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One-way Function = Hardcore Predicate

Theorem (Hardcore Predicate

If £:{0,1}" — {0,1}" is a OWF, then:
o g: {0,1}* — {0,1}*", where g(x,r) == ( f(z),r ), is also a OWF

o h(x,r):= (x,r) is a hardcore predicate for g(x,r)

e Think: Reduction?

e Main challenge: Adversary A for h only outputs 1 bit. Need to
build an inverter B for f that outputs n bits.
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e Assumption: Given g(z,r) = (f(z),r), adversary A always outputs
h(z,r) correctly
e Inverter B:
o Compute =} <+ A(f(x),e;) for every i € [n] where:

e;=(0,...,0,1,...,0)
———
(i—1)-times

*

o Output z* =za7 ...z},
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Warmup Proof (2)

Assumption: Given g(z,7) = (f(x),r), adversary A outputs h(z,r)
with probability 3/4 + e(n) (over choices of (x,r))
Define set S:

S = {x: Pr[r < {0,1}" : A(f(2),7) = h(z,r)] > i+e2n)}

Pr[z € S] > e(n)/2
Inverter B:

Let a := A(f(2),e; + ) and b := A(f(z),r), for r < {0,1}"
Compute c:=a® b

¢ = z; with probability % + ¢ (Union Bound)

Repeat and take majority to obtain z; s.t. 7 = x; with prob.
1 — negl(n)

Output 2* ==z} ...z

*
n



Full Proof

Homework!
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Food for Thought on PRGs

e OWF — PRG: [Impagliazzo-Levin-Luby-89| and [Hastad-90|
More Efficient Constructions: |Vadhan-Zheng-12|

Computational analogues of Entropy

Non-cryptographic PRGs and Derandomization:
[Nisan-Wigderson-88|
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Going beyond Poly Stretch

@ PRGs can only generate polynomially long pseudorandom strings

e Think: How to efficiently generate exponentially long
pseudorandom strings?

Idea: Functions that index exponentially long pseudorandom strings
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Random Functions

o F, := set of all functions that map inputs from {0, 1}" to {0, 1}¢()
e Think: What is |F,|?

e A random function is f & F,
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Oracle Algorithms

Oracle O maps queries g € {0,1}" to {0, 1}/

Oracle algorithm A with “oracle access” to O is denoted as A°

e Time measure: Querying and receiving an answer from O takes
unit time

@ Think: Definition of PPT and n.u. PPT for oracle algorithms
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Oracle Indistinguishability

Definition (Oracle Ensemble)

A sequence {Oy, }nen is an oracle ensemble if Vn € N, O,, is a
distribution over the set of all functions f : {0,1}"™ — {0, 1}

Definition (Oracle Indistinguishability)

Oracle ensembles {02} and {O}} are computationally indistinguishable
if for every n.u. PPT oracle machine D, there exists a negligible
function p(-) s.t.:

‘Pr[feOg:Df(ln)zl] —Pr{f(—O}l:Df(ln)zlﬂgu(n)

v
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function (PRF) if:
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Pseudorandom Functions

Intuition: An efficiently computable function that “looks like” a random
function

Definition (Pseudorandom Functions)

A family of functions {f, : {0,1}" — {0,1}*™} is a pseudorandom
function (PRF) if:

o Efficient Computation: There exists a PPT F s.t. F(s,z)
efficiently computes the function fs(z)

o Indistinguishability:

{s£{0,1}”;fs}z{f<ifn;f}

Typically, £(n) will be equal to n
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PRF from PRG |Goldreich-Goldwasser-Micali|

Goal: Construct a PRF {fs: {0,1}" — {0,1}"} from a length-doubling
PRG G : {0,1}* — {0,1}?"

Construction of f:
o G(s) = Go(s),Gi(s) where Go, Gy : {0,1}" — {0,1}"

o fs(x) =Gy, (Gwn—l (- Gy (8)- - ))
o Think: Proof?
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e PRFs from number-theoretic assumptions |Naor-Reingold97],
lattices [Banerjee-Peikert-Rosen12]
e PRFs with "Punctured" Keys |Sahai-Watersl4]

e Constrained PRFs |Boneh-Waters13, Kiayias-Papadopoulos-
Triandopoulos-Zacharias13,Boyle-Goldwasser-Ivan14|
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Food for Thought on PRFs

PRFs from number-theoretic assumptions |Naor-Reingold97],
lattices [Banerjee-Peikert-Rosen12]

PRFs with "Punctured" Keys |Sahai-Waters14]

Constrained PRFs |Boneh-Waters13, Kiayias-Papadopoulos-
Triandopoulos-Zacharias13,Boyle-Goldwasser-Ivan14|

Related-key Security |Bellare-Cash10[: Should evaluation of fs(z)
help predict fg(x)?
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Food for Thought on PRFs

e PRFs from number-theoretic assumptions |Naor-Reingold97],
lattices [Banerjee-Peikert-Rosen12]

e PRFs with "Punctured" Keys |Sahai-Watersl4]

e Constrained PRFs |Boneh-Waters13, Kiayias-Papadopoulos-
Triandopoulos-Zacharias13,Boyle-Goldwasser-Ivan14|

e Related-key Security |Bellare-Cash10]: Should evaluation of fs(x)
help predict fg(x)?

e Key-homomorphic PRFs
[Boneh-Lewi-Montgomery-Raghunathan13]: Given fs(z) and
fsr(x), compute fo(s¢)(T)
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