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Recall: PRG from OWF

Three steps:
Step 1: OWF (OWP) =⇒ Hardcore Predicate for OWF (OWP)
Step 2: Hardcore Predicate for OWF (OWP) =⇒ One-bit stretch
PRG
Step 3: One-bit stretch PRG =⇒ Poly-stretch PRG

Last time: Step 2 for OWP and Step 3

Today: Step 1
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One-way Function =⇒ Hardcore Predicate

Theorem (Hardcore Predicate [Goldreich-Levin])
If f : {0, 1}n → {0, 1}n is a OWF, then:

g : {0, 1}2n → {0, 1}2n, where g(x, r) := ( f(x), r ), is also a OWF
h(x, r) := 〈x, r〉 is a hardcore predicate for g(x, r)

Think: Reduction?
Main challenge: Adversary A for h only outputs 1 bit. Need to
build an inverter B for f that outputs n bits.
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Warmup Proof (1)

Assumption: Given g(x, r) = (f(x), r), adversary A always outputs
h(x, r) correctly

Inverter B:

Compute x∗i ← A(f(x), ei) for every i ∈ [n] where:

ei = ( 0, . . . , 0︸ ︷︷ ︸
(i−1)-times

, 1, . . . , 0)

Output x∗ = x∗1 . . . x
∗
n
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Warmup Proof (2)

Assumption: Given g(x, r) = (f(x), r), adversary A outputs h(x, r)
with probability 3/4 + ε(n) (over choices of (x, r))

Define set S:

S :=

{
x : Pr[r

$←{0, 1}n : A(f(x), r) = h(x, r)] >
3

4
+
ε(n)

2

}
Pr[x ∈ S] > ε(n)/2

Inverter B:

Let a := A(f(x), ei + r) and b := A(f(x), r), for r $←{0, 1}n
Compute c := a⊕ b
c = xi with probability 1

2 + ε (Union Bound)
Repeat and take majority to obtain x∗i s.t. x∗i = xi with prob.
1− negl(n)
Output x∗ = x∗1 . . . x

∗
n
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Full Proof

Homework!
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Food for Thought on PRGs

OWF =⇒ PRG: [Impagliazzo-Levin-Luby-89] and [Hastad-90]

More Efficient Constructions: [Vadhan-Zheng-12]
Computational analogues of Entropy
Non-cryptographic PRGs and Derandomization:
[Nisan-Wigderson-88]
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Going beyond Poly Stretch

PRGs can only generate polynomially long pseudorandom strings
Think: How to efficiently generate exponentially long
pseudorandom strings?

Idea: Functions that index exponentially long pseudorandom strings
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Random Functions

Fn := set of all functions that map inputs from {0, 1}n to {0, 1}`(n)

Think: What is |Fn|?
A random function is f $←Fn

Lecture 6: Pseudorandomness - II 9 / 15



Random Functions

Fn := set of all functions that map inputs from {0, 1}n to {0, 1}`(n)

Think: What is |Fn|?

A random function is f $←Fn

Lecture 6: Pseudorandomness - II 9 / 15



Random Functions

Fn := set of all functions that map inputs from {0, 1}n to {0, 1}`(n)

Think: What is |Fn|?
A random function is f $←Fn

Lecture 6: Pseudorandomness - II 9 / 15



Oracle Algorithms

Oracle O maps queries q ∈ {0, 1}n to {0, 1}`(n)

Oracle algorithm A with “oracle access” to O is denoted as AO

Time measure: Querying and receiving an answer from O takes
unit time
Think: Definition of PPT and n.u. PPT for oracle algorithms
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Oracle Indistinguishability

Definition (Oracle Ensemble)
A sequence {On}n∈N is an oracle ensemble if ∀n ∈ N, On is a
distribution over the set of all functions f : {0, 1}n → {0, 1}`(n)

Definition (Oracle Indistinguishability)
Oracle ensembles {O0

n} and {O1
n} are computationally indistinguishable

if for every n.u. PPT oracle machine D, there exists a negligible
function µ(·) s.t.:∣∣∣Pr [f ← O0

n : Df (1n) = 1
]
− Pr

[
f ← O1

n : Df (1n) = 1
]∣∣∣ 6 µ(n)
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Pseudorandom Functions

Intuition: An efficiently computable function that “looks like” a random
function

Definition (Pseudorandom Functions)

A family of functions {fs : {0, 1}n → {0, 1}`(n)} is a pseudorandom
function (PRF) if:

Efficient Computation: There exists a PPT F s.t. F (s, x)
efficiently computes the function fs(x)
Indistinguishability:{

s
$←{0, 1}n : fs

}
≈
{
f

$←Fn : f
}

Typically, `(n) will be equal to n
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PRF from PRG [Goldreich-Goldwasser-Micali]

Goal: Construct a PRF {fs : {0, 1}n → {0, 1}n} from a length-doubling
PRG G : {0, 1}n → {0, 1}2n

Construction of fs:

G(s) = G0(s), G1(s) where G0, G1 : {0, 1}n → {0, 1}n

fs(x) := Gxn

(
Gxn−1 (· · ·Gx1 (s) · · · )

)
Think: Proof?
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Food for Thought on PRFs

PRFs from number-theoretic assumptions [Naor-Reingold97],
lattices [Banerjee-Peikert-Rosen12]

PRFs with "Punctured" Keys [Sahai-Waters14]
Constrained PRFs [Boneh-Waters13,Kiayias-Papadopoulos-
Triandopoulos-Zacharias13,Boyle-Goldwasser-Ivan14]
Related-key Security [Bellare-Cash10]: Should evaluation of fs(x)
help predict fs′(x)?
Key-homomorphic PRFs
[Boneh-Lewi-Montgomery-Raghunathan13]: Given fs(x) and
fs′(x), compute fg(s,s′)(x)
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