Secure Computation - II
(Garbled Circuits)

Lecture 14
Secure Two-Party Computation from Garbled Circuits
Garbled Circuits

[Yao86]
Garbled Circuits

[Yao86]
Goal: “Garble” (Circuit=\(C\), input=\(x\)) s.t. (\(C_{\text{garble}}, x_{\text{garble}}\)) only reveals \(C(x)\)
Syntax

- **Two algorithms**: \((\text{Garble}, \text{Eval})\)
 - \(\text{Garble}(C)\) outputs \((C_{\text{garble}}, x_{\text{garble}})\)
 - \(\text{Eval}(C_{\text{garble}}, x_{\text{garble}})\) outputs a value \(z\)
Syntax

- **Two algorithms**: \((\text{Garble}, \text{Eval})\)
 - \(\text{Garble}(C)\) outputs \((C_{\text{garble}}, x_{\text{garble}})\)
 - \(\text{Eval}(C_{\text{garble}}, x_{\text{garble}})\) outputs a value \(z\)

- Correctness:

 For every \((C, x)\),

 \[
 \Pr[C(x) = \text{Eval}(C_{\text{garble}}, x_{\text{garble}}) \mid (C_{\text{garble}}, x_{\text{garble}}) = \text{Garble}(C, x)] = 1 - \text{negl}(n)
 \]
Security

There exists a PPT simulator \(S \) s.t. for every \((C,x)\),

\[
(C_{\text{garble}},x_{\text{garble}}) \sim S(1^n, C, C(x))
\]

where \((C_{\text{garble}},x_{\text{garble}}) = \text{Garble}(C,x)\)
There exists a PPT simulator S s.t. for every (C,x),

$$(C_{\text{garble}}, x_{\text{garble}}) \sim S(1^n, C, C(x))$$

where $(C_{\text{garble}}, x_{\text{garble}}) = \text{Garble}(C, x)$

- Hiding C: Use universal circuit and pass C as input to the universal circuit
Garbled Circuits
[Yao86]

Garble(C, x):
- Pick random **labels** W_0, W_1 for each wire
Garbled Circuits

[Yao86]

Garble(C,x):
- Pick random **labels** W_0, W_1 for each wire
Garbled Circuits

[Yao86]

Garble(C,x):

- Pick random **labels** W_0, W_1 for each wire
- “Encrypt” truth table of each gate

- AND
- OR
- NOT

- A_0, A_1
- B_0, B_1
- C_0, C_1
- D_0, D_1
- E_0, E_1
- F_0, F_1
- G_0, G_1
- H_0, H_1
- I_0, I_1
Garbled Circuits

[Yao86]

Garble(C,x):

- Pick random **labels** W_0,W_1 for each wire
- “Encrypt” truth table of each gate
- **Garbled Circuit** C_{garble} = all encrypted gates
Garbled Circuits

[Yao86]

Garble(C,x):

- Pick random labels W_0, W_1 for each wire
- “Encrypt” truth table of each gate
- **Garbled Circuit** C_{garble} = all encrypted gates
- **Garbled Input** x_{garble} = one label per wire
Garbled Circuits
[Yao86]

Garble(C,x):
• Pick random labels \(W_0, W_1 \) for each wire
• “Encrypt” truth table of each gate

• Garbled Circuit \(C_{\text{garble}} \) = all encrypted gates
• Garbled Input \(x_{\text{garble}} \) = one label per wire

Eval(\(C_{\text{garble}}, x_{\text{garble}} \)):
• Only one ciphertext per gate is decryptable
Garbled Circuits

[Yao86]

Garble\(C, x\):
- Pick random labels \(W_0, W_1\) for each wire
- “Encrypt” truth table of each gate
- **Garbled Circuit** \(C_{\text{garble}}\) = all encrypted gates
- **Garbled Input** \(x_{\text{garble}}\) = one label per wire

\[\text{Eval}(C_{\text{garble}}, x_{\text{garble}}):\]
- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire
Garbled Circuits

[Yao86]

- **Garble(C,x):**
 - Pick random **labels** \(W_0, W_1\) for each wire
 - “Encrypt” truth table of each gate
 - **Garbled Circuit** \(C_{\text{garble}}\) = all encrypted gates
 - **Garbled Input** \(x_{\text{garble}}\) = one label per wire

- **Eval\((C_{\text{garble}}, x_{\text{garble}})\):**
 - Only one ciphertext per gate is decryptable
 - Result of decryption = value on outgoing wire
Garbled Circuits

- **AND**, **OR**, and **NOT**

\[\begin{align*}
A_0, A_1 & \rightarrow E_0, E_1 \\
B_0, B_1 & \rightarrow F_0, F_1 \\
C_0, C_1 & \rightarrow G_0, G_1 \\
D_0, D_1 & \rightarrow H_0, H_1
\end{align*} \]

- **Garble** \((\text{C}, \text{x})\):
 - Pick random **labels** \(W_0, W_1\) for each wire
 - “Encrypt” truth table of each gate

 - **Garbled Circuit** \(C_{\text{garble}}\) = all encrypted gates

 - **Garbled Input** \(x_{\text{garble}}\) = one label per wire

- **Eval** \((C_{\text{garble}}, x_{\text{garble}})\):
 - Only one ciphertext per gate is decryptable
 - Result of decryption = value on outgoing wire

\[\text{Yao86} \]
Garbled Circuits

[Yao86]

Garble(C,x):
- Pick random labels W_0,W_1 for each wire
- “Encrypt” truth table of each gate
- **Garbled Circuit** C_{garble} = all encrypted gates
- **Garbled Input** x_{garble} = one label per wire

Eval(C_{\text{garble}},x_{\text{garble}}):
- Only one ciphertext per gate is decryptable
- Result of decryption = value on outgoing wire
The finer details

Privacy (intuition):

• For each wire (including input wires), adversary only sees one label W_b
The finer details

Privacy (intuition):

• For each wire (including input wires), adversary only sees one label W_b
• The 4 entries in each encrypted table are in random order
The finer details

Privacy (intuition):

- For each wire (including input wires), adversary only sees one label W_b
- The 4 entries in each encrypted table are in random order
- Adversary tries to decrypt each entry. Only one decryption succeeds.
The finer details

Privacy (intuition):

- For each wire (including input wires), adversary only sees one label W_b
- The 4 entries in each encrypted table are in random order
- Adversary tries to decrypt each entry. Only one decryption succeeds.
- Adversary has no idea whether $b=0$ or $b=1$ for any label W_b
The finer details

Privacy (intuition):

• For each wire (including input wires), adversary only sees **one** label W_b

• The 4 entries in each encrypted table are in random order

• Adversary tries to decrypt each entry. Only one decryption succeeds.

• Adversary has no idea whether $b=0$ or $b=1$ for any label W_b

Interpreting the output:

• For every output wire, reveal the mappings (b, W_b)
Secure Computation from Garbled Circuits

Goal: Compute $f(x, y)$

x

y
Secure Computation from Garbled Circuits

Goal: Compute $f(x, y)$

1. Garbled circuit f_{garble}
2. Garbled input x_{garble}
Secure Computation from Garbled Circuits

Goal: Compute $f(x, y)$

1. Garbled circuit f_{garble}
2. Garbled input x_{garble}

Problem: How to transmit y_{garble}?
Secure Computation from Garbled Circuits

Goal: Compute $f(x, y)$

1. Garbled circuit f_{garble}
2. Garbled input x_{garble}

All Labels for 2nd input

y_{garble}
Secure Computation from Garbled Circuits

Goal: Compute $f(x,y)$

1. Garbled circuit f_{garble}
2. Garbled input x_{garble}

Want:
- Alice learns nothing about y
Secure Computation from Garbled Circuits

Goal: Compute $f(x,y)$

1. Garbled circuit f_{garble}
2. Garbled input x_{garble}

Want:
- Alice learns nothing about y
- Bob does not learn the other labels
Oblivious Transfer

$W_0, W_1 \rightarrow b \rightarrow W_b \rightarrow b$

[Rabin81, Even-Goldreich-Lempel-85]
Oblivious Transfer

Want:
- Alice does not learn b
- Bob does not learn W_{1-b}

[Rabin81, Even-Goldreich-Lempel-85]