
CS 600.442 – Modern Cryptography 10/26/2015

Lecture 17: Secure Computation - III (GMW)

Instructor: Abhishek Jain Scribe: Zhenyu Liu

1 Recap from the previous lecture

In the last lecture, if we let W denote the set of wires, G denote the set of gates and C denotes the
circuit, when Garble(C, x) computes f , for every wire w ∈ W , choose labels(S0

w, S
1
w); then P1 will

send his label labelsx1 directly to P2 to compute. However, this method is not secure, because for
P2 he can always chooses his input after learning the message from P1.

So, in order to ensure that two parties, which respectively hold the secret inputs x and y, can
jointly compute any function f(x, y) in a secure manner, we decide to construct our protocol based
on zero-knowledge proofs. Then, we brought in the definition of garbled circuit for the two-party
computation. With this idea, in the last lecture, we have already had the basis of a protocol; that
is one of the parties can construct a garbled circuit for C, and the other party can evaluate it.
Now, the next is to find a method to transfer the keys corresponding to the evaluator’s input to
the evaluating player in Yao’s circuit method.

2 Oblivious Transfer

In order for the evaluating player to start evaluating the circuit, the player must know the key
corresponding to his input. Except for the situation discussed in the last section, P2 also cannot
send his all the keys, then P1 will know the result of the circuit calculated by input (x, y) and (x, y),
which violates the security definitions at first.

Thus, we bring in oblivious transfer protocol to deal with this situation - specifically, here is
1/2 − oblivious transfer. This protocol is a secure computation for party A to learn one of k
secret bits held by party B without any knowledge leaking out. The concrete process is displayed
in the following example.

P1

(S0, S1)

OT

P2

b← {0, 1}∗

Sb

In the picture, P1 input his two message S0 and S1 and P2 randomly choose a String from {0, 1}∗
to input, then P2 will get the output Sb. The most important characteristics of this protocol are

• P1 should not learn b

• P2 should not learn S1−b

17-1



Particularly, if the input of P2 is just one bit long, according to our notations in the previous
lecture, the result is

P1

labels0
w

labels1
w OT

P2

x2 ∈ {0, 1}

labelsx2

w

3 GMW87 Protocol

3.1 Background

There are two parties, P1 and P2. Define that x, y are respectively the inputs of these two parties.
Each input has the same length n and the two parties will use their input to evaluate a garbled
circuit denoted by C. In this protocol, the circuit consists of many gates, such as XOR, NOT and
AND. We will construct the gate to evaluate one bit a time.

3.2 Initialization

Let x = x1x2 . . . xn and y = y1y2 . . . yn. For every wire, P1 holds all the aw share and P2 holds all
the bw share. ∀i ∈ [n], for two parties, they can initial and split their value based on the following
way:

Sample awi ← {0, 1}
bwi = awi ⊕ xi

3.3 Evaluation

Now, we will mainly discuss three example gate evaluations - XOR, NOT and AND. According to
the previous notations, P1 has two shares, a1wi

and a2wi
, whereas P2 has two shares b1wi

and b2wi
;

and xi = a1wi
⊕ b1wi

while yi = a2wi
⊕ b2wi

. Using the intuitions in secure computation, we need to
evaluate the gate without learning extra value. Here starts from XOR gate.

(1) XOR gate

For XOR gate, G(xi, yi) = xi⊕yi = (a1wi
⊕ b1wi

)⊕ (a2wi
⊕ b2wi

). Define aXOR(Vw1 ,Vw2 )
= aw1⊕aw2

and bXOR(Vw1 ,Vw2 )
= bw1 ⊕ bw2 . If we just simply switch the position of the each value,

G(xi, yi) = XOR(aw1 ⊕ aw2 , bw1 ⊕ bw2).

Obviously, the whole process is not required any communication.

(2) NOT gate

For NOT gate, P1 only has aw1 and P2 only has bw1 . Thus, define aNOT (Vw1 )
= 1 − aw1 and

bNOT (Vw1 )
= 1− bw1 . Then, we can get

G(xi, yi) = (1− aw1)⊕ (1− bw1) = −(aw1 ⊕ bw1)(mod 2)

17-2



(3) AND gate

To be continued in the next lecture.

17-3


