Homework 3

Deadline: Nov 18, 2016

1. (15 points) Given any 1-out-of-2 oblivious transfer (OT) protocol, construct a 1-out-of-4 OT protocol. (Note: It is not ok to show that a specific 1-out-of-2 protocol, e.g., the one we saw in class, implies 1-out-of-4 OT)

2. (10 points) Let $\text{PKE} = (\text{KeyGen}, \text{Encrypt}, \text{Decrypt})$ be an IND-CCA-2 secure public key encryption scheme with one bit message space $\mathcal{M} = \{0, 1\}$. Consider a new encryption scheme $\text{PKE}' = (\text{KeyGen}', \text{Encrypt}', \text{Decrypt}')$ that encrypts ℓ-bit long messages:

- KeyGen': On input a security parameter λ, compute $(sk, p) \leftarrow \text{KeyGen}(1^\lambda)$ and output $sk' = sk$ as the secret key and $pk' = pk$ as the public key.

- $\text{Encrypt}'$: On input a message $m = m_1 \ldots m_\ell \in \{0, 1\}^\ell$ (m_i denotes the i-th bit of m) and a public key $pk' = pk$, compute $c_i \leftarrow \text{Encrypt}_{pk}(m_i)$ for all $i \in [\ell]$. Output the ciphertext $c = c_1 \ldots c_\ell$.

- $\text{Decrypt}'$: On input a ciphertext $c = (c_1, \ldots, c_\ell)$ and a secret key $sk' = sk$, compute $m_i \leftarrow \text{Decrypt}_{sk}(c_i)$ for all $i \in [\ell]$. Output $m = m_1 \ldots m_\ell$.

Is PKE' IND-CCA-2 secure? Prove or disprove.

3. Let L be an NP language with witness relation R such that every statement $x \in L$ has at least two different witnesses. A non-interactive proof system (K, P, V) for language L is called witness indistinguishable if for any triplet (x, w_0, w_1) s.t. $R(x, w_0) = 1$ and $R(x, w_1) = 1$, the
distributions \(\{ \sigma, P(\sigma, x, w_0) \} \) and \(\{ \sigma, P(\sigma, x, w_1) \} \) are computationally indistinguishable, where \(\sigma \leftarrow K(1^n) \).

(a) (5 points) Prove that any NIZK proof system is also a non-interactive witness indistinguishable (NIWI) proof system.

(b) (5 points) The definition of NIWI above only considers a single statement. Prove that witness indistinguishability property *composes*, i.e., if \((K, P, V)\) satisfies the above definition, then it also satisfies the following: for any polynomial \(q(\cdot) \) and triplets \(\{(x_i, w^0_i, w^1_i)\}_i \) s.t. \(R(x_i, w^0_i) = 1 \) and \(R(x_i, w^1_i) = 1 \), the distributions

\[
\begin{align*}
\{ \sigma, \{ P(\sigma, x_i, w^0_i) \}_i \} & \quad \text{and} \quad \{ \sigma, \{ P(\sigma, x_i, w^1_i) \}_i \} \\
\end{align*}
\]

are computationally indistinguishable, where \(\sigma \leftarrow K(1^n) \).

(c) (15 points) Recall that the NIZK proof system we constructed in class required a fresh common random string (CRS) for each statement proved. However, we want to reuse the same random string to prove *multiple* statements while still preserving the zero-knowledge property.

So we define a new NIZK proof system with stronger zero knowledge property called the multi-statement NIZK proof system as follows (this definition also captures adaptive zero-knowledge property).

A NIZK proof system \((K, P, V)\) for a language \(L \) with corresponding relation \(R \) is a *multi-statement NIZK proof system* if there exists a PPT machine \(S = (S_1, S_2) \) such that for all PPT machines \(\mathcal{A}_1 \) and \(\mathcal{A}_2 \) we have that

\[
\Pr \left[\begin{array}{c}
\sigma \leftarrow K(1^n) \\
(\{x_i, w_i\}_i \in [q], \text{st}) \leftarrow \mathcal{A}_1(\sigma) \\
\text{s.t. } \forall i \in [q], R(x_i, w_i) = 1 \\
\forall i \in [q], \pi_i \leftarrow P(\sigma, x_i, w_i) \\
\mathcal{A}_2(\text{st}, \{\pi_i\}_i \in [q]) = 1
\end{array} \right] - \Pr \left[\begin{array}{c}
(\sigma, \tau) \leftarrow S_1(1^n) \\
(\{x_i, w_i\}_i \in [q], \text{st}) \leftarrow \mathcal{A}_1(\sigma) \\
\text{s.t. } \forall i \in [q], R(x_i, w_i) = 1 \\
\forall i \in [q], \pi_i \leftarrow S_2(\sigma, x_i, \tau) \\
\mathcal{A}_2(\text{st}, \{\pi_i\}_i \in [q]) = 1
\end{array} \right] \leq \text{negl}(n)
\]

Prove that given a single statement NIZK proof system \((K, P, V)\) for NP, the following construction is a multi-statement NIZK proof
system (K', P', V') for NP:

Let $G : \{0, 1\}^n \to \{0, 1\}^{2n}$ be a length-doubling PRG:

- K', on input the security parameter, computes $\sigma \leftarrow K(1^n)$ along with a random string y of length $2n$ and outputs $\sigma' = (\sigma, y)$.
- P' on input (σ', x, w) proves (using P) that there exists a pair (w, s) such that $R(x, w) = 1 \lor y = G(s)$ where s is a seed for the PRG G.
- V', on input (σ', x, π) outputs $V(\sigma', x, \pi)$.

3