7w € II,,. It computes H = 7(Gp) and sends H
to P

P — V: P computes i s.t. H and Gy are isomorphic and sends b’
toV

V(z,b,0'): V outputs 1 if &’ = b and 0 otherwise
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(P, V) is an Interactive Proof

e Completeness: If Gy and G are not isomorphic, then an
unbounded prover can always find &’ s.t. ¥’ = b

@ Soundness: If Gy and G are isomorphic, then H is isomorphic to
both Gy and G;! Therefore, in one iteration, any (unbounded)
prover can correctly guess b with probability at most % Since each
iteration is independent, prover can succeed in all iterations with
probability at most 27™.
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Interactive Proofs with Efficient Provers

@ Prover in graph non-isomorphism protocol is inefficient.

e For languages in NP, we can design interactive proofs with
efficient provers

e Prover strategy must be efficient when it is given a witness w for a
statement z that it attempts to prove

Definition

An interactive proof system (P, V') for a language L with witness
relation R is said to have an efficient prover if P is PPT and the
completeness condition holds for every w € R(x)

e Main Goal: Zero Knowledge, i.e., ensuring that verifier does not
gain any knowledge from its interaction with prover beyond
learning the validity of the statement x (e.g., P’s witness w
remains private from V)
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Towards Zero Knowledge

e Q. 1: How to formalize “does not gain any knowledge?”

e Q. 2: What is knowledge?
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Towards Zero Knowledge (contd.)

Rules for formalizing “(zero) knowledge”:

Rule 1: Randomness is for free

Rule 2: Polynomial-time computation is for free

That is, by learning the result of a random process or result of a
polynomial time computation, we gain no knowledge
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When is knowledge conveyed?

Scenario 1: Someone tells you he will sell you a 100-bit random string
for $1000.

Scenario 2: Someone tells you he will sell you the product of two
prime numbers of your choice for $1000.
Scenario 3: Someone tells you he will sell you the output of an

exponential time computation (e.g., isomorphism between
two graphs) for $1000.

Think: Should you accept any of these offers?

We can generate 100-bit random string for free by flipping a coin, and
we can also multiply on our own for free. But an exponential-time
computation is hard to perform on our own, since we are PPT. So we
should reject first and second offers, but seriously consider the third

one!
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Zero Knowledge: Intuition

e We do not gain any knowledge from an interaction if we could have
carried it out on our own

o Intuition for ZK: V can generate a protocol transcript on its own,
without talking to P. If this transcript is indistinguishable from a
real execution, then clearly V does not learn anything by talking
to P

o Formalized via notion of Simulator, as in definition of semantic
security for encryption
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Zero Knowledge: Definition I

Definition (Honest Verifier Zero Knowledge)

An interactive proof (P, V) for a language L with witness relation R is
said to be honest verifier zero knowledge if there exists a PPT simulator
S s.t. for every non-uniform PPT distinguisher D, there exists a
negligible function v(-) s.t. for every z € L, w € R(x), z € {0,1}*, D
distinguishes between the following distributions with probability at
most v(n):

° {ViewV[P(az,w) < V(z, Z)]}
° {S(l",x,z)}
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Remarks on the Definition

e Captures that whatever V “saw” in the interactive proof, it could
have generated it on its own by running the simulator S

o The auxiliary input to V captures any a priori information V' may
have about x. Definition promises that V' does not learn anything

e Problem: However, the above is promised only if verifier V' follows
the protocol

e What if V is malicious and deviates from the honest strategy?
o Want: Existence of a simulator S for every, possibly malicious
(efficient) verifier strategy V*

e For now, will relax the simulator and allow it to be expected PPT,
i.e., a machine whose expected running time is polynomial
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Zero Knowledge: Definition II

Definition (Zero Knowledge)

An interactive proof (P, V) for a language L with witness relation R is
said to be zero knowledge if for every non-uniform PPT adversary V*,
there exists an expected PPT simulator S s.t. for every non-uniform
PPT distinguisher D, there exists a negligible function v(-) s.t. for
every z € L, w € R(x), z € {0,1}*, D distinguishes between the
following distributions with probability at most v(n):

° {View’{,[P(m,w) T V*(x,Z)]}

° {S(l”,x,z)}

o If the distributions are statistically close, then we call it statistical
zero knowledge

o If the distributions are identical, then we call it perfect zero
knowledge
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Reflections on Zero Knowledge

Paradox?

@ Protocol execution convinces V' of the validity of x

@ Yet, V could have generated the protocol transcript on its own
To understand why there is no paradox, consider the following story:

e Alice and Bob run (P, V) on input = where Alice acts as P and
Bob as V

e Now, Bob goes to Eve: “z is true”
o Eve: “Oh really?”
e Bob: “Yes, you can see this accepting transcript”

e Eve: “That doesn’t mean anything. Anyone can come up with such
a transcript without knowing a witness for x!”

e Bob: “But I computed this transcript by talking to Alice who
answered my challenge correctly every time!”
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Reflections on Zero Knowledge Proofs (contd.)

Moral of the story:

e Bob participated in a “live” conversation with Alice, and was
convinced by how the transcript was generated

e But to Eve, who did not see the live conversation, there is no way
to tell whether the transcript is from real execution or produced by
simulator
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