
Modeling High Performance Computing System Log Messages
for Early Prediction of Job Outcome

Alexandra DeLucia∗
Department of Computer Science & Mathematics

Rollins College
Winter Park, Florida
adelucia@rollins.edu

ABSTRACT
As the high performance computing community prepares for the
exascale computing era, progress in unsupervised computer mainte-
nance and error prevention becomes increasingly important. Com-
puter maintenance must become semi-supervised and eventually,
unsupervised, due to the large amount of information to monitor
from the machines, such as system logs, job logs, and temperature
reports. A human analyst cannot keep up with this large infor-
mation flow. Since unassisted human monitoring is not efficient,
we turn to other, semi-supervised machine learning methods. Our
work uses machine learning techniques to investigate correlations
between a computer’s system logs and job logs, specifically whether
system log behavior can predict the outcome of a job. Outcome
refers to the successful completion of a job.Wematch job log entries
with corresponding system log entries and evaluate the usefulness
of various system log features for outcome prediction. With these
features, we create a job prediction model and test its effectiveness
on predicting the outcome of a job at various points in the job’s
run time, such as number of messages into the job and time passed
since the job’s start.

CCS CONCEPTS
• Computing methodologies→ Supervised learning by clas-
sification;Topicmodeling; •Computer systems organization
→ Maintainability and maintenance;

KEYWORDS
topic modeling, system log analysis, job prediction, machine learn-
ing, high performance computing
ACM Reference format:
Alexandra DeLucia. 2018. Modeling High Performance Computing System
Log Messages for Early Prediction of Job Outcome. In Proceedings of Alexan-
dra DeLucia’s Senior Honors Thesis, Rollins College, Florida USA, May 2018
(Rollins College ’18), 10 pages.

∗This work was performed for Honors in the Major. This work was partially performed
during a summer internship sponsored by the Science Undergraduate Laboratory
Internship program, at the Ultrascale Systems Research Center (USRC) at Los Alamos
National Laboratory, supported by the U.S. Department of Energy contract DE-AC52-
06NA25396. The publication has been assigned the LANL identifier LA-UR-18-23745.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Rollins College ’18, May 2018, Rollins College, Florida USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
High performance computing (HPC), or supercomputing, is the
practice of aggregating powerful computers and using them in
parallel to solve complex computational problems. As these high
performance computers grow larger and more powerful in scale,
with some currently achieving petaflops per second, the challenge
in maintaining these computers also grows. The challenge lies in
not just keeping pace with the vast amount of data produced by
the system, but also analyzing this data for useful information
about the system’s health. The data is in the form of logs which
report on different aspects of the system, from the physical side,
such as the processing core temperatures and the computer power
usage, to the digital side, such as the processes running on the
computers. In our research we hope to alleviate this burden of
computer maintenance on system administrators by using machine
learning to semi-automate the analysis of system logs to predict
errors in programs, or jobs, that run on the computers. Predicting
that a job will fail, or worse that a compute node will fail, will help
administrators greatly with user support and system maintenance.

There are a multitude of system log analysis tools currently in
practice, but these techniques will not be useful in the exascale
computing era due to their very manual and, sometimes, system-
specific hard-coding. In order for a tool to stand the test of time
(and system architecture), it must be generalizable and not require
architecture-specific expertise. Since the current tools did not meet
these requirements, we decided to borrow system log analysis tech-
niques from a field other than systems—the field of data science.
Data science techniques have been successfully applied to other
fields, and we can follow their lead by treating the log analysis prob-
lem as a big data mining problem. High performance compute logs,
which are essentially text and numbers, are ripe for data science
analysis. We use a combination of numerical, temporal, and text
content analysis techniques to extract features, or create numerical
representations, of system logs. These representations are then used
as input to train a random forest model to predict job outcome.

The contribution of this work is the exploration of various meth-
ods in system log analysis and the creation of a model that can
predict the outcome of a job, referred to as a job state. We also
evaluate how well the model can predict the job outcome at various
stages in the job’s run time. The intention for this work is to be a
stepping stone in the path for a real-time job state prediction tool
for system administrators.

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


Rollins College ’18, May 2018, Rollins College, Florida USA A. DeLucia et al.

This work is organized as follows. We discuss the background
information of related works and the system and job logs used in
this experiment in Sections 2 and 3, respectively. Then we explore
the logs in Section 4 and discuss the system log feature extraction
techniques in Section 5. The details of the first phase of our experi-
ment, feature set model testing, is in Section 6, and the second phase,
model evaluation on early prediction, is in Section 7. The discussion
of the project applications and conclusion follow in Sections 8 and
9, respectively.

2 RELATEDWORK
This project is not the first venture into mining system logs (sys-
logs) to evaluate or monitor system performance, but as far as we
know, it is the first to mine syslogs specifically for job monitoring.
Most applications of syslog mining are anomaly detection [1], fault
diagnosis [12], and computer log event correlating [9]. Although
our analysis goals are different, we explored some of the syslog
analysis techniques used in these works. The current landscape of
syslog analysis has two main groups: a systems-oriented group and
a data science-embracing group.

The most common technique of syslog analysis in systems is
to create regular expression patterns for syslog lines, usually leav-
ing placeholders for numbers and other variables, and then use
these patterns to assign syslog lines into groups. This approach
mimics the system administrator job failure debugging process of
searching syslogs for keywords that indicate failure. The pattern
definitions are usually hand-coded, but some programs exist to
generate patterns automatically [10, 11]. We ventured away from
this technique because even though some tools can generate the
regular expressions, the patterns are still system-specific and not
generalizable across machines. However, we mimic this technique
in our project by grouping syslog lines based on their process tag,
described in Section 5.1.4.

The systems group is aware of limitations in its analysis tech-
niques in the face of system upgrades, which can change log format-
ting, rendering any defined regular expressions outdated [6]. This
self-awareness is indicated by the trend in log analysis research
toward applying data science techniques, such as relational analysis
and natural language processing techniques to system logs [1, 2].
This data science approach views the logs as a rich inhomogeneous
combination of text, numerical, and temporal data. We incorporate
this approach in our syslog feature extraction methods and the use
of a random forest classification model to predict the job outcome.

We have attempted to represent both approaches in our work in
order to explore and evaluate which syslog features work best for
our purpose.

3 AVAILABLE DATA
This experiment uses system logs (syslogs) and job logs from the
Wolf cluster hosted at Los Alamos National Lab. Wolf has 616 com-
pute nodes, each equipped with 64GB RAM and 16 processing cores.
The syslog file contained 2,116,952 lines collected over a one week
period and the job log contained 17,172 entries collected over a
17-day period. The two log files overlapped for a period of 5 days,
which contained 1,775 jobs and 1,074,157 syslog lines, excluding

cancelled jobs. In the following sections we provide background
knowledge on the structure and details of syslogs and job logs.

3.1 System Log Description
A system log, or syslog, is a log file of all recorded events on a
computer. In the case of a high performance computer, it is a file of
events recorded from all nodes, or individual computers, as shown
below in Figure 1. Each line in the log is one syslog message with a
timestamp, node ID, process tag, and message. The timestamp and
node ID together identify the time and node origin of each message.
This information is used later to match a message with the compute
job that created it. The process tag denotes the process that wrote
the message. In the example below, the process tags are “sshd" and
“temp_sensors".

<timestamp> <node ID> <process tag> : <message>

Figure 1: The format and example syslog lines from a high
performance computer.

As seen above, syslogs contains an inhomogeneous combination
of text, numerical, and temporal data. Conveniently, most of the text
is human-readable, which helps human analysts search through
the syslog with keywords to find specific content.

3.2 Job Log Description
A job is an allocation of resources to a user for a specified amount
of time. A user submits a piece of code that is too computationally
intensive to run on a single CPU, such as a molecular simulation, as
a job. The job log keeps records of all jobs that run on the machine.
The job log is maintained by the job scheduler, such as Moab or
Slurm (Note: the job log used in this experiment was maintained by
Moab). The log records details about the job including the job’s ID,
IDs of the nodes the job ran on, start and end time, and job state,
or outcome. An example job log is shown in Figure 2.

<Job ID> <User ID> <GroupID> <Job Name> <Job State>
<Partition> <Time Limit> <Start Time> <End Time> <Node
List> <Node Count> <Processor Count> <Work Directory>

Figure 2: Example job log entries from a high performance
computer.

The job state either indicates no inherent problem with the com-
putation (completed, cancelled, timeout), or that some problem
occurred (fail, node fail). The job state details are in Table 1.

2



Modeling High Performance Computing System Log Messages
for Early Prediction of Job Outcome Rollins College ’18, May 2018, Rollins College, Florida USA

Table 1: Description and categorization of job states. The
“cancelled" job state is not used in our experiment.

Job State Description Okay or Problem

CANCELLED* User cancelled the job Okay

COMPLETED Job completed successfully Okay

FAILED Job did not complete for some
reason (e.g. program bug) Problem

NODE_FAIL One or more of the job’s compute
nodes failed (e.g. filesystem error) Problem

TIMEOUT Job did not finished in the
allocated time limit Okay

3.2.1 A Note on Cancelled Jobs. While cancelled jobs are con-
sidered "okay", they give us no insight to possible problems on the
computer. Jobs are cancelled for reasons outside of the available
syslog knowledge. For example, a user can submit an unintended
program to run. No line of syslog can reflect this error, because
it is human error and not a computer error. For this reason jobs
that are cancelled are not used in this experiment. Instead,
we focused our attention on jobs that can be predicted based on
syslog: completed, failed, node fail, and timeout. The rest of the
experiment concerns only these four job states.

4 RAW DATA EXPLORATION
Before delving into syslog feature extraction, we explored the job
log and syslog datasets. We looked for features that could be used
later in the experiment and at general trends in jobs and syslogs.

Our job dataset had an uneven class, or state, distribution, as
shown in Figure 3. As expected, the states that are okay, i.e. com-
pleted and timeout, greatly outnumbered the jobs that were prob-
lematic, i.e. failed and node fail. This low frequency of problematic
jobs is good for users but less useful for training a model to predict
job state. In addition to an uneven state frequency, there was a trend
for jobs to be very short. The majority of jobs in our dataset were
under 30 minutes, with most running under 5 minutes as seen in
Figure 4. While most of the actual durations of the jobs were very
short, we noticed that the time limit setting for a lot of jobs was left
at the default value of 960 minutes. The short jobs ran for under
10% of their allocated time (Figure 5). This is most likely due to
users overestimating their job’s runtime, or more likely, accepting
a default time limit set by the scheduler. A possible consequence
for this discrepancy in planned versus actual job duration is lower
efficiency in job scheduling. A simple solution to this problem could
be to lower the default time limit for jobs. The consequence in the
scope of this experiment is that we have no way of predicting how
close a job is to finishing. We cannot use the time allocation to
judge how far along a job is since a job could be 100% finished only
10% into its allocated time. This affects Phase 2 of our experiment,
early prediction, discussed in Section 7.

We also examined the syslog messages that were associated
with the jobs. As to be expected, the general trend was for the
longer jobs to have more syslog messages than shorter jobs. A
breakdown of number of syslog messages associated with each
job in our dataset is in Figure 6. The data points are colored by

Figure 3: The uneven job state distribution in the dataset.
Jobs that are successful occur more frequently than those
that fail.

job state. The completed jobs do not have any noticeable trends,
but the timeout jobs mainly ended at the same time which lines
up with the default time allocation of 960 minutes. The failed jobs
would end at different times, so it is not the case that failed jobs
failed immediately. The node fail jobs have no noticeable trends.
A possible reason for the trend for syslog message frequency to
be directly related to job duration is due to scheduled processes.
For example, there is a process, TEMP_SENSORS, that logs the
processing core temperatures of the node every few minutes or so.
Other processes commonly run on the nodes but are not scheduled.

In Figure 7 we look at all of the processes that ran during a job,
grouped by job state. Each data point is the distribution of processes
that ran during a job. A process is identified by the process tag in
each syslog message, as shown in Figure 1. The distribution of
processes for a job was obtained by dividing the number of times
each process appeared by the number of syslog messages in the
job’s correlated syslog group. The two most common processes
occurred with similar frequency across job states, the OpenSSH
daemon (sshd) and the CPU temperature check (TEMP_SENSORS).
This was expected since the nodes track all logins, which occur
when a job begins, and the temperature check process is a regularly
scheduled event. However, there was variation in the frequency
of other processes, which indicated that some processes are more
correlatedwith one job state over the others. In Section 5, we discuss
using this process frequency distribution as a feature to describe
the syslog content.

5 SYSLOG FEATURE EXTRACTION
Syslogs are a challenge for data mining due to the unique inhomo-
geneous structure of text, numerical, and temporal data. A strategy
for handling this data type mix is to separate each data type and
analyze it individually. This has been done before with syslog fea-
ture extraction for anomaly detection [1]. In this work, we follow
their lead and separate the text and numerical and temporal content
for individual analysis. Different from other syslog analysis exper-
iments and current state-of-the-art high performance computing
(HPC) log analysis tools, we take a zero-resource approach and do
not provide any knowledge of the meaning of the syslog messages
to the statistical models. Since our work is geared towards exascale

3



Rollins College ’18, May 2018, Rollins College, Florida USA A. DeLucia et al.

Figure 4: The frequency of all job durations inminutes.Most
of the jobs were under 30 minutes.

Figure 5: The percentage of allocated time used by the jobs.
The default time allocated is 960 minutes.

Figure 6: Correlation between the job’s duration and the
number of syslogmessages it produced, colored by job state.

computing, we employ feature extraction techniques that do not
require human labor (i.e. avoiding manually-labeled features such
as crafted regular expressions). This adaptability ensures that the
features can be used in the face of HPC system upgrades or changes.

Figure 7: Frequency of processes that run during jobs,
grouped by job state.

The following sections discuss our approaches to text, numerical,
and temporal feature extraction.

5.1 Extracting Text Features with Topic
Modeling and Text Clustering

Figure 8: Text analysis techniques used in this experiment

After the text is separated from the numerical and temporal content,
it is analyzed from a variety of approaches. As shown in Figure 8,
we employ analysis techniques from the fields of natural language
processing, graph analysis, and HPC systems expertise. The end
goal of each analysis technique is to describe the text content from
a group of syslogs as a numerical feature vector. This compression
into a vector is to include the text content as input to the random
forest classification model used later in the experiment.

A random forest classifier, discussed in [4], is a collection, or
"forest", of decision trees. A decision tree is a hierarchy of decision
points which sort the input into different branches based on the
values from the inputted feature vector. Each branch ends in a leaf,
which represents the tree’s classification for the input. A leaf’s
label is from the set of possible outcomes, e.g. {completed, failed,
node fail, timeout}. The random forest classifier uses a collection of
decision trees and selects the most popular decision tree prediction
as the final prediction.

4



Modeling High Performance Computing System Log Messages
for Early Prediction of Job Outcome Rollins College ’18, May 2018, Rollins College, Florida USA

5.1.1 Term Frequency-Inverse Document Frequency (TF-IDF) Term
Weighting. Term frequency-inverse document frequency (TF-IDF)
term weighting is a popular “bag-of-words" natural language pro-
cessing technique[7]. It is the more sophisticated version of count-
ing all unique words, or “tokens", in a syslog group and normalizing
their frequency. This is a naive technique because there are words
that are common to all syslog groups, and so do not provide any
information to the content of any specific group. TF-IDF fixes this
problem by taking into account the token’s frequency across all
syslog groups. It is a weighted distribution across tokens that sup-
presses popular, i.e. uninformative, tokens, and boosts the unique
tokens. We use the Scikit-learn TF-IDF implementation in this
project[7].

5.1.2 Latent Dirichlet Allocation (LDA) Topic Modeling. Latent
Dirichlet allocation (LDA) topic modeling is another natural lan-
guage processing technique. LDA is a statistical model centered on
the idea that documents, i.e. syslog groups, havemultiple “topics"[3].
Topics are latent ideas represented by multiple tokens across doc-
uments. For example, a topic in a European history textbook is
royalty, and is identified by words such as princess, king, and queen.
This topic appears in the textbook across chapters among other top-
ics like war (Crusades, battle, army, armada) and religion (church,
Islam, Judaism). In this work, we used topic modeling to generate
topics, or groups of tokens from the syslogmessages, and then found
the distribution over each topic for a group of syslog messages. We
use MALLET, a Java package for natural language processing, to
find the syslog topics [5].

5.1.3 Infomap. Infomap is a graph clustering algorithm. In order
to use it, we created a graph of words, or tokens, from the syslog file.
Each node is a token and the edges exist between tokens that appear
in the same syslog line. The edges are weighted based on how often
tokens appear together. This represents the syslog as a relational
structure. This technique has been used in other syslog analyses
[1]. Once the graph is created, Infomap finds clusters by using the
probability of a random walker to transition within communities of
tokens and between communities[8]. Each cluster is a set of tokens.
The feature set is similar to the LDA feature set, except we find the
distribution over clusters instead of topics.

5.1.4 Syslog Process Tag Distribution. The syslog process tag,
or tag, distribution is the frequency of each unique tag in a group
of syslog messages. The tags were described in Section 5.1.4. This
feature set is the normalized distribution of process tags over a
group of syslog messages.

5.2 Extracting Numerical and Temporal
Features

As aforementioned, we analyzed the numerical and temporal con-
tent separately from the text content. For the numerical content we
calculated the average and standard deviation of all the numbers
present and the number of numbers for each syslog group. Similarly,
for the temporal content we calculated the average and standard
deviation of the time difference between successive timestamps for
each message in a syslog group.

5.3 Creating Feature Sets
We created feature sets by using each extracted feature alone and
creating a new set by pairing each text feature with the temporal
and numerical features. This resulted in a total of 11 feature sets,
shown in Figure 9. These feature sets are used to build the job state
prediction models in Phases 1 and 2.

Figure 9: List of feature sets used in experiment

(1) Temporal
(2) Numerical
(3) Temporal & Numerical
(4) Infomap distribution
(5) LDA distribution
(6) Tag type distribution
(7) TF-IDF distribution

(8) Infomap distribution with
Temporal & Numerical

(9) LDA distribution with
Temporal & Numerical

(10) Tag type distribution with
Temporal & Numerical

(11) TF-IDF distribution with
Temporal & Numerical

6 PHASE 1: CREATING JOB STATE
PREDICTION MODELS

This first phase of the experiment answers two of our research
questions:

(1) How accurately can we predict job state using syslog fea-
tures?

(2) Which syslog features are most informative?
Our approach to these two questions is described in the following
sections.

6.1 Experimental Overview

Figure 10: Overview of Phase 1 of the experiment

This phase of the experiment had three main steps, shown in Figure
10. The first step was matching the syslogs to their corresponding
job logs. The job logs and syslogs were parsed and organized by
time and node origin, and were matched based on this information.
Since only one job can run on a node at any time, each syslog
message is associated with only one job. An example resulting data
set after this step is in Figure 2. Any jobs that did not have matching
syslogs were not used in the later steps.

Table 2: An example row from the matched logs table. Sys-
logs were grouped and matched with their corresponding
jobs based on their timestamp and node origin.

Job ID Job State Start Time End Time Node IDs Syslogs

1 FAILED 2017-03-13 T22:44:40 2017-03-13 T24:44:40 [40, 60, 200] [message 1, message 2...]

5



Rollins College ’18, May 2018, Rollins College, Florida USA A. DeLucia et al.

Once the syslogs were matched to their corresponding jobs they
were grouped and pre-processed. The pre-processing was to sepa-
rate the text, numerical, and temporal data for feature extraction.
The text was additionally processed by removing symbols. The
methods for extracting features and the list of combinations were
discussed in Section 5. Once the features sets were created, we used
them as inputs for a random forests model. We evaluated our model
on three different prediction tasks: how well it could predict a job’s
state among all possible states, how well it could predict whether a
job is “okay" or is a “problem" (see Table 1), and how well it could
distinguish one job state versus the others. We refer to these tasks
as “Multiclass", “Okay v Problem", and “One v Rest". The model was
evaluated on the precision-recall metrics of F1 score, precision, and
recall. Each metric is on a scale from 0 to 1. A high precision indi-
cates that the model has a low false positive rate and a high recall
indicates that the model has a low false negative rate. For this model
to be useful for system administrators a high recall and precision is
necessary so that the problematic jobs can be flagged and looked
at, but also the model does not overwhelm the administrators with
jobs that will actually be okay. The F1 score is the harmonic mean
of the precision and recall scores, where a 1 is perfect and a score
of 0.5 is equivalent to random guessing. The results are discussed
in the next section.

6.2 Results
A random forests model was trained on each feature set listed in
Figure 9, and evaluated based on the tasks “Multiclass", “Okay v
Problem", and “One v Rest". For each task the model was assessed
on the precision-recall metrics of F1, precision, and recall score. For
"One v Rest", the score is a weighted average of the scores for each
job state. The weighting is based on the state’s frequency in the test
set. The results are shown in Figure 11. The scores represent the
average score of each feature set model after 200 trials of training
and testing. An important note is the y-axis on the figure starts at
0.5, since this is the lowest score relevant for the precision-recall
metrics.

The best and worst performing feature set models across the
tasks were the term frequency-inverse document frequency (TF-
IDF) with numerical and temporal features and the Infomap model,
respectively. The TF-IDF with numerical & temporal features model
followed the trend of the other models for the text analysis fea-
tures to work best when paired with the numerical and temporal
features. It is a common phenomena in data science for a model
to perform better with more context, which the text analysis was
able to provide. This phenomenon is also supported by examining
the numerical, temporal, and numerical and temporal combination
feature set models. The feature set model trained on numerical
& temporal feature set outperformed the models trained on the
numerical and temporal features alone. Also, all of the feature set
models trained on all available features (a text analysis technique
paired with temporal and numerical features) outperformed the
temporal & numerical model.

All of the feature set models performed the best on the “Okay
v Problem" task. This better performance is most likely because it
was the easiest task, since it was a binary classification problem.
While the “One v Rest" was also a binary classification problem, the

score is a weighted average of the model’s ability to discriminate
between one state versus the others. The lower scores suggest that
one or more of the states is pulling down the overall average. The
low performing state is probably one with lower frequency, such
as node fail or failed. The models’ performance on the “One v Rest"
task was very similar to their performance on the “Multiclass" task.
This close performance is most likely from the same issue of not
performing well on predicting a low frequency state. A glimpse
into the TF-IDF with temporal & numerical feature set model’s
prediction decision process is in the next section.

6.3 Analysis of Feature Importance
A machine learning classification model such as random forests is
usually regarded as a “black box," where the function that led from
the input to the prediction is unknown. While there are concerns
with interpreting the inner functions of a black box model, there
are ways to try to understand the underlying function. One way
is to look at the feature importance of the model. A feature impor-
tance score is how influential that specific feature is on the model’s
prediction. Now, in this context a “feature" is a specific input value,
such as the frequency of the token “user" or the average of numbers
in a syslog group. The feature importance of the top ten features
for the best performing model, TF-IDF with temporal & numerical
feature set model, is shown in Figure 12.

For the “Mutliclass" task, the model regarded all of the temporal
features and most of the numerical features to be important, along
with a few syslog keywords. The importance of these features
aligns with the results since the temporal and numerical feature
set models performed well even without the text analysis features.
The “count_num" feature refers to the numbers in the syslog group
while “avg_num" refers to the average number. Syslog messages are
very diverse with a wide range of numbers, so it is interesting that
the model regarded these numerical features as important. Similar
results were obtained in [1] for these numerical features. All of
the timing features of total time difference between the first and
last syslog message (total_time_diff), the average time difference
between messages (avg_time_diff), and the standard deviation of
the time differences (std_time_diff) were also very important to the
model. The timing features make intuitive sense because the health
of a job can be indicated by its activity level, which is shown by
how often a job produces syslog messages. The other features the
model regarded as important, “pam_unixsulsession", “id", “physical",
“root", and “pam_unixsshdsession", are all very common words in
the syslogs. The model must have noticed that certain job states
have higher frequencies of these tokens.

Different from with the "Multiclass" task, the model regarded
more of the syslog keywords to be important for the “Okay v Prob-
lem" task. The only temporal or numerical feature in the top 10 list
is the total time difference between the first and last syslog message.
The rest of the features are popular keywords, except for “user_1"
and “user_2", which are two anonymized users from the lab. The
model possibly was detecting the presence of a username instead of
focusing on two specific users. Or, maybe these two specific users
simply ran a lot of bad jobs.

6



Modeling High Performance Computing System Log Messages
for Early Prediction of Job Outcome Rollins College ’18, May 2018, Rollins College, Florida USA

Figure 11: The F1, precision, and recall scores of the random forests model built on the feature sets. The model was evaluated
on three different tasks. The error bars denote standard deviation.

Figure 12: Feature importance of the TF-IDF with temporal
& numerical analysis set. These importance scores demon-
strate the most influential features the model uses to clas-
sify a job.

6.4 A Return to Cancelled Jobs
In Section 3.2.1 we discussed our reasoning for not including can-
celled jobs in our experiment. Now, we return to this specific job
state and ask: how would our model classify a cancelled job? Or

in other words, what label, {completed, failed, node fail, timeout},
would our model predict the cancelled jobs to be? The answer,
shown in Figure 13, is the model predicts that most cancelled jobs
would have completed successfully. This agrees with our reasoning
for removing the cancelled jobs from our experiment. The workload
manager labels a job as "complete" when it does not terminate unex-
pectedly, however the job may not have been the user’s definition
of "complete", e.g. saving a result in the correct file name, running
the correct program, etc. The outside factors needed to predict a
job as cancelled are not provided in the available data.

Figure 13: The models’ predictions of CANCELLED jobs.

7



Rollins College ’18, May 2018, Rollins College, Florida USA A. DeLucia et al.

7 PHASE 2: EVALUATING MODELS ON EARLY
PREDICTION OF JOB STATE

This second phase of our experiment answers our final research
question:

(3) How early can we predict the job state?
We define “early" in two ways: by number of syslog messages and
by length of time passed into the duration of the job. The steps
for this phase is very similar to the first phase of the experiment,
except now we limit the syslog messages that are matched with
each job. The rest of the work flow is exactly the same as in Phase 1.
Note that in this phase we trained and tested on the limited dataset,
and did not use the complete dataset for the training.

7.1 Early Prediction with Limiting Number of
Syslog Messages

In order to test how many syslog messages our model needed to
predict the job state we limited the number of syslog messages
available to train and test the model. Since our goal was early
detection, we evaluated our models’ performance using only the
first 1 to 30 messages. Only incomplete jobs were considered. The
results are shown in Figure 14, along with a baseline comparison
to the best performing model from Phase 1, the TF-IDF temporal
and numerical feature set model. As expected, the models did not
perform as well with the limited syslog messages. However, the
TF-IDF with temporal and numerical feature set model was still
the best performing model across the tasks. The exception to this
observation is the “Okay v Problem" task, on which all of the models
still performed on par with the baseline. As expected, the models
performed better as they were provided more messages.

7.2 Early Prediction with Limiting Time into
Job

Similar to the methods used to test the models with limited number
of syslog messages, we tested the early prediction ability of the
model with regards to time. How many minutes into the job can we
predict the job’s state or category? We evaluated our models’ per-
formance using the syslog messages from the first 1 to 30 minutes of
a job. The results, shown in Figure 15, confirm what was expected:
the models performed better with more information, or more time
into the job. This also relates to the fact that more time allows for
more syslog messages to be produced,as shown in Figure 6. The
results were similar to those from limiting the number of syslog
messages, with the TF-IDF with temporal & numerical feature set
model performing the best across tasks.

These early prediction results provide insight on possible settings
to include in a job monitoring tool for system administrators, such
as the ability to adjust how “early" the tool checks on the jobs.

8 APPLICATIONS OF OURWORK
While the first phase of our experiment was purely theoretical since
we used all of the available syslog, our second phase is tailored
directly to applications, since we use the premise of not having the
completed syslog file from the job. From our results in the early
detection phase of the experiment, we are positive that our model
can be used as a tool to help system administrators monitor the jobs.

The tasks can be used for different applications. A model trained
for the “One v Rest" to discriminate between a node fail and the
other states can be used to monitor overall system health. Also, the
“Okay v Problem" task is more tailored for overall job monitoring,
since the exact state may not matter to a system administrator.

Our model could be expanded and set up as a real-time process
on a high performance computer. This process can notify the ad-
ministrators when a job is predicted to fail, so that the user can be
notified and the problem rectified. Or, to completely automate the
system, the process can work with the job scheduler to implement
automatic checkpointing of jobs that are predicted to fail. With this
implementation, a user is able to be notified of their failed job and
has a partial snapshot from which to continue the job.

9 CONCLUSION
Our work uses log analysis techniques from the field of systems and
data science to extract syslog features and create input for a random
forest model to predict job state. The goal of this work is to lay the
foundation for a real-time log analysis tool for job monitoring. From
the extracted features we created feature sets with a combination
of text, numerical, and temporal features from the syslogs. The
feature set models had varying rates of success, with the term-
frequency inverse document frequency term weighting (TF-IDF)
with temporal & numerical feature set model performing the best
across all tasks. In addition to determining the best feature set
model we also tested our model’s ability to predict job state with
limited syslog messages, meant to represent how far into a job we
can predict the outcome. As expected, the feature set models did
not perform as well as with the entire syslog. Still, the results are
promising and we plan to build upon this work in the future.

10 FUTUREWORK
The work presented in this paper is meant to be a stepping stone in
the path for a real-time log analysis tool for job monitoring. In order
to further the development of this tool, there is more work that
must be done. In Phase 2 we trained and tested our model on the
limited syslogs that met the timing or message number requirement,
but next we would like to use our models that are trained on the
full syslog set to predict the job outcome with the limited syslogs.
Also we would like to find the point at which the models can match
the baseline performance of using the full syslog set. This data can
help provide system administrators to better set tool parameters
for job monitoring. Further, since one of our goals is to create a
general tool that is not system-specific, we would like to test our
models on logs from another computer.

11 ACKNOWLEDGMENTS
This research is the culmination of a project that began during my
summer at LANL as a student in the SULI program. I was lucky
enough to be given the opportunity to continue my project as my
senior thesis. I would like to thank my mentor, Lissa Baseman,
for teaching me over the summer, and my thesis advisor, Dr. Julie
Carrington, for letting me continue this project. I would also like
to thank my thesis committee members, Dr. Daniel Myers and Dr.
Mark Anderson. Lastly, I thank everyone mentioned for their time
and support.

8



Modeling High Performance Computing System Log Messages
for Early Prediction of Job Outcome Rollins College ’18, May 2018, Rollins College, Florida USA

Figure 14: All of the models’ performance on predicting the job state with a limited number of syslog messages from the job.

REFERENCES
[1] E. Baseman, S. Blanchard, Z. Li, and S. Fu. Relational synthesis of text and

numeric data for anomaly detection on computing system logs. In 2016 15th IEEE
International Conference on Machine Learning and Applications (ICMLA), pages
882–885, Dec 2016.

[2] C. Bertero, M. Roy, C. Sauvanaud, and G. Tredan. Experience report: Log mining
using natural language processing and application to anomaly detection. In 2017
IEEE 28th International Symposium on Software Reliability Engineering (ISSRE),
pages 351–360, Oct 2017.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. J. Mach. Learn.
Res., 3:993–1022, Mar. 2003.

[4] L. Breiman. Random forests. Mach. Learn., 45(1):5–32, Oct. 2001.
[5] A. K. McCallum. Mallet: A machine learning for language toolkit.

http://mallet.cs.umass.edu, 2002.
[6] A. Oliner and J. Stearley. What supercomputers say: A study of five system logs.

In 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN’07), pages 575–584, June 2007.

[7] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, 12:2825–2830, 2011.

[8] M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks
reveal community structure. Proceedings of the National Academy of Science,
105:1118–1123, Jan. 2008.

[9] A. Sirbu and O. Babaoglu. A holistic approach to log data analysis in high-
performance computing systems: The case of ibm blue gene/q. In Euro-Par 2015:
parallel Processing Workshops, LNCS 9523. Springer, Springer, 2015.

[10] J. Stearley. Towards informatic analysis of syslogs. In 2004 IEEE International
Conference on Cluster Computing (IEEE Cat. No.04EX935), pages 309–318, Sept
2004.

[11] R. Vaarandi and M. Pihelgas. Logcluster - a data clustering and pattern mining
algorithm for event logs. In 2015 11th International Conference on Network and

Service Management (CNSM), pages 1–7, Nov 2015.
[12] D.-Q. Zou, H. Qin, and H. Jin. Uilog: Improving log-based fault diagnosis by log

analysis. Journal of Computer Science and Technology, 31(5):1038–1052, Sep 2016.

9



Rollins College ’18, May 2018, Rollins College, Florida USA A. DeLucia et al.

Figure 15: All of the models’ performance on predicting the job state using only the syslog messages a specific number of
minutes into the job.

10


	Abstract
	1 Introduction
	2 Related Work
	3 Available Data
	3.1 System Log Description
	3.2 Job Log Description

	4 Raw Data Exploration
	5 Syslog Feature Extraction
	5.1 Extracting Text Features with Topic Modeling and Text Clustering
	5.2 Extracting Numerical and Temporal Features
	5.3 Creating Feature Sets

	6 Phase 1: Creating Job State Prediction Models
	6.1 Experimental Overview
	6.2 Results
	6.3 Analysis of Feature Importance
	6.4 A Return to Cancelled Jobs

	7 Phase 2: Evaluating Models on Early Prediction of Job State
	7.1 Early Prediction with Limiting Number of Syslog Messages
	7.2 Early Prediction with Limiting Time into Job

	8 Applications of Our Work
	9 Conclusion
	10 Future Work
	11 Acknowledgments
	References

