One-way Functions

600.442: Modern Cryptography

Fall 2016
Today’s Agenda

- Learning the crypto language
 - Modeling “real-world” adversaries
 - Defining security against such adversaries
- Definition of One-way functions
- Candidate One-way function
Modeling the adversary

- In practice, *everyone*, including the adversary has some bounded computational resources.
- Adversary can use these computational resources however intelligently he likes, but it is still bounded by these resources.
- **Turing machines** — capture all types of computations that are possible.
- So our adversary will be a computer program or an algorithm, modeled as a Turing machine.
Definition (Algorithm)

An *algorithm* is a deterministic Turing machine whose input and output are strings over the binary alphabet $\Sigma = \{0, 1\}$.

Definition (Running Time)

An algorithm A is said to run in time $T(n)$ if for all $x \in \{0, 1\}^n$, $A(x)$ halts within $T(|x|)$ steps. A runs in polynomial time if there exists a constant c such that A runs in time $T(n) = n^c$.

An algorithm is *efficient* if it runs in polynomial time.
Definition (Randomized Algorithm)

A randomized algorithm, also called a probabilistic polynomial time Turing machine (PPT) is a Turing machine equipped with an extra randomness tape. Each bit of the randomness tape is uniformly and independently chosen.

- Output of a randomized algorithm is a distribution.
- This notion captures what we can do efficiently ourselves. (uniform TMs)
The Adversary

- The adversary could be more tricky...
- For example, the adversary might posses a different algorithm for each input size, each of which might be efficient.
- This still counts efficient since he is using polynomial time resources!
- We call this a non-uniform adversary since the algorithm is not uniform across all input sizes.
Definition (Non-Uniform PPT)

A non-uniform probabilistic polynomial time Turing machine is a Turing machine A is a sequence of probabilistic machines $A = \{A_1, A_2, \ldots\}$ for which there exists a polynomial $p(\cdot)$ such that for every $A_i \in A$, the description size $|A_i|$ and the running time of A_i are at most $p(i)$. We write $A(x)$ to denote the distribution obtained by running $A_{|x|}(x)$.

- Our adversary will usually be a non-uniform PPT Turing machine. (most general)
Attempt 1: A function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ is a one-way function (OWF) if it satisfies the following two conditions:

- **Easy to compute:** there is a PPT algorithm C s.t. $\forall x \in \{0, 1\}^*$,

$$\Pr[C(x) = f(x)] = 1.$$

- **Hard to invert:** for every non-uniform PPT adversary A, for any input length $n \in \mathbb{N}$

Probability of Inversion is small
Attempt 1: A function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ is a one-way function (OWF) if it satisfies the following two conditions:

- **Easy to compute**: there is a PPT algorithm C s.t. $\forall x \in \{0, 1\}^*$,

 $$\Pr[C(x) = f(x)] = 1.$$

- **Hard to invert**: for every non-uniform PPT adversary A, for any input length $n \in \mathbb{N}$

 $$\Pr[A \text{ inverts } f(x) \text{ for random } x] \leq \text{small}.$$
Attempt 1: A function $f : \{0, 1\}^* \to \{0, 1\}^*$ is a one-way function (OWF) if it satisfies the following two conditions:

- **Easy to compute:** there is a PPT algorithm C s.t. $\forall x \in \{0, 1\}^*$,

 $$\Pr[C(x) = f(x)] = 1.$$

- **Hard to invert:** for every non-uniform PPT adversary A, for any input length $n \in \mathbb{N}$

 $$\Pr[x \leftarrow \{0, 1\}^n; A \text{ inverts } f(x)] \leq \text{small}.$$
Attempt 1: A function \(f : \{0, 1\}^* \rightarrow \{0, 1\}^* \) is a one-way function (OWF) if it satisfies the following two conditions:

- **Easy to compute:** there is a PPT algorithm \(C \) s.t. \(\forall x \in \{0, 1\}^* \),
 \[
 \Pr[C(x) = f(x)] = 1.
 \]

- **Hard to invert:** for every non-uniform PPT adversary \(A \), there exists a fast decaying function \(\nu(\cdot) \) s.t. for any input length \(n \in \mathbb{N} \)
 \[
 \Pr[x \leftarrow \{0, 1\}^n ; \ A \text{ inverts } f(x)] \leq \nu(n).
 \]
Negligible Function

Definition (Negligible Function)

A function $\nu(n)$ is negligible if for every c, there exists some n_0 such that for all $n > n_0$, $\nu(n) \leq \frac{1}{n^c}$.

1. Negligible function decays faster than all “inverse-polynomial” functions
2. That is, $n^{-\omega(1)}$
Attempt 1: A function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ is a one-way function (OWF) if it satisfies the following two conditions:

- **Easy to compute:** there is a PPT algorithm C s.t. $\forall x \in \{0, 1\}^*$,
 \[
 \Pr[C(x) = f(x)] = 1.
 \]

- **Hard to invert:** for every non-uniform PPT adversary A, there exists a negligible function $\mu(\cdot)$ s.t. for any input length $\forall n \in \mathbb{N}$:
 \[
 \Pr[x \xleftarrow{\$} \{0, 1\}^n; A \text{ inverts } f(x)] \leq \nu(|x|).
 \]

Technical Problem: What is A’s input?
A’s Input

- Let’s write $y = f(x)$.
- **Condition 1:** A on input y must run in time $\text{poly}(|y|)$.
- **Condition 2:** A cannot output x' s.t. $f(x') = y$.
- What if $|y|$ is much smaller than $n = |x|$?
 $\implies A$ cannot write the inverse even if it can find it!

Example: $f(x) = \text{first log } |x| \text{ bits of } x$.

It is trivial to invert: $f^{-1}(y) = y\underbrace{00\ldots0}_{n-\lg n}$ where $n = 2|y|$.

But it satisfies our Attempt 1 definition!
 - f is easy to compute.
 - A cannot invert in time $\text{poly}(|y|)$.
 It needs $2|y|$ steps just to write the answer!
Fixing the definition

- Give A a long enough input.
- If y is too short, pad it with 1s in the beginning.
- We adopt the convention to *always* pad it and write: $A(1^n, y)$.
- Now A has enough time to write the answer.
A function $f : \{0, 1\}^* \rightarrow \{0, 1\}^*$ is a one-way function (OWF) if it satisfies the following two conditions:

- **Easy to compute:** there is a PPT algorithm C s.t. $\forall x \in \{0, 1\}^*$,
 \[\Pr[C(x) = f(x)] = 1. \]

- **Hard to invert:** there exists a negligible function $\mu : \mathbb{N} \rightarrow \mathbb{R}$ s.t. for every non-uniform PPT adversary A and $\forall n \in \mathbb{N}$:
 \[\Pr \left[x \leftarrow \{0, 1\}^n, x' \leftarrow A(1^n, f(x)) : f(x') = f(x) \right] \leq \mu(n). \]

This definition is also called **strong** one-way functions.
Injective or 1-1 OWFs: each image has a unique pre-image:

\[f(x_1) = f(x_2) \implies x_1 = x_2 \]

One Way Permutations (OWP): 1-1 OWF with the additional conditional that “each image has a pre-image”

(Equivalently: domain and range are of same size.)
Existence of OWFs

- Do OWFs exist? NOT Unconditionally — proving that f is one-way requires proving (at least) $P \neq NP$.

- However, we can construct them ASSUMING that certain problems are hard.

- Such constructions are sometimes called “candidates” because they are based on an assumption or a conjecture.
Factoring Problem

- Consider the **multiplication** function $f_\times : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$:

 $$f_\times(x, y) = \begin{cases} \bot & \text{if } x = 1 \lor y = 1 \\ x \cdot y & \text{otherwise} \end{cases}$$

- The first condition helps exclude the trivial factor 1.

- Is f_\times a OWF?

 - **Clearly not!** With prob. 1/2, a random number (of any fixed size) is even. I.e., xy is even w/ prob. $\frac{3}{4}$ for random (x, y).

 - Inversion: given number z, output $(2, z/2)$ if z is even and $(0, 0)$ otherwise! (succeeds 75% time)
Factoring Problem (continued)

- Eliminate such trivial small factors.
- Let Π_n be the set of all \textbf{prime} numbers $< 2^n$.
- Choose numbers p and q randomly from Π_n and multiply.
- This is unlikely to have small trivial factors.

Assumption (Factoring Assumption)

For every (non-uniform PPT) adversary A, there exists a negligible function ν such that

$$\Pr \left[p \leftarrow \Pi_n; q \leftarrow \Pi_n; N = pq : A(N) \in \{p, q\} \right] \leq \nu(n).$$
Factoring assumption is a well established conjecture.

Studied for a long time, with no “good” attack.

Best known algorithms for breaking Factoring Assumption:

\[2^{O\left(\sqrt{n \log n}\right)} \] (provable)

\[2^{O\left(\frac{3}{n \log^2 n}\right)} \] (heuristic)

Can we construct OWFs from the Factoring Assumption?
Let’s reconsider the function $f_\times : \mathbb{N}^2 \to \mathbb{N}$.

Clearly, if a random x and a random y happen to be prime, no \mathcal{A} could invert. Call it the GOOD case.

If GOOD case occurs with probability $> \varepsilon$,

\Rightarrow every \mathcal{A} must fail to invert f_\times with probability at least ε.

Now suppose that ε is a noticeable function

\Rightarrow every \mathcal{A} must fail to invert f_\times with noticeable probability.

This is already useful!

Usually called a weak OWF.
A function \(f : \{0, 1\}^* \rightarrow \{0, 1\}^* \) is a **weak one-way function** if it satisfies the following two conditions:

- **Easy to compute:** there is a PPT algorithm \(C \) s.t. \(\forall x \in \{0, 1\}^* \),
 \[
 \Pr[C(x) = f(x)] = 1.
 \]

- **Somewhat hard to invert:** there is a noticeable function \(\varepsilon : \mathbb{N} \rightarrow \mathbb{R} \) s.t. for every non-uniform PPT \(A \) and \(\forall n \in \mathbb{N} \):
 \[
 \Pr[x \leftarrow \{0, 1\}^n, x' \leftarrow A(1^n, f(x)) : f(x') \neq f(x)] \geq \varepsilon(n).
 \]

Noticeable means \(\exists c \) s.t. for infinitely many \(n \in \mathbb{N} \), \(\varepsilon(n) \geq \frac{1}{n^c} \).
Can we prove that f_x is a weak OWF?

Remember the GOOD case? Both x and y are prime.

If we can show that GOOD case occurs with noticeable probability, we can prove that f_x is a weak OWF.

Theorem

Assuming the factoring assumption, function f_x is a weak OWF.

- Proof Idea: The fraction of prime numbers between 1 and 2^n is noticeable!
- Chebyshev’s theorem: An n bit number is a prime with probability $\frac{1}{2n}$
What about normal OWFs?

- Can we construct normal (a.k.a, strong) OWFs from the Factoring Assumption?
- Even better: Can we construction strong OWFs from ANY weak OWF?
- Yes! Yao’s theorem.
Weak to Strong OWFs

Theorem (Yao)

Strong OWFs exist if and only weak OWFs exist.

- This is called **hardness amplification**: convert a somewhat hard problem into a really hard problem.
- Hint: use many samples of the weak OWF as the output of the strong OWF.
- Proof by reduction: if A can break your strong OWF, you can come up with an algorithm B for breaking weak OWFs.