

#### Automated Detection and Characterization of Pathological Online Behavior

Alexandra DeLucia\* Johns Hopkins University Emma Drobina\* University of Florida Chrysm Watson Ross University of New Mexico

Geoffrey Fairchild, Ashlynn Daughton, Elisabeth (Lissa) Moore Los Alamos National Laboratory

INDE Workshop, 8/5/2021

LA-UR-21-27759

Managed by Triad National Security, LLC, for the U.S. Department of Energy's NNSA.

\*Authors contributed equally

#### **Motivation**

- Investigate behavioral dynamics of online communities on a large scale
- Decrease amount of human expert effort required via machine learning
  - NOTE: we never intend to completely remove humans from the loop
- Machine learning task is discovery, characterization, and understanding
- Quantitatively test sociological theories and case studies



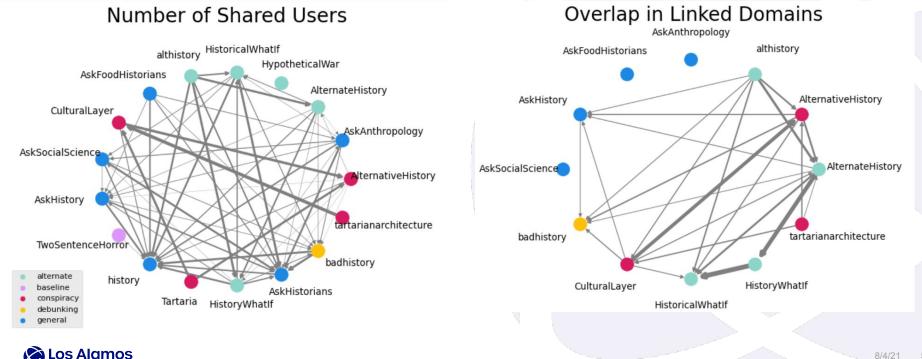
#### **Research Questions**

- How well can communities with pathological (dangerous) behavior be identified?
- How can modern machine learning technique be used to better understand online communities?
  - Requires explainable knowledge discovery capabilities
- How can we define an online community?
  - Shared content
  - Behaviors of members (and leaders)
  - Social network characteristics
- What do disparate online communities have in common?



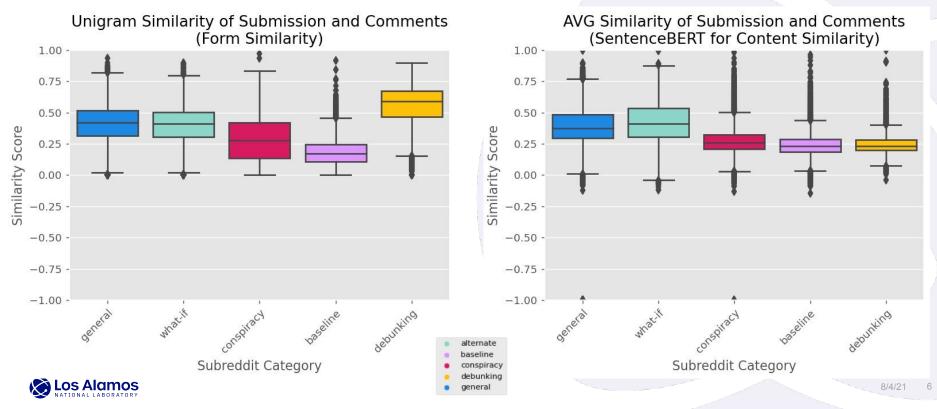
# **Data Collection**

- Curated list of 15 history-related subreddits
- One baseline creative writing subreddit
- Manually categorized into community type
- All subreddit data through June 1, 2021


| Category   | Name                                                                                   | Founded                                                            | Subscribers                                          | # Active                                       | Posts                                          |
|------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------------------|
| What-if    | HistoricalWhatIf<br>althistory<br>HistoryWhatIf<br>AlternateHistory<br>HypotheticalWar | 2011-05-21<br>2011-09-10<br>2014-12-26<br>2010-06-20<br>2013-07-06 | 76,328<br>8,203<br>81,106<br>67,693<br>396           | 17,959<br>2,137<br>16,941<br>14,185<br>58      | 12,906<br>2,418<br>28,068<br>13,028<br>53      |
| Conspiracy | CulturalLayer<br>tartarianarchitecture<br>AlternativeHistory<br>Tartaria               | 2017-09-10<br>2018-12-18<br>2008-08-03<br>2018-12-26               | 38,884<br>3,826<br>123,633<br>9,733                  | 3,964<br>575<br>10,577<br>1,551                | 2,454<br>1,727<br>6,983<br>1,211               |
| Debunking  | badhistory                                                                             | 2013-03-19                                                         | 248,373                                              | 26,339                                         | 6,345                                          |
| General    | AskHistory<br>history<br>AskSocialScience<br>AskAnthropology<br>AskFoodHistorians      | 2011-01-20<br>2008-01-25<br>2011-07-09<br>2013-03-10<br>2013-01-12 | 78,239<br>15,887,782<br>101,227<br>121,382<br>40,202 | 24,052<br>395,094<br>21,601<br>17,795<br>4,251 | 19,198<br>145,369<br>17,599<br>11,107<br>1,008 |
| Baseline   | TwoSentenceHorror                                                                      | 2014-03-05                                                         | 656,864                                              | 25,620                                         | 66,588                                         |
|            |                                                                                        |                                                                    |                                                      |                                                |                                                |



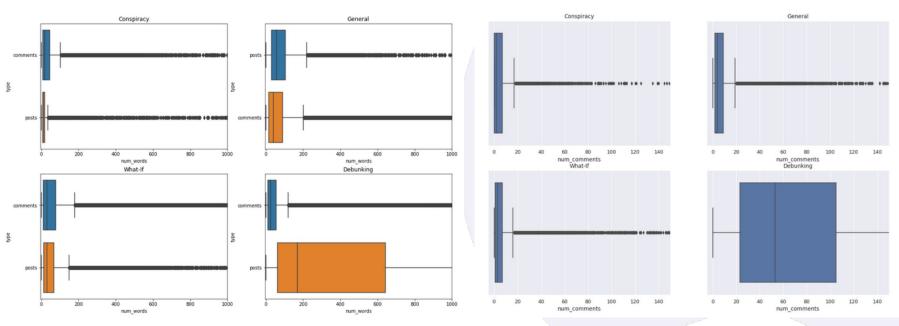
Collected with https://github.com/AADeLucia/retriever


## **Exploratory Data Analysis: Content and User Overlap**

Conspiracy-based communities may be more insular echo chambers.



# **Exploratory Data Analysis: Intra-Community Similarity**


Community types show statistically significant differences in characteristics



### **Exploratory Data Analysis: Post & Comment Metadata**

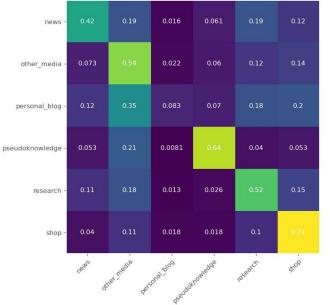
Distinct signals also appear in metadata such as word and per-post comments

Comment Distribution by Category



Wordcount Distribution by Category

.os Alamos


8/4/21

Goal: Understand how users introduce and discuss types of websites

- 1. Collect URLs from metadata and raw text and parse domain
- 2. Manually label domains into one of 13 categories
  - Modified from (Introne, 2018)
  - Pseudoknowledge, reference, science, shop, other media, etc
- 3. Supervised learning of domain category given a variety of post/comment features



- Train/Validation: 38,133 Test: 9,534
- Group historical, reference, science, academic together for better performance



AVG Train F1 (n=100) AVG Test F1 0.61 (0.027) 0.6 (0.027)

| Domain Category | Test Class | F1                              |  |
|-----------------|------------|---------------------------------|--|
| research        | 59.47%     | 0.71 (0.04)                     |  |
| other_media     | 23.94%     | 0.53 (0.015)                    |  |
| news            | 6.50%      | 0.29 (0.017)                    |  |
| personal_blog   | 4.80%      | 0.16 (0.025)                    |  |
| shop            | 3.42%      | 0.33 (0.035)                    |  |
| pseudoknowledge | 1.88%      | <b>0.35 (0.054)</b><br>8/4/21 9 |  |



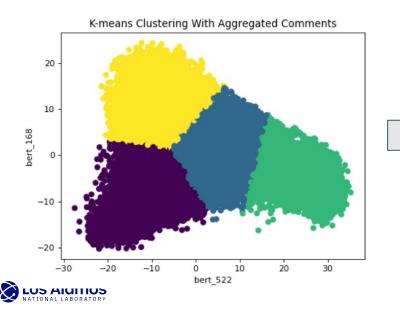
- Binary: Research vs. Pseudoknowledge
- Identifying one specific type of website domain is slightly easier task
- Low Pseudoknowledge precision is due to confusion with Wikipedia

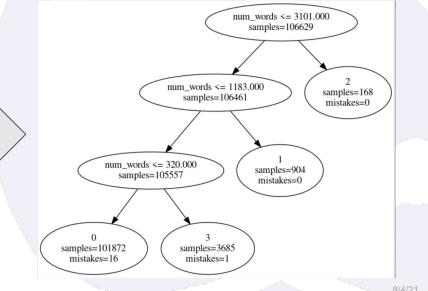
| Test (n=100)             | F1           | Precision     | Recall       |
|--------------------------|--------------|---------------|--------------|
| Pseudoknowledge (3.07 %) | 0.38 (0.079) | 0.26 (0.073)  | 0.81 (0.053) |
| Research (96.93%)        | 0.95 (0.026) | 0.99 (0.0016) | 0.91 (0.047) |



- Multiclass prediction of domain type is difficult for automated methods
- "Research" vs "Pseudoknowledge" is also difficult
- Exploratory clustering could be better suited to this task
- Issues
  - Different communities may use the same type of domain in different
  - Labels at the domain-level are coarse and do not capture the content on the specific webpage

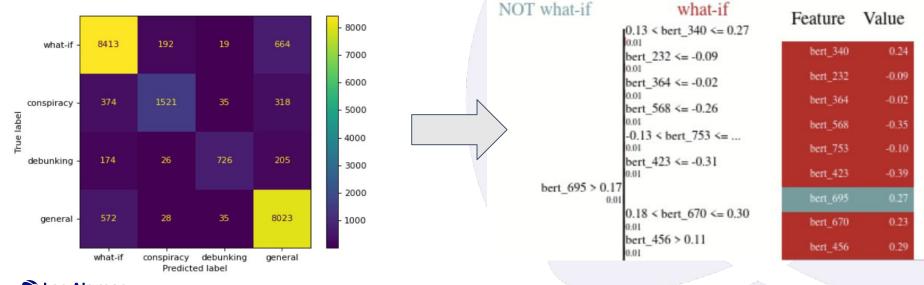



## Task: Explainable Clustering


- 1. Comments and their metadata are aggregated (mean, median, min, max, standard deviation) and combined with posts and post metadata
- 2. Current state-of-the-art for explainable clustering: combine k-means and decision trees
- 3. Incorporate supervised learning (using our category assignments as the ground truth) to get a better sense of the features



## Task: Explainable Clustering


- Clusters do not separate well
  - Rand score (cluster accuracy) of 61.0%
  - Explanations only focus on metadata





## Task: Explainable Clustering

- Supervised methods find significantly higher accuracy
  - 87.6% for random forests
  - 84.0% for neural network (by-class accuracy is more even)
- Classification depends primarily on text embeddings



# **Task: Shared Link Validity Detection**

- Join with auxiliary dataset from Newsguard
- Represent subreddits of interest as dynamic hypergraphs
- Preliminary results show vast majority of shared links are from reputable sites
  - Cross-posts and re-posts are rare and hard to detect
- Implication is that majority of misinformation arises purely from intra-community chatter and speculation



## **Summary (Challenge Problems)**

- Need for new, flexible methods tailored to knowledge discovery tasks in online platform data
  - Unsupervised methods
  - Explainability techniques
- Need for nuanced methods for detecting similar content, and dynamics surrounding content, that doesn't rely on shared links



## Thank you!

lissa@lanl.gov

