
Secure Computation - II

CS 600.442 Modern Cryptography

Fall 2016

CS 600.442 Modern Cryptography Secure Computation - II Fall 2016 1 / 12

Securely Computing any Function

Main question: How can Alice and Bob securely compute any
function f over their private inputs x and y?

Two Solutions:
Goldreich-Micali-Wigderson (GMW): Highly interactive
solution. Extends naturally to multiparty case

Yao’s Garbled Circuits: Requires little interaction, but only
tailored to two-party case

CS 600.442 Modern Cryptography Secure Computation - II Fall 2016 2 / 12

Circuit Representation

Function f(x, y) can be written as a boolean circuit C:
Input: Input wires of C correspond to inputs x and y to f

Gates: C contains AND and NOT gates, where each gate has fan
in at most 2 and arbitrary fan out

Output: Output wires of C correspond to output of f(x, y)

CS 600.442 Modern Cryptography Secure Computation - II Fall 2016 3 / 12

Secret Sharing

A k-out-of-n secret sharing scheme allows for “dividing” a secret value s
into n parts s1, . . . , sn s.t.

Correctness: Any subset of k shares can be “combined” to
reconstruct the secret s

Privacy: The value s is completely hidden from anyone who only
has at most k − 1 shares of s

Think: How to formalize?

CS 600.442 Modern Cryptography Secure Computation - II Fall 2016 4 / 12

Secret Sharing: Definition

Definition
A (k, n) secret-sharing consists of a pair of PPT algorithms
(Share,Reconstruct) s.t.:

Share(s) produces an n tuple (s1, . . . , sn)

Reconstruct(s′i1 , . . . , s
′
ik

) is s.t. if {s′i1 , . . . , s
′
ik
} ⊆ {s1, . . . , sn}, then

it outputs s
For any two s and s̃, and for any subset of at most k − 1 indices
X ⊂ [1, n], |X| < k, the following two distributions are statistically
close: {

(s1, . . . , sn)← Share(s) : (si|i ∈ X)
}
,{

(s̃1, . . . , s̃n)← Share(s̃) : (s̃i|i ∈ X)
}
.

CS 600.442 Modern Cryptography Secure Computation - II Fall 2016 5 / 12

Secret Sharing: Construction

An (n, n) secret-sharing scheme for s ∈ {0, 1} based on XOR:
Share(s): Sample random bits (s1, . . . , sn) s.t. s1 ⊕ · · · ⊕ sn = s

Reconstruct(s′1, . . . , s
′
n): Output s′1 ⊕ · · · ⊕ s′n

Think: Security?

Additional Reading: Shamir’s (k, n) secret-sharing using polynomials

CS 600.442 Modern Cryptography Secure Computation - II Fall 2016 6 / 12

GMW Protocol: Outline

GMW protocol consists of three phases:
Input Sharing: Each party secret-shares its input into two parts
and sends one part to the other party

Circuit evaluation: The parties evaluate the circuit in a
gate-by-gate fashion in such a manner that for every internal wire w
in the circuit, each party holds a secret share of the value of wire w

Output reconstruction: Finally, the parties exchange the secret
shares of the output wires. Each party then, on its own, combines
the secret shares to compute the output of the circuit

CS 600.442 Modern Cryptography Secure Computation - II Fall 2016 7 / 12

GMW Protocol: Details

Notation:
Protocol Ingredients: A (2, 2) secret-sharing scheme
(Share,Reconstruct), and a 1-out-of-4 OT scheme (OT = (S,R))

Common input: Circuit C for function f(·, ·) with two n-bit
inputs and an n-bit output

A’s input: x = x1, . . . , xn where xi ∈ {0, 1}
B’s input: y = y1, . . . , yn where yi ∈ {0, 1}

Protocol Invariant: For every wire in C(x, y) with value w ∈ {0, 1},
A and B have shares wA and wB, respectively, s.t.
Reconstruct(wA, wB) = w

CS 600.442 Modern Cryptography Secure Computation - II Fall 2016 8 / 12

GMW Protocol: Details (contd.)

Protocol Π = (A,B):
Input Sharing: A computes (xAi , x

B
i)← Share(xi) for every i ∈ [n] and

sends (xB1 , . . . , x
B
n) to B. B acts analogously.

Circuit Evaluation: Run the CircuitEval sub-protocol. A obtains outAi
and B obtains outBi for every output wire i.

Output Phase: For every output wire i, A sends outAi to B, and B
sends outBi to A. Each party computes

outi = Reconstruct(outAi , out
B
i)

The output is out = out1, . . . , outn

CS 600.442 Modern Cryptography Secure Computation - II Fall 2016 9 / 12

CircuitEval: NOT Gate

NOT Gate: Input u, output w
A holds uA, B holds uB

A computes wA = uA ⊕ 1

B computes wB = uB

Observe: wA ⊕ wB = uA ⊕ 1⊕ uB = ū

CS 600.442 Modern Cryptography Secure Computation - II Fall 2016 10 / 12

CircuitEval: AND Gate

AND Gate: Inputs u, v, output w
A holds uA, vA, B holds uB, vB

A samples wA $←{0, 1} and computes wB
1 , . . . , w

B
4 as follows:

uB vB wB

0 0 wB
1 = wA ⊕

(
(uA ⊕ 0) · (vA ⊕ 0)

)
0 1 wB

2 = wA ⊕
(
(uA ⊕ 0) · (vA ⊕ 1)

)
1 0 wB

3 = wA ⊕
(
(uA ⊕ 1) · (vA ⊕ 0)

)
1 1 wB

4 = wA ⊕
(
(uA ⊕ 1) · (vA ⊕ 1)

)
A and B run OT = (S,R) where A acts as sender S with inputs
(wB

1 , . . . , w
B
4) and B acts as receiver R with input b = 1 + 2uB + vB

CS 600.442 Modern Cryptography Secure Computation - II Fall 2016 11 / 12

Intuition for Security

For every wire in C (except the input and output wires), each party
only holds a secret share of the wire value:

NOT gate: Follows from construction

AND gate: Follows from security of OT
At the end, the parties only learn the values of the output wires

Exercise: Construct Simulator for Π using Simulator for OT and prove
indistinguishability

CS 600.442 Modern Cryptography Secure Computation - II Fall 2016 12 / 12

