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Introduction

Twitter Data Collection
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Civil Unrest Classification
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Annotation Results and Inter-Annotator Agreement
• Selected the majority label for each question from three Amazon 

Mechanical Turk annotators, all ties were adjudicated by the authors
• Inter-annotator agreement (IAA) calculated using Fleiss’ kappa

Selected Annotated Tweets

• Tweets from 2014-2019 collected from Twitter streaming API 
• Filtered by geolocation to include African, Middle Eastern, and Southeast Asian 

countries
• English tweets as identified by langid!
• Excluded retweets
• Filtered tweets with a set of 709 keywords including works like 

“unemployment”, “police”, and “extremist”

Features F1 Precision Recall

Unigrams 0.775 0.892 0.687

Keywords 0.782 0.894 0.697

Results

The keyword model is notable since it is much smaller (700 features versus 
15k) and converges faster than the unigram model (roughly 50 iterations 
versus 100)
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Annotation Questions
Classification Task
• Baseline classifiers to predict if a Tweet was related to civil unrest (predicting if 

Question 1 label was “yes, a specific event” or “yes, in a non-specific fashion” )
• Positive class was 690 out of 4,381 tweets (16%)

Model 1: Unigram counts with Logistic Regression
• Features were  unigram counts of all tokens in a Tweet collected by CountVectorizer"

• Preprocessed tweets with littlebird4 implementaWon of the BERTweet tokenizer
• Easily extendable for future comparison with a BERTweet-based model

• Regularized with L2 loss and evaluated with 5-fold cross validation

Model 2: Civil Unrest Keywords with Logistic Regression
• Features were counts of the civil unrest keywords only
• Same keywords used for filtering the initial Twitter API stream
• Identical pre-processing and evaluation steps as Model 1

1. Does this Tweet discuss a protest, march, riot, or strike?
a. At the time of this Tweet, is the referenced event currently in 

progress, in the past, or an upcoming event? 
b. Does this Tweet support or oppose the event in question? 
c. Does this Tweet state a specific topic of the event that reflects 

the intent of the protesters?
d. Does this Tweet describe participation/intent to participate in the 

event?
e. If this Tweet contains hashtags specific to the event, list the 

hashtags.

2. Does this Tweet indicate civil or political unrest, frustration, or 
dissatisfaction? For example, dissatisfaction with government policy, 
economic situation, etc.

Motivation
We believe civilian voices are an important source of information about the state 
of a country. Studying Twitter dialogue  helps us find information about events and 
opinions before official news reports#.

Research Goals
• Collect a wide range of annotations helpful in the study of civil unrest on 

Twitter

• Build a baseline classification model using collected annotations

Civil Unrest on Twitter (CUT)
• CUT: A dataset of 4,381 English tweets from 42 African, Middle Eastern, and 

Southeast Asian countries (2014-2019), annotated for a variety of information 
of interest with respect to civil unrest.

• Baseline classifiers that determine if a tweet is related to a civil unrest event. 
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