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The Setting

Alice wants to send a message m to Bob in such a manner
that upon receipt, Bob can determine whether the message
arrived untampered or not

Want: Digital analogue of physical signatures
Alice (“signer”) signs a message m to produce a signature σ
Bob (“verifier”) can verify that σ is indeed generated for m
Adversary cannot forge a signature
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1 Private Key: Message Authentication Codes

2 Public Key: Digital Signatures
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Message Authentication Code (MAC)

Signer and Verifier “share a secret”
Key Generation: Gen(1n) outputs secret key k
Sign: Tagk(m) outputs a tag σ
Verify: Verk(m,σ) is 1 if and only if σ is a valid tag of m
under the secret key k

Security: An adversary can observe multiple (message,tag) pairs
of its choice, but still cannot forge a tag on a new message
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MAC: Algorithms

k ← Gen(1n)

σ ← Tagk(m)

Verk :M×T → {0, 1}
Correctness:
Pr[k ← Gen(1n), σ ← Tagk(m) : Verk(m,σ) = 1] = 1

Security (UF-CMA): For all n.u. PPT adversary A there
exists a negligible ν(·) such that:

Pr
[

k←Gen(1n)

(m,σ)←ATagk(·)(1n)
:
A did not query m ∧

Verk(m,σ)=1

]
6 ν(n)

Lecture 12: Authentication



MAC: Algorithms

k ← Gen(1n)

σ ← Tagk(m)

Verk :M×T → {0, 1}
Correctness:
Pr[k ← Gen(1n), σ ← Tagk(m) : Verk(m,σ) = 1] = 1

Security (UF-CMA): For all n.u. PPT adversary A there
exists a negligible ν(·) such that:

Pr
[

k←Gen(1n)

(m,σ)←ATagk(·)(1n)
:
A did not query m ∧

Verk(m,σ)=1

]
6 ν(n)

Lecture 12: Authentication



MAC: Algorithms

k ← Gen(1n)

σ ← Tagk(m)

Verk :M×T → {0, 1}

Correctness:
Pr[k ← Gen(1n), σ ← Tagk(m) : Verk(m,σ) = 1] = 1

Security (UF-CMA): For all n.u. PPT adversary A there
exists a negligible ν(·) such that:

Pr
[

k←Gen(1n)

(m,σ)←ATagk(·)(1n)
:
A did not query m ∧

Verk(m,σ)=1

]
6 ν(n)

Lecture 12: Authentication



MAC: Algorithms

k ← Gen(1n)

σ ← Tagk(m)

Verk :M×T → {0, 1}
Correctness:
Pr[k ← Gen(1n), σ ← Tagk(m) : Verk(m,σ) = 1] = 1

Security (UF-CMA): For all n.u. PPT adversary A there
exists a negligible ν(·) such that:

Pr
[

k←Gen(1n)

(m,σ)←ATagk(·)(1n)
:
A did not query m ∧

Verk(m,σ)=1

]
6 ν(n)

Lecture 12: Authentication



MAC: Algorithms

k ← Gen(1n)

σ ← Tagk(m)

Verk :M×T → {0, 1}
Correctness:
Pr[k ← Gen(1n), σ ← Tagk(m) : Verk(m,σ) = 1] = 1

Security (UF-CMA): For all n.u. PPT adversary A there
exists a negligible ν(·) such that:

Pr
[

k←Gen(1n)

(m,σ)←ATagk(·)(1n)
:
A did not query m ∧

Verk(m,σ)=1

]
6 ν(n)

Lecture 12: Authentication



MAC: Construction

Theorem
PRF =⇒ MAC

Gen(1n): Output k $←{0, 1}n

Tagk(m): Output fk(m)

Verk(m,σ): Output fk(m)
?
= σ

Think: Proof?
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One-time MAC

Weaker Security: Adversary is allowed only one query

Advantage: Unconditional security!
Analogue of OTP for authentication
Think & Read
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Digital Signature

Only Signer can sign but everyone can verify

Key Generation: (sk, pk)← Gen(1n)

Sign: σ ← Signsk(m)

Verify: Verpk(m,σ) :M×S → {0, 1}
Correctness:

Pr[(sk, pk)← Gen(1n), σ ← Signsk(m) : Verpk(m,σ) = 1] = 1

Security (UF-CMA):

Pr
[

(sk,pk)←Gen(1n)

(m,σ)←ASignsk(·)(1n,pk)
:
A did not query m ∧

Verpk(m,σ)=1

]
6 ν(n)

One-time Signatures: Adversary is allowed only one query
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One-time Signature: Construction [Lamport]

Let f be a one-way function

sk :=
(
x01 x

0
2 ... x

0
n

x11 x
1
2 ... x

1
n

)
, where xbi

$←{0, 1}n for all i ∈ [n] and
b ∈ {0, 1}

pk :=
(
y01 y

0
2 ... y

0
n

y11 y
1
2 ... y

1
n

)
, where ybi = f(xbi) for all i ∈ [n] and

b ∈ {0, 1}
Signsk(m) : σ := (xm1

1 , xm2
2 , . . . , xmn

n )

Verpk(m,σ) : ∧ i∈[n] f(σi)
?
= ymi

i

Think: Proof?
Think: How to sign long messages?

Lecture 12: Authentication



One-time Signature: Construction [Lamport]

Let f be a one-way function

sk :=
(
x01 x

0
2 ... x

0
n

x11 x
1
2 ... x

1
n

)
, where xbi

$←{0, 1}n for all i ∈ [n] and
b ∈ {0, 1}

pk :=
(
y01 y

0
2 ... y

0
n

y11 y
1
2 ... y

1
n

)
, where ybi = f(xbi) for all i ∈ [n] and

b ∈ {0, 1}
Signsk(m) : σ := (xm1

1 , xm2
2 , . . . , xmn

n )

Verpk(m,σ) : ∧ i∈[n] f(σi)
?
= ymi

i

Think: Proof?
Think: How to sign long messages?

Lecture 12: Authentication



One-time Signature: Construction [Lamport]

Let f be a one-way function

sk :=
(
x01 x

0
2 ... x

0
n

x11 x
1
2 ... x

1
n

)
, where xbi

$←{0, 1}n for all i ∈ [n] and
b ∈ {0, 1}

pk :=
(
y01 y

0
2 ... y

0
n

y11 y
1
2 ... y

1
n

)
, where ybi = f(xbi) for all i ∈ [n] and

b ∈ {0, 1}

Signsk(m) : σ := (xm1
1 , xm2

2 , . . . , xmn
n )

Verpk(m,σ) : ∧ i∈[n] f(σi)
?
= ymi

i

Think: Proof?
Think: How to sign long messages?

Lecture 12: Authentication



One-time Signature: Construction [Lamport]

Let f be a one-way function

sk :=
(
x01 x

0
2 ... x

0
n

x11 x
1
2 ... x

1
n

)
, where xbi

$←{0, 1}n for all i ∈ [n] and
b ∈ {0, 1}

pk :=
(
y01 y

0
2 ... y

0
n

y11 y
1
2 ... y

1
n

)
, where ybi = f(xbi) for all i ∈ [n] and

b ∈ {0, 1}
Signsk(m) : σ := (xm1

1 , xm2
2 , . . . , xmn

n )

Verpk(m,σ) : ∧ i∈[n] f(σi)
?
= ymi

i

Think: Proof?
Think: How to sign long messages?

Lecture 12: Authentication



One-time Signature: Construction [Lamport]

Let f be a one-way function

sk :=
(
x01 x

0
2 ... x

0
n

x11 x
1
2 ... x

1
n

)
, where xbi

$←{0, 1}n for all i ∈ [n] and
b ∈ {0, 1}

pk :=
(
y01 y

0
2 ... y

0
n

y11 y
1
2 ... y

1
n

)
, where ybi = f(xbi) for all i ∈ [n] and

b ∈ {0, 1}
Signsk(m) : σ := (xm1

1 , xm2
2 , . . . , xmn

n )

Verpk(m,σ) : ∧ i∈[n] f(σi)
?
= ymi

i

Think: Proof?
Think: How to sign long messages?

Lecture 12: Authentication



One-time Signature: Construction [Lamport]

Let f be a one-way function

sk :=
(
x01 x

0
2 ... x

0
n

x11 x
1
2 ... x

1
n

)
, where xbi

$←{0, 1}n for all i ∈ [n] and
b ∈ {0, 1}

pk :=
(
y01 y

0
2 ... y

0
n

y11 y
1
2 ... y

1
n

)
, where ybi = f(xbi) for all i ∈ [n] and

b ∈ {0, 1}
Signsk(m) : σ := (xm1

1 , xm2
2 , . . . , xmn

n )

Verpk(m,σ) : ∧ i∈[n] f(σi)
?
= ymi

i

Think: Proof?

Think: How to sign long messages?

Lecture 12: Authentication



One-time Signature: Construction [Lamport]

Let f be a one-way function

sk :=
(
x01 x

0
2 ... x

0
n

x11 x
1
2 ... x

1
n

)
, where xbi

$←{0, 1}n for all i ∈ [n] and
b ∈ {0, 1}

pk :=
(
y01 y

0
2 ... y

0
n

y11 y
1
2 ... y

1
n

)
, where ybi = f(xbi) for all i ∈ [n] and

b ∈ {0, 1}
Signsk(m) : σ := (xm1

1 , xm2
2 , . . . , xmn

n )

Verpk(m,σ) : ∧ i∈[n] f(σi)
?
= ymi

i

Think: Proof?
Think: How to sign long messages?

Lecture 12: Authentication



Collision-resistant Hash Functions

Intuition: A compressing function h for which it is hard to
find x, x′ s.t. x 6= x′ but h(x) = h(x′)

Impossible for non-uniform adversary notion

Think: Why?

Need to consider a family of hash functions
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Collision-resistant Hash Function Family

Definition (Collision-resistant Hash Function Family)

A family of functions H = {hi : Di → Ri}i∈I is a
collision-resistant hash function family (CRHF) if:

Easy to Sample: There exists a PPT Gen s.t.:
i← Gen(1n), i ∈ I
Compression: |Ri| < |Di|
Easy to Evaluate: There exists a poly-time algorithm
Eval s.t. given x ∈ Di, i ∈ I, Eval(x, i) = hi(x)

Collision Resistance: For all n.u. PPT A, ∃ negligible
function µ(·) s.t.

Pr

[
i

$← Gen(1n),
(x, x′)← A(1n, i)

:
x 6= x′ ∧
hi(x) = hi(x

′)

]
6 µ(n)
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Remarks

One-bit compression implies arbitrary bit compression

Think: Proof?
Read: Merkle Trees

Range cannot be too small

Enumeration Attacks
Birthday Attack

Existence:

Unlikely to be constructed from OWF or OWP [Simon98]
Can be constructed from number-theoretic assumptions
such as factoring, discrete log
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Remarks (contd.)

Weaker notion: Universal One-way Hash Functions
(UOWHF)

Pr

 (x, state)← A(1n),
i

$← Gen(1n),
x′ ← A(i, state)

:
x 6= x′ ∧
hi(x) = hi(x

′)

 6 µ(n)

Can be constructed from OWF [Rompel90]
Suffices for Digital Signatures [Naor-Yung89]
More efficient construction
[Haitner-Holenstein-Reingold-Vadhan-Wee10]
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One-time Signatures for Long Messages

Let H = {hi : {0, 1}∗ → {0, 1}n}i∈I be a CRHF

Idea: Sign hi(m) instead of m using Lamport signature
Think: Proof?
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Multi-message Signatures (via chain)

(sk0, pk0)
$← Gen(1n)

Initialize: σ̃i = ∅, i = 1

To sign mi:

(ski, pki)
$← Gen(1n)

σ̃i ← Signski−1
(mi‖pki)

Output: σi = (i, σ̃i,mi, pki, σi−1)
Increment i

Think: Proof?
Think: How to reduce signature size?
Read: Tree-based signatures
Read: Efficient Signatures from Trapdoor Permutations in
the Random Oracle Model
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