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What is a Proof?

An argument (or sufficient evidence) that can convince a reader of
the truth of some statement

Mathematical proof: Deductive argument for a statement, by
reducing the validity of the statement to a set of axioms or
assumptions
Desirable features in a proof:

The verifier should accept the proof if the statement is true
The verifier should reject any proof if the statement is false
Proof must be finite (or succinct) and efficiently verifiable

E.g., Proof that there are infinitely many primes should not simply
be a list of all the primes. Not only would it take forever to
generate that proof, it would also take forever to verify it
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What is a Proof? (contd.)

1 Question 1: How to model efficient verifiability?
Verifier must be polynomial time in the length of the statement

2 Question 2: Must a proof be non-interactive?
Or can a proof be a conversation? (i.e., interactive)
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Interactive Protocols

Interactive Turing Machine (ITM): A Turing machine with two
additional tapes: a read-only communication tape for receiving
messages, a write-only communication tape for sending messages.

An interactive protocol (M1,M2) is a pair of ITMs that share
communication tapes s.t. the send-tape of the first ITM is the
receive-tape of the second, and vice-versa

Protocol proceeds in rounds. In each round, only one ITM is
active, the other is idle. Protocol ends when both ITMs halt

M1(x1, z1)↔M2(x2, z2): A (randomized) protocol execution
where xi is input and zi is auxiliary input of Mi

OutMi(e): Output of Mi in an execution e

ViewMi(e): View of Mi in an execution e consists of its input,
random tape, auxiliary input and all the protocol messages it sees.
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Interactive Proofs

Definition (Interactive Proofs)
A pair of ITMs (P, V ) is an interactive proof system for a language L if
V is a PPT machine and the following properties hold:

Completeness: For every x ∈ L,

Pr
[
OutV [P (x)↔ V (x)] = 1

]
= 1

Soundness: There exists a negligible function ν(·) s.t. ∀x /∈ L and
for all adversarial provers P ∗,

Pr
[
OutV [P ∗(x)↔ V (x)] = 1

]
6 ν(|x|)

Remark: In the above definition, prover is not required to be efficient.
Later, we will also consider efficient provers.
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Why Interactive proofs?

Let L be a language in NP and let R be the associated relation

For any x ∈ L, there exists a “small” (polynomial-size) witness w

By checking that R(x,w) = 1, we can verify that x ∈ L
Therefore, w is a non-interactive proof for x

E.g. Graph Isomorphism: Two graphs G0 and G1 are isomorphic if
there exists a permutation π that maps the vertices of G0 onto the
vertices of G1.

So why use interactive proofs after all?
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Why Interactive proofs? (contd.)

Two main reasons for interaction:
1 Proving statements in languages not known to be in NP

Single prover [Shamir]: IP = PSPACE
Multiple provers [Babai-Fortnow-Lund]: MIP = NEXP

2 Achieving privacy guarantee for prover
Zero knowledge [Goldwasser-Micali-Rackoff]: Verifier learns nothing
from the proof beyond the validity of the statement!
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Notation for Graphs

Graph G = (V,E) where V is set of vertices and E is set of edges

|V | = n, |E| = m

Πn is the set of all permutations π over n vertices
Graph Isomorphism: G0 = (V0, E0) and G1 = (V1, E1) are
isomorphic if there exists a permutation π s.t.:

V1 = {π(v) | v ∈ V0}
E1 = {(π(v1), π(v2)) | (v1, v2) ∈ E0}
Alternatively, G1 = π(G0)

Graph Isomorphism is in NP
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Notation for Graphs (contd.)

Graph Non-Isomorphism: G0 and G1 are non-isomorphic if there
exists no permutation π ∈ Πn s.t. G1 = π(G0)

Graph Non-Isomorphism is in co-NP, and not known to be in NP
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How to Prove Graph Non-Isomorphism?

Suppose P wants to prove to V that G0 and G1 are not isomorphic
One way to prove this is to write down all possible permutations π
over n vertices and show that for every π, G1 6= π(G0). However,
this is not efficiently verifiable
How to design an efficiently verifiable interactive proof?
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Interactive Proof for Graph Non-Isomorphism

Common Input: x = (G0, G1)

Protocol (P, V ): Repeat the following procedure n times using fresh
randomness

V → P : V chooses a random bit b ∈ {0, 1} and a random
permutation π ∈ Πn. It computes H = π(Gb) and sends H
to P

P → V : P computes b′ s.t. H and Gb′ are isomorphic and sends b′

to V

V (x, b, b′): V outputs 1 if b′ = b and 0 otherwise
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(P, V ) is an Interactive Proof

Completeness: If G0 and G1 are not isomorphic, then an
unbounded prover can always find b′ s.t. b′ = b

Soundness: If G0 and G1 are isomorphic, then H is isomorphic to
both G0 and G1! Therefore, in one iteration, any (unbounded)
prover can correctly guess b with probability at most 1

2 . Since each
iteration is independent, prover can succeed in all iterations with
probability at most 2−n.

CS 601.642/442 Modern Cryptography Zero-Knowledge Proofs Fall 2018 12 / 22



Interactive Proofs with Efficient Provers

Prover in graph non-isomorphism protocol is inefficient.

For languages in NP, we can design interactive proofs with
efficient provers

Prover strategy must be efficient when it is given a witness w for a
statement x that it attempts to prove

Definition
An interactive proof system (P, V ) for a language L with witness
relation R is said to have an efficient prover if P is PPT and the
completeness condition holds for every w ∈ R(x)

Main Goal: Zero Knowledge, i.e., ensuring that verifier does not
gain any knowledge from its interaction with prover beyond
learning the validity of the statement x (e.g., P ’s witness w
remains private from V )
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Towards Zero Knowledge

Q. 1: How to formalize “does not gain any knowledge?”

Q. 2: What is knowledge?
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Towards Zero Knowledge (contd.)

Rules for formalizing “(zero) knowledge”:

Rule 1: Randomness is for free

Rule 2: Polynomial-time computation is for free

That is, by learning the result of a random process or result of a
polynomial time computation, we gain no knowledge
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When is knowledge conveyed?

Scenario 1: Someone tells you he will sell you a 100-bit random string
for $1000.

Scenario 2: Someone tells you he will sell you the product of two
prime numbers of your choice for $1000.

Scenario 3: Someone tells you he will sell you the output of an
exponential time computation (e.g., isomorphism between
two graphs) for $1000.

Think: Should you accept any of these offers?

We can generate 100-bit random string for free by flipping a coin, and
we can also multiply on our own for free. But an exponential-time
computation is hard to perform on our own, since we are PPT. So we
should reject first and second offers, but seriously consider the third
one!
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Zero Knowledge: Intuition

We do not gain any knowledge from an interaction if we could have
carried it out on our own

Intuition for ZK: V can generate a protocol transcript on its own,
without talking to P . If this transcript is indistinguishable from a
real execution, then clearly V does not learn anything by talking
to P

Formalized via notion of Simulator, as in definition of semantic
security for encryption
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Zero Knowledge: Definition I

Definition (Honest Verifier Zero Knowledge)
An interactive proof (P, V ) for a language L with witness relation R is
said to be honest verifier zero knowledge if there exists a PPT simulator
S s.t. for every non-uniform PPT distinguisher D, there exists a
negligible function ν(·) s.t. for every x ∈ L, w ∈ R(x), z ∈ {0, 1}∗, D
distinguishes between the following distributions with probability at
most ν(n):{

ViewV [P (x,w)↔ V (x, z)]
}

{
S(1n, x, z)

}
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Remarks on the Definition

Captures that whatever V “saw” in the interactive proof, it could
have generated it on its own by running the simulator S
The auxiliary input to V captures any a priori information V may
have about x. Definition promises that V does not learn anything
“new”
Problem: However, the above is promised only if verifier V follows
the protocol
What if V is malicious and deviates from the honest strategy?
Want: Existence of a simulator S for every, possibly malicious
(efficient) verifier strategy V ∗

For now, will relax the simulator and allow it to be expected PPT,
i.e., a machine whose expected running time is polynomial
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Zero Knowledge: Definition II

Definition (Zero Knowledge)
An interactive proof (P, V ) for a language L with witness relation R is
said to be zero knowledge if for every non-uniform PPT adversary V ∗,
there exists an expected PPT simulator S s.t. for every non-uniform
PPT distinguisher D, there exists a negligible function ν(·) s.t. for
every x ∈ L, w ∈ R(x), z ∈ {0, 1}∗, D distinguishes between the
following distributions with probability at most ν(n):{

View∗V [P (x,w)↔ V ∗(x, z)]
}

{
S(1n, x, z)

}
If the distributions are statistically close, then we call it statistical
zero knowledge
If the distributions are identical, then we call it perfect zero
knowledge
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Reflections on Zero Knowledge

Paradox?
Protocol execution convinces V of the validity of x
Yet, V could have generated the protocol transcript on its own

To understand why there is no paradox, consider the following story:
Alice and Bob run (P, V ) on input x where Alice acts as P and
Bob as V
Now, Bob goes to Eve: “x is true”
Eve: “Oh really?”
Bob: “Yes, you can see this accepting transcript”
Eve: “That doesn’t mean anything. Anyone can come up with such
a transcript without knowing a witness for x!”
Bob: “But I computed this transcript by talking to Alice who
answered my challenge correctly every time!”
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Reflections on Zero Knowledge Proofs (contd.)

Moral of the story:
Bob participated in a “live” conversation with Alice, and was
convinced by how the transcript was generated
But to Eve, who did not see the live conversation, there is no way
to tell whether the transcript is from real execution or produced by
simulator
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