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Abstract

Location information can support social me-
dia analyses by providing geographic context.
Some of the most accurate and popular Twitter
geolocation systems rely on rule-based meth-
ods that examine the user-provided profile lo-
cation, which fail to handle informal or noisy
location names. We propose GEO-SEQ2SEQ,
a sequence-to-sequence (seq2seq) model for
Twitter user geolocation that rewrites noisy,
multilingual user-provided location strings into
structured English location names. We train our
system on tens of millions of multilingual lo-
cation string and geotagged-tweet pairs. Com-
pared to leading methods, our model vastly
increases coverage (i.e., the number of users
we can geolocate) while achieving comparable
or superior accuracy. Our error analysis reveals
that constrained decoding helps the model pro-
duce valid locations according to a location
database. Finally, we measure biases across
language, country of origin, and time to evalu-
ate fairness, and find that while our model can
generalize well to unseen temporal data, perfor-
mance does vary by language and country.

https://github.com/JHU-CLSP/
Geo-Seq2seq-Twitter

1 Introduction

The analysis of Twitter and other social media data
supports research in numerous domains by provid-
ing a measure of population beliefs and behaviors.
A key aspect of many of these studies is the con-
textualization of posts based on the users’ location.
For example, studies of COVID-19 social distanc-
ing rely on knowing the location of users and how
they move over time (Xu et al., 2020), models of
disease spread during pandemics utilize updated in-
formation on population movements (Dredze et al.,
2016), and studies of civil unrest and democratic
reforms rely on isolating data from specific geo-
graphic areas (Sech et al., 2020; Chinta et al., 2021;
Alsaedi et al., 2017; Littman, 2018). However,

Figure 1: Geolocation of a user profile location to struc-
tured location. For example, GEO-SEQ2SEQ correctly
maps “waffle house” (a US-based restaurant) to the US,
a zip code to Brazil, and the Farsi name for Iran to Iran.

while some data contains user-provided structured
location information, most do not. Furthermore,
it is increasingly difficult to rely exclusively on
the available location tweet metadata. Location-
specific information has slowly been losing popu-
larity among users, and Twitter has followed suit
by removing the ability to add precise coordinates
altogether (Kruspe et al., 2021). Previous metadata
analyses studies have validated this trend and found
a decline in user-provided location information, i.e.,
coordinates (stopped in 2019) and place objects (de-
clining and only available in 2% of tweets) (Zhang
et al., 2022; Kruspe et al., 2021).

Therefore, many researchers rely on Twitter ge-
olocation systems, which automatically infer the
location of a user or a tweet. Most approaches
to social media user geolocation utilize tweet- or
user-level metadata (Dredze et al., 2013), tweet
content (including hashtags) (Alsaedi et al., 2017;
Rahimi et al., 2016; Han et al., 2014; Wu and Ger-
ber, 2018), and social networks (Rout et al., 2013;
Jurgens, 2013). These systems examine one or
more tweets from one user and resolve the tweet or
user to a structured location object from a gazetteer,
or a geographical dictionary, such as Google Maps

https://github.com/JHU-CLSP/Geo-Seq2seq-Twitter
https://github.com/JHU-CLSP/Geo-Seq2seq-Twitter


or GeoNames.1 Researchers can then filter to a
location of interest, or contextualize information
based on locations.

A drawback of this method is the reliance on
hand-crafted rules, which do not cover the diverse
range of ways in which users specify locations. Not
all users fill out the location field for its intended
use or may put inaccurate locations (Hecht et al.,
2011), slang location names, or a variety of other
location strings that may be identifiable to people
but not to rule-based string matching systems.

Rather than rely on existing string matching
approaches, we propose to learn a sequence-to-
sequence (seq2seq) model that maps noisy, multi-
lingual, user-provided location strings into a struc-
tured location object selected from a database. For
example, our system learns that Windy City cor-
responds to the location object Chicago, IL,
US and Zhongguo refers to China (see Fig-
ure 1 for more examples). We train our system
on tens of millions of tweets that contain both
user-authored location profile strings and user-
provided structured location information. We in-
tegrate our seq2seq model with Carmen (Dredze
et al., 2013), a popular Twitter geolocation tool
to produce a unique location in the GeoNames lo-
cation database.2 We build on mT5 (Xue et al.,
2021) and experiment with various types of re-
strictions (constraints) in a denoising Transformer-
based seq2seq model, including a trie-based con-
strained decoding (De Cao et al., 2021) scheme to
ensure the output corresponds to a known location.
We find that our system achieves better accuracy
and greatly expanded coverage compared to ex-
isting systems. Finally, inspired by Zhang et al.
(2022), we evaluate the fairness of our model with
respect to performance across languages, country
of origin, and time.

We make the following contributions:

• GEO-SEQ2SEQ, A denoising Twitter user ge-
olocation model that learns to map user profile
location strings to locations in a database.

• TWITTER-PUG, A dataset of multilingual,
noisy strings paired with their location out-
put mined from 35.4M Twitter user profile
location string – true location pairs.

• An analysis of model biases in performance
across language, country, and time.

1https://www.geonames.org/
2We use Carmen 2.0, which provides greater location cov-

erage by using the GeoNames database (Zhang et al., 2022).

2 Twitter Geolocation

Twitter geolocation tools can focus either on user
geolocation (i.e., where is this user based) or tweet
geolocation (i.e., where was this tweet written).
Additionally, a system can examine a single tweet
or all information about a user. Our focus is on
ascertaining a user’s primary location based on
their profile information, which remains constant
across all of their tweets but can be extracted from
a single tweet.

The location of a tweet can be identified through:
(1) the coordinates embedded in the metadata of
the tweet (Dredze et al., 2013; Zhang et al., 2022),
(2) the user-provided place metadata (Dredze et al.,
2013; Zhang et al., 2022), and (3) inference from
the tweet content (Alsaedi et al., 2017; Rahimi
et al., 2016; Han et al., 2014; Wu and Gerber, 2018;
Halterman, 2017; Izbicki et al., 2019).

The location of a user can be ascertained through
(1) aggregated tweet locations from many geo-
tagged or location-inferred tweets (from previously
mentioned methods), (2) the user’s location string
in their profile (Dredze et al., 2013; Zhang et al.,
2022), or (3) social network information (Rout
et al., 2013; Jurgens, 2013).

The Carmen (Dredze et al., 2013; Zhang et al.,
2022) geolocation tool infers a location for a user
from a single tweet by looking for place metadata,
provided coordinates, and (mostly) using a rule-
based parser that maps a profile user location string
to an internal location database based on GeoN-
ames. We will utilize this rule-based parser as a
comparative baseline for our method.3

Since our focus is on using the user profile lo-
cation string alone, we omit comparisons to geolo-
cation systems that use other methods. We choose
this approach due to speed, privacy, and the promi-
nence of location profile data. GEO-SEQ2SEQ is
fast because the input is only the user profile loca-
tion string, as opposed to requiring multiple tweets
from a user for content analysis or making numer-
ous Twitter API calls to gather a user’s friends for
a social network analysis. Further, this method
can work on any pre-collected tweets with user
profile information, which is advantageous due
to the March 2023 depreciation of the free API
tier.4 Regarding privacy, we only use information

3While Carmen is rule-based, its location aliases are
learned from a network analysis.

4https://twitter.com/TwitterDev/
status/1641222782594990080

https://www.geonames.org/
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freely provided by the user. We discuss this further
in Section 9. Finally, as shown by Kruspe et al.
(2021); Zhang et al. (2022), profile location strings
are the only location-related metadata consistently
provided by users through the years (60%), unlike
Place and precise coordinates, which are provided
2% of the time and have been removed, respec-
tively.

For these reasons, the comparison methods out-
lined above are not relevant. Further, while other
methods have provided baselines against TWITTER-
WORLD and TWITTER-US (Han et al., 2012),
these datasets are English-only, so including them
in this work would not demonstrate the multilin-
gual ability of our approach.

3 Data

The goal of our system is to map a free text string
from a user’s profile location field to a known struc-
tured place name. The location field contains di-
verse types of content (see Figure 1), some of which
may map to a specific city, or only a country, or no
known place. We will learn these mappings based
on a large corpus of historical Twitter data.

Common practice is to treat the Place object in
the tweet metadata as the ground truth location of
a user (see Figure 2).5 This metadata is included
when a user chooses to add it to their tweet. It
contains a formal place name of a city, an admin-
istrative region (e,g. state), or a country.6 How-
ever, only 2% of the tweets contain a Place object
(Kruspe et al., 2021; Zhang et al., 2022). The Place
object is an accurate but scarce source of geolo-
cation information. In comparison, 30% to 40%
of users (amounting to 60% of tweets) fill out the
Twitter profile location string. Being a free-text
field completed by the user, the profile string con-
tains informal location names, made-up locations,
or jokes by the users. The profile string is a noisy
but abundant geolocation information source.

We frame our task as a supervised learning prob-
lem where the goal is to translate the noisy profile
location string into the structured place object (or
an equivalent representation). By collecting tweets

5Pavalanathan and Eisenstein (2015) highlight biases in
relying on users who provide location data as being repre-
sentative of all users, and Wood-Doughty et al. (2017) show
that different types of people use the platform differently. We
include several measures of geolocation fairness to explore
some of these effects.

6A small number of places can contain neighborhoods or
points of interest.

with both, we can create a large supervised dataset
for training.

3.1 Geolocation Dataset

We create the Twitter Paired User Geolocation
(TWITTER-PUG) dataset composed of 35.4M pairs
of user profile location strings and formatted Place
objects. We built this dataset by using the Twitter
API to collect geotagged tweets worldwide. The
tweets come from three different drawn bounding
boxes, designed to cover the entire world, simi-
lar to the TWITTER-GLOBAL dataset from Zhang
et al. (2022). The tweets are from 2013 to 2021.
However, in these special geotagged streams, only
tweets with a Place object or coordinates are in-
cluded, as opposed to all tweets in the random
stream. We select tweets that (1) contain a Twitter
Place object in the metadata (some older geotagged
tweets contain coordinates only) and (2) are posted
by a user with a non-empty user profile location.
While our model runs inference on just the loca-
tion string, geotagged tweets with place metadata
are needed for supervised training as the ground
truth labels. To eliminate potential duplicates and
bias introduced by prolific tweeters, we filtered the
dataset to only one tweet per user. Since users
can tweet from multiple locations (e.g., while trav-
eling), which introduces noisy labels, we use the
most common tweet location as the ground truth.

We represent the ground truth as a formatted
string built directly from the tweet’s Place object.
The Place object contains information about the
city, the administrative region, and the country of
the tweet. In order for the model to learn the ex-
pected formatting of place names, we include spe-
cial tokens <CITY>, <ADMIN>, <COUNTRY>
in any missing fields. For ease of use in the mul-
tilingual dataset, we only include the ISO 3166-1
alpha-2 country codes instead of the full country
name, such as “US" for “United States." An exam-
ple of the derived location string is in Figure 2.

The final dataset contains 35.4M profile string
and structured ground-truth string pairs. We sam-
pled 33.4M for the training set, and 1M for val-
idation and test, respectively. We provide more
details in Appendix B, with language and country
distribution info in Figure 6.

2022 Dataset Since geotagging behavior may
change over time (Zhang et al., 2022) and exhibits
biases (Pavalanathan and Eisenstein, 2015), we
evaluate our model on an additional collection of



Figure 2: Ground truth label created from the tweet
place objects. Each ground truth string is of the form
“<CITY>,<ADMIN>,<COUNTRY>." The special tokens
are left as-is when information is not available or does
not apply.

unseen users from the 2022 public stream as an
out-of-distribution test set. To preserve the distri-
bution of the public stream, we do not conduct user
deduplication on this test set. The 2022 evaluation
dataset contains 588K geotagged tweets.

3.2 Location Database

Twitter user geolocation maps a user location string
to an entry in a location database. We use the
GeoNames-combined database from Zhang et al.
(2022), which combines location entries derived
from Twitter places with entries in the GeoNames
gazetteer with populations over 15K, and contains
a total of 73,921 entries.

4 Methods

We utilize an encoder-decoder transformer-based
model to learn a mapping from user location pro-
file strings to structured place strings. Given the
multilingual nature of our dataset, we select the
multilingual T5 model (mT5) (Xue et al., 2021).
As discussed in Section 3, we add three special to-
kens: <CITY>, <ADMIN>, <COUNTRY>, and
fine-tune the embeddings7 for these tokens along
with the model. We fine-tune mT5-small for our
task on the 33.4M training examples with the Adam
optimizer for cross-entropy loss for 5 epochs. All
decoding methods use the same pretrained model
unless stated otherwise. Training details are in Ap-
pendix A. We call our model GEO-SEQ2SEQ.

7Initialized with the default Hugging Face settings of ran-
dom weights.

4.1 Trie-Based Constrained Decoding
A trained GEO-SEQ2SEQ model computes the con-
ditional probability p(y | s) of a formal location
name y given a user profile string s. To produce
the best candidate location y∗, ideally, we would
enumerate every location name defined in the loca-
tion database y ∈ D, and choose the best scoring
one y∗ = argmaxy∈D p(y | s). However, this is
intractable due to the size of our location database.
Instead, we turn to beam search (Sutskever et al.,
2014) to approximate the best-scoring candidate in
a tractable manner.

Because we assume a finite set of possible lo-
cations as defined by our location database, we
incorporate this prior knowledge in the inference
stage of GEO-SEQ2SEQ by forcing the seq2seq
model to generate a valid location. We employ con-
strained beam search (De Cao et al., 2021) where
the constraint is in the form of a trie (i.e., a prefix-
tree).8 The tree-like structure in a trie is a natu-
ral fit to efficiently organize a large set of loca-
tion names because they are inherently hierarchi-
cal. We build the trie using the set of all location
names in the database. An example of the trie is
shown in Figure 3. The trie is divided into differ-
ent country-level sub-tries (e.g., sub-tries rooted by
tokens US, CA), and each country sub-trie contains
admin-level sub-tries (e.g., the US-Colorado
and US-Montana sub-tries).

To perform trie-based constrained beam search,
at each decoding timestep, the current state corre-
sponds to a node t ∈ T on the trie (starting from
<BOS>∈ T as the first token). To select the next
candidate token, only the tokens that are children
of t are allowed. A beam is considered complete
when the current state has no children (when the
<EOS> token is reached).

In related work, constrained decoding has also
been utilized in other tasks with structured output,
such as entity retrieval (De Cao et al., 2021), event
extraction (Lu et al., 2021), parallel sentence min-
ing (Chen et al., 2020), and dependency parsing
(Li et al., 2018). Ou et al. (2021) use a disjunctive
lexical constraint to guide generation within frame
semantics (Fillmore, 1976). Mao et al. (2020) use
constrained decoding to preserve factual consis-
tency in abstractive summarization. To the best of
our knowledge, GEO-SEQ2SEQ is the first method

8We use the Matching Algorithm with Recursively Im-
plemented StorAge (MARISA) data structure for trie imple-
mentation. http://www.s-yata.jp/marisa-trie/
docs/readme.en.html

http://www.s-yata.jp/marisa-trie/docs/readme.en.html
http://www.s-yata.jp/marisa-trie/docs/readme.en.html


Figure 3: Excerpt from the “reversed" decoding trie built from the Carmen location database. The output sequence
is constrained at each overarching step to <BOS>→ <COUNTRY>→ ... <EOS>. At each sub-step, the generated
tokens are constrained to valid subwords, or those present in the location database at that step.

that applies constrained decoding techniques on the
task of Twitter user geolocation.

4.2 Reversing the Output
We format the Place object as the string <CITY>,
<ADMIN>, <COUNTRY>. However, from a de-
coding standpoint, this is backwards. Intuitively,
we can most easily guess a country for a tweet, then
select an admin conditioned on the country, and a
city conditioned on the admin and country. It may
be beneficial to instead generate the reverse of our
Place string so it is from higher to lower granular-
ity: <COUNTRY>, <ADMIN>, <CITY>. The
trie in Figure 3 is reversed. The reverse trick has
two advantages: (1) the resulting constraint trie is
more compact since the hierarchical order of loca-
tion names is followed and (2) the seq2seq model
is not required to generate the correct city at the
beginning of decoding, which is difficult. The de-
coding of <ADMIN> can attend to the generated
<COUNTRY> slot, and the decoding of <CITY>
can attend to country and admin-level information.
We apply this reverse trick in tandem with the con-
strained decoding methods.

5 Comparison Methods

We include several baseline methods for compari-
son against our proposed model.

Table Lookup Baseline The power of a seq2seq
model is in its ability to not just memorize input-
output strings, but to infer output from previously
unseen input sequences. We directly test our model
against this simple memorization baseline. Using
the training data, we built a dictionary mapping
user profile locations to the formatted output string,
and the “prediction" from this baseline is a dictio-
nary lookup. If an input has more than one output
(which occurs for 20% of training data), then the

output is uniformly sampled from the associated
possible outputs. If the input is not found in the
dictionary, then the prediction is treated as null and
counted against the model’s performance.

Carmen Profile Resolver As discussed in Sec-
tion 2, Carmen has a simple rule-based method to
match an input profile location string to a known
location in its internal database. Specifically, the
Carmen profile resolver normalizes user location
strings through rules such as stripping punctuation
and collapsing runs of whitespace, and matches
the normalized string with location names in the
database.

Carmen + GEO-SEQ2SEQ Carmen accurately
matches many simple location strings to the correct
location, but fails to handle more complex strings.
In contrast, GEO-SEQ2SEQ can handle any string.
We evaluate a hybrid approach in which we first use
Carmen’s rule-based strategies (profile resolver)
and apply GEO-SEQ2SEQ to strings that were not
resolved by Carmen. This approach is the preferred
use case, as rule-based methods are faster than
inferencing with mT5, even with the small model.

Ground Truth We feed the ground truth struc-
tured output sequence (target) directly to Carmen,
which measures the ability of the resolver to match
the official location name to an entry in the loca-
tions database. This is considered an approximate
upper bound of denoising model performance; the
best we could hope from our model is to perfectly
reconstruct the official place name. We do not
achieve perfect accuracy for the ground truth, es-
pecially on the city level, due to several reasons:
(1) The location database does not contain every
location on earth. The database was constructed
to include all cities with at least 15k inhabitants.
(2) The name of a location is not unique. Some



locations have multiple names due to historical
or political reasons. (3) The ground truth loca-
tion names are in various languages, and although
the location database contains alternative location
names in many languages, this set of aliases is not
exhaustive.

6 Evaluation

We evaluate all models from three perspectives:
coverage, geolocation accuracy, and the validity
rate of generated location strings.

Coverage We define coverage as the fraction of
tweets that were resolved to a location. A tweet is
“resolved” if the geolocation system successfully
proposed a candidate location given the user lo-
cation string. The coverage metric is similar to
recall, but does not consider whether the prediction
is correct.

Geolocation Accuracy To evaluate the correct-
ness of resolved tweets, we use the accuracy met-
rics from Zhang et al. (2022). Specifically, we use
the match ratio metric (denoted mr) to evaluate
whether the candidate location matches the ground
truth on the city, admin, or country level. We make
one change to ensure a fair comparison: instead
of calculating the match ratio over the resolved lo-
cations, which are different sets of locations for
different candidate systems, we calculate over all
test tweets, which ensures the same denominator
across all matching ratio scores. We also ensure
that a model is not penalized for not guessing a
city or admin when no city/admin was provided
by awarding credit for the <CITY> and <ADMIN>
tokens.

Validity Rate Hallucination is a known chal-
lenge for neural text generation models (Dziri et al.,
2022; Ji et al., 2022). Since our GEO-SEQ2SEQ

approach is at risk of hallucination, we evaluate the
validity rate of the generated location names on the
country, admin, and city levels. The validity rate
(denoted vr) is the fraction of test examples where
the generated string is a valid location name (i.e.,
it matches with one of the location names in the
location database). Measuring validity is more im-
portant for the non-constrained methods (non-trie),
as it is not possible for the model to generate an
invalid location with the trie (see Section 4.1).

7 Experimental Results

We evaluate the generalization effectiveness of the
best version of GEO-SEQ2SEQ (constrained decod-
ing with beam size of 16; see ablation results in Sec-
tion 7.1) by comparing it to other methods on our
geolocation dataset. GEO-SEQ2SEQ greatly out-
performs the rule- and memorization-based models,
showing that our model has learned to generalize
to unseen locations.

With respect to coverage, the rule-based Carmen
profile resolver performs the worst, followed by
the Table Lookup baseline, only providing loca-
tions for 53% and 82%, respectively (see results
in Table 2). Surprisingly, the Carmen-integrated
model and GEO-SEQ2SEQ slightly outperform the
Ground Truth upper bound on performance, indi-
cating that the model learned patterns from other
strings that are more useful than the original Twitter
place names (i.e., ground truth).

The remaining metrics evaluate accuracy with
respect to geolocation and structured prediction
format, specifically whether the output is in the cor-
rect <CITY>, <ADMIN>, <COUNTRY> form,
and whether each slot contains a location in the
Carmen location database. Note that the output
from GEO-SEQ2SEQ and the Carmen-augmented
model achieve a perfect score of 1.0 because they
are forced to output valid locations through con-
strained decoding. The non-constrained methods,
Table Lookup and Ground Truth, have similar va-
lidity rates due to being based on Twitter Place
names, not all of which are present in Carmen’s
location database.

With regards to geolocation accuracy, we look
at the match ratio for each country, admin, and city
slot. While GEO-SEQ2SEQ by itself has a very
high accuracy of 85% and 68% for country and
admin, respectively, the Carmen-augmented model
has higher city accuracy at 34% (versus 31%). This
improvement in granularity at the city level sug-
gests the integrated model is better suited for tasks
that require finer demographic granularity.

7.1 Ablation Study

Our main results shows GEO-SEQ2SEQ with con-
strained decoding with beam size 16. To deter-
mine which components of our model were most
effective, we run an ablation study over different
decoding methods (greedy, beam search, trie-based
constrained beam search), whether the reverse trick
is utilized, and whether to use Carmen along with



Method Coverage mrcountry mradmin mrcity vrcountry vradmin vrcity vrformat

Ground Truth .934 .934 .919 .117 .995 .774 .659 .995

Table Lookup Baseline .836 .499 .207 .002 .847 .706 .668 1.000
Carmen profile .494 .452 .290 .152 - - - -
GEO-SEQ2SEQ (Best) .994 .778 .689 .256 1.000 1.000 1.000 1.000
Carmen + GEO-SEQ2SEQ .995 .831 .593 .437 1.000 1.000 1.000 1.000

Table 1: Results for GEO-SEQ2SEQ in comparison to other methods on newer Tweets from 2022.

Method Coverage mrcountry mradmin mrcity vrcountry vradmin vrcity vrformat

Ground Truth .984 .984 .961 .405 .998 .781 .577 1.000

Table Lookup Baseline .816 .594 .229 .001 .828 .722 .650 1.000
Carmen Profile Resolver .527 .468 .245 .135 - - - -
GEO-SEQ2SEQ (Best) .992 .845 .679 .309 1.000 1.000 1.000 1.000
Carmen + GEO-SEQ2SEQ .994 .840 .540 .342 1.000 1.000 1.000 1.000

Table 2: Results for GEO-SEQ2SEQ in comparison to other methods. Carmen + GEO-SEQ2SEQ is how an enhanced
Carmen would be used in practice.

GEO-SEQ2SEQ. Results appear in Table 3. We
notice that the coverage is consistently high (>.99)
over all ablation settings. Therefore, we discuss the
match ratio and validity rate of different settings
below.

Decoding Method In addition to trie-based con-
strained beam search, we experiment with greedy
decoding and unconstrained beam search with
beam size 16.9 In terms of the accuracy metrics,
we find the match ratio for greedy and beam search
are largely similar. Interestingly, the trie-based
constrained decoding setting greatly outperforms
greedy and beam search in mrcity. We hypothesize
this is because for constrained decoding, once the
country and admin are generated correctly, it is rel-
atively easy to select the correct city from a small
set of city names within a particular administrative
region, in comparison to the unconstrained scenario
where the model can generate any string. However,
unconstrained beam search slightly outperforms the
constrained decoding setting on mradmin. In terms
of validity rates, while beam search outperforms
greedy decoding on vradmin, greedy decoding is
slightly superior on vrcity.

The Reverse Trick The forward and reverse vari-
ants of GEO-SEQ2SEQ have largely comparable
performance. While the reverse variants perform
slightly better on the match ratio metrics (with the
exception of mradmin), the forward variants have
slightly higher validity rates.

9In a preliminary experiment, we varied the beam size
between 8, 16, and 32, and found little difference between the
results.

Combining with Carmen We see a comparable
mrcountry, slightly worse mradmin, and notably
better mrcity. On validity rates, the combination
achieves higher vradmin but lower vrcity.

7.2 Qualitative Examples

Figure 4 shows examples of GEO-SEQ2SEQ on
the test set, displaying the input string, ground
truth (reversed), and the model’s output. A qual-
itative review finds four categories of instances:
“ideal” match, non-English, mismatched, and fic-
tional/joke.

Ideal locations are unambiguous from the profile
string, and can easily be matched with high accu-
racy. While Boca Raton, Florida, US is a perfect
match, we see that “California” is matched to San
Diego as opposed to it’s ground truth of Anaheim.
This is understandable, as no information beyond
the state (admin) was provided, and the model is
correct on the country and admin levels. The sec-
ond category is composed of location strings that
match their ground truth location, but are in a lan-
guage other than English. In this situation, the
multilingual pretraining of mT5 is very helpful.

The last two categories are predominantly noisy,
as they consist of mismatched location string and
ground truth pairs, or completely fictional or joke
locations. Mismatched string–place pairs often
result from users on vacation, or users who are
away from their home for many reasons. Fictional
locations are those that do not exist and are either
jokes or references to popular culture (e.g., “bikini
bottom” from SpongeBob SquarePants and “221B
Baker Street” from Sherlock Holmes). Since GEO-



Method Coverage mrcountry mradmin mrcity vrcountry vradmin vrcity vrformat

Forward Greedy .987 .848 .744 .251 1.000 .799 .775 1.000
+Carmen .992 .842 .557 .333 .999 .887 .709 1.000

Forward Beam .985 .851 .735 .228 .999 .807 .718 1.000
+Carmen .991 .844 .553 .332 .999 .906 .670 1.000

Forward Trie .992 .845 .702 .319 1.000 1.000 1.000 1.000
+Carmen .994 .839 .542 .335 1.000 1.000 1.000 1.000

Reverse Greedy .985 .866 .600 .237 .999 .659 .680 1.000
+Carmen .991 .855 .492 .340 .999 .732 .594 1.000

Reverse Beam .985 .851 .725 .232 .999 .784 .673 1.000
+Carmen .991 .845 .553 .340 .999 .889 .617 1.000

Reverse Trie .992 .845 .679 .309 1.000 1.000 1.000 1.000
+Carmen .994 .840 .540 .342 1.000 1.000 1.000 1.000

Table 3: Ablation experiment of the seq2seq resolver over decoding method and the reverse trick.

SEQ2SEQ always outputs a prediction, it usually is
wrong about fictional/joke places. We discuss this
further in Section 9.

7.3 Results “In the Wild”
While GEO-SEQ2SEQ was trained on a significant
amount of data from 2013–2021, we wanted to
ensure it could generalize to new temporal data.
We test our method on the 2022 Dataset collected
from the Twitter 1% stream (see Section 3). De-
spite the temporal shift, we see very similar perfor-
mance when comparing GEO-SEQ2SEQ and Car-
men+GEO-SEQ2SEQ on the test set (Table 2) to the
new 2022 data (Table 1). Coverage remains at 99%
for both models, and the trend of Carmen+GEO-
SEQ2SEQ having better finer-granularity perfor-
mance than GEO-SEQ2SEQ alone still holds.

8 Performance across Demographics

Metrics over the entire test set can hide biases in
model behavior on specific sub-groups. When used
as part of an analysis pipeline these biases could
change study conclusions. For example, Han et al.
(2012) exclude non-English tweets since location
based on language ID (e.g. Japanese tweets come
from Japan) may portray an unrealistic picture of
model performance. We conduct a language and lo-
cation analysis to determine the fairness of the best
performing GEO-SEQ2SEQ model as measured on
the test set.

Language Bias Does the language of the profile
location bias model behavior? We define a predic-
tion as “language-biased” if the predicted country’s
primary language, as identified by GeoNames, is
the same as the language of the source location
string. Since English is prevalent around the world,
we remove countries that have English as a primary
language for this experiment, leaving 115 out of

Figure 4: Qualitative examples in the TWITTER-PUG
test set predicted by the best GEO-SEQ2SEQ model. In-
put strings can be categorized into “ideal”, non-English,
mismatched, or fictional/joke categories.



Figure 5: Prevalence (log of frequency) of examples
for each country in the train data plotted against the
F1 score for that country in the test set. Pearson’s r of
0.743 shows a strong correlation between the amount of
training data per country and the model’s performance.

146 countries.10 The list of countries included in
the analysis is in Appendix Appendix D.

Our model predicted one of the remaining 115
countries for 538k test set examples, and we iden-
tified 244k as “language-biased.” Among the
language-biased predictions, 231k (94%) are “cor-
rectly biased,” meaning the predicted country cor-
rectly matches the target country. Thus, only 6% of
the predictions are wrongly biased by the language
of the profile location. Further analysis is needed
in languages prevalent in multiple countries.

Fairness in Performance We next measure the
fairness of predictions at the country level across
languages and countries. For the per-country per-
formance, we calculate F1 for each country by treat-
ing each country as its own “class” (Appendix Fig-
ure 7a). We removed countries with less than two
examples in the test set (bottom 10th percentile),
leaving 169 out of 185 countries. There is a large
gap between countries with high F1 (around 94%:
India, Turkey, Japan) and those with low F1 (0%).
25 countries had 0% F1, 15 of which are European
countries (e.g., Netherlands, and Ireland). Most
of these predictions are incorrectly mapped to the
US. This discrepancy could be due to noise from
mismatched location string and ground truth or low
volume of those countries present in the training
data (i.e., less than 0.01%).

We then analyze how much the availability of
each country’s training data affects the prediction

10Out of 185 countries present in the test set, only 146 were
predicted by GEO-SEQ2SEQ.

accuracy of GEO-SEQ2SEQ (Figure 5). The Pear-
son correlation coefficient between data availability
and country F1 across all our countries is 0.743,
indicating a strong correlation between the two and
suggesting that a reason for the low F1 for some
countries could be their insufficient presence in the
training data.

For the per-language performance, we use a ba-
sic accuracy metric, based on mrcountry, but aggre-
gated by the language tag provided in the Twitter
metadata.11 As in the per-country analysis, we
remove the bottom 10th percentile of languages,
filtering from 69 to 62 languages. The score is bro-
ken down for each language in Figure 7b. Similar
to the performance across countries, there is a large
discrepancy in performance across languages with
the highest (98%: Marathi, Gujarati, and Kannada)
and lowest accuracy (65%: French, Lao, and Ital-
ian). Indic languages have the highest accuracy,
perhaps because they are the most concentrated by
location. The first non-Indic language with high
accuracy is Turkish (93%) followed by Japanese
(92%). We discuss possible strategies to better sup-
port all languages and countries in Limitations.

9 Conclusion

We present GEO-SEQ2SEQ, an mT5 model fine-
tuned for Twitter user geolocation through de-
noising user profile location strings. We train it
on TWITTER-PUG, a dataset of 35.4M location
strings with ground truth labels. Our model outper-
forms existing systems with 99% test set coverage
and 85% prediction accuracy at the country-level.
Augmented with Carmen the model achieves 34%
city accuracy, improving over Carmen’s 14% ac-
curacy. The success of the model comes from a
constrained decoding strategy with a beam size of
16, with a “reversed” target string. Additionally, we
breakdown performance by location and language,
highlighting biases in model behavior. Future work
should concentrate on producing models that are
fairer with regard to locations and languages.

11Since F1 metrics are label-specific, they are not appropri-
ate for this extraneous language label, since no language is
being predicted.



Limitations

Ground Truth and Data Cleaning Although
we conduct basic cleaning by selecting the ground
truth Place object that has appeared the most often
for a given user, this is only a heuristic and does not
guarantee that the selected ground truth matches
the description in the user location string, which
introduces noise in the TWITTER-PUG dataset. Fu-
ture work is needed to develop more accurate meth-
ods that identify the ground truth from a set of
geotagged user tweets. Also, the current ground
truth format does not account for alternative names
in geolocation. A future direction is training the
seq2seq model to generate multiple formal location
names from a single user location string. Alterna-
tive names in gazetteers such as GeoNames could
be used as a source of this ground truth.

In Figure 4, we identified several types of noise
in Twitter user profile locations. We did not con-
duct extensive data cleaning of fictional, joke, or
non-existent locations. Though we attempted to
filter these places automatically, we found little
change in model performance. A more detailed
study of the effects of data cleaning would be ben-
eficial.

Model Size Due to resource constraints, we only
experiment with the mT5-small model. In a small-
scale preliminary study, we found mT5 outper-
forms ByT5 (Xue et al., 2022) on our task of geolo-
cation name transduction. It would be interesting to
also test how larger (e.g. mT5-large) or other types
of pretrained language models (e.g. fully autore-
gressive models) performs on this task. Also, how
much data is actually needed to train the model.

Coverage v.s. Accuracy Trade-Off Another lim-
itation of the GEO-SEQ2SEQ approach is that the
model always produces a candidate location even
when the input only contains a fictional location
or does not contain a location at all. A potential
solution for this is thresholding the model based on
a log-probability threshold, and only producing a
candidate location when the probability of a beam
is high enough. Such thresholding method could
serve to trade off coverage and accuracy.

A related issue is the accuracy at each granu-
larity (i.e., country, admin, and city). The model
performs significantly better at lower granularity,
specifically at the country level (see Table 2). This
is important for end-users to acknowledge if this
tool is used for higher-stakes analysis such as natu-

ral disaster relief, versus such as studying vaccine
opinions in different parts of the world.

Performance Across Demographics Finally, as
shown in Section 8, our model has a wide range
of performance with respect to F1 across coun-
tries, and a smaller discrepancy of accuracy across
language. The strong multilingual performance
is most likely from the original mT5 pre-training.
However, there is still room for improvement. To
address the discrepancy in performance across
countries, a strategy is to stratify the data by coun-
try, similar to how multilingual pre-trained en-
coders are trained with exponential sampling based
on language balance (Xue et al., 2021).

Ethical Considerations

The main ethical consideration for a tool like GEO-
SEQ2SEQ is privacy. We respect user privacy in
the creation of GEO-SEQ2SEQ as well as in collect-
ing the data to build TWITTER-PUG by only using
immediately available data provided by users. As
discussed in Section 3, the training data is built
from user profile location strings paired with a
user’s most frequently tagged Twitter Place. Once
trained, GEO-SEQ2SEQ only needs the user profile
location to run inference.

Also, due to the structured nature of the out-
put string and easy integration with Carmen, re-
searchers can easily choose at which granularity
to aggregate their data, whether the city, admin
(state/province), or country level.

Further, the use case of our model is only meant
to support researchers studying location-specific
demographics. The content will be studied in ag-
gregate, as according to Twitter policy.
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A Model Training and Inference Details

The GEO-SEQ2SEQ model is an mT5-small model
fine-tuned on TWITTER-PUG for 5 epochs with
cross-entropy loss. We use the Adam optimizer
with a learning rate of 5e-5. The batch size for
training is 96.

The training process took around 5 days to finish
due to the massive amount of data in our collected
TWITTER-PUG dataset. The decoding time on
the main 1M test set of TWITTER-PUG varies for
different decoding algorithms. While greedy decod-
ing takes arouns 3 hours to decode, beam search
with beam size 16 takes 13 and 6 hours for the
trie-based constrained decoding and unconstrained
decoding, respectively.

A single NVIDIA A100 GPU with 40GB mem-
ory is used for all experiments. We use the Hug-
ging Face Transformers library for training and
inference (Wolf et al., 2020).

B Dataset Details

In this section, we provide details of our collected
TWITTER-PUG dataset. The detailed number of
train, validation, and test examples are shown in
Table 4. The language and country distribution plot
is shown in Figure 6.

Due to the scale of data and the noisy nature
of this task, we did not filter data for possible of-
fensive content. While this is possible for English
data, finding offensive-speech dictionaries in all 69
languages present in the data is difficult. However,
a possible solution, mentioned in Section 9, is to
ensure the model does not provide predictions for
user profile location strings containing offensive
content by restricting output if the log probability
for the output is below a specific threshold.

A similar concern is of uniquely identifying in-
formation. While the user profile location string
is meant to be filled in with a location, it can be
completed with any string since it is free text. As
in offensive speech detection and removal, iden-
tifying and removing possible names is difficult.
However, since this data is collected from public
profile information set by the user, uniquely identi-
fying information is less of a concern.

C Additional Details on Performance
across Demographics

Here we provide additional details on the perfor-
mance across demographics. Figure 7a shows the

Split Size

Train 33,416,150
Valid 1,000,000
Test 1,000,000

Total 35,416,150

Table 4: GEO-SEQ2SEQ dataset statistics.

F1 score with respect to country-level prediction
for each country, and Figure 7b shows the country-
level accuracy, mrcountry, across languages.

D Performance across Demographics
Details

For the language bias experiment, the following
countries were identified as having English as a
primary language: Australia (AU), Bahamas (BS),
Botswana (BW), Canada (CA), Cameroon (CM),
Fiji (FJ), Micronesia (FM), Ghana (GH), Gibraltar
(GI), Gambia (GM), Guam (GU), Guyana (GY),
India (IN), Kenya (KE), Liberia (LR), Lesotho
(LS), Mauritius (MU), Namibia (NA), Nigeria
(NG), New Zealand (NZ), Papua New Guinea
(PG), Solomon Islands (SB), Seychelles (SC),
Sierra Leone (SL), Eswatini (SZ), Uganda (UG),
United States (US), British Virgin Islands (VG),
U.S. Virgin Islands (VI), Zambia (ZM), and
Zimbabwe (ZW). We used country informa-
tion provided by GeoNames to identify these
countries http://download.geonames.
org/export/dump/countryInfo.txt.
Countries with high numbers of second-language
English speakers were also removed, (e.g., India).
The remaining countries that were included in the
analysis are shown in Table 5.

http://download.geonames.org/export/dump/countryInfo.txt
http://download.geonames.org/export/dump/countryInfo.txt


United Arab Emirates (AE) Afghanistan (AF) Armenia (AM)
Angola (AO) Argentina (AR) Azerbaijan (AZ)
Bangladesh (BD) Burkina Faso (BF) Bulgaria (BG)
Bahrain (BH) Burundi (BI) Benin (BJ)
Brunei (BN) Bolivia (BO) Bonaire, Saint Eustatius and Saba (BQ)
Brazil (BR) Bhutan (BT) Belarus (BY)
Democratic Republic of the Congo (CD) Central African Republic (CF) Republic of the Congo (CG)
Ivory Coast (CI) Chile (CL) China (CN)
Colombia (CO) Cyprus (CY) Djibouti (DJ)
Algeria (DZ) Egypt (EG) Spain (ES)
Ethiopia (ET) France (FR) Gabon (GA)
Georgia (GE) French Guiana (GF) Guinea (GN)
Equatorial Guinea (GQ) Greece (GR) Guinea-Bissau (GW)
Hong Kong (HK) Indonesia (ID) Israel (IL)
Iraq (IQ) Iran (IR) Italy (IT)
Jordan (JO) Japan (JP) Kyrgyzstan (KG)
Cambodia (KH) Comoros (KM) South Korea (KR)
Kuwait (KW) Kazakhstan (KZ) Laos (LA)
Lebanon (LB) Sri Lanka (LK) Latvia (LV)
Libya (LY) Morocco (MA) Madagascar (MG)
Marshall Islands (MH) Mali (ML) Myanmar (MM)
Mongolia (MN) Macao (MO) Northern Mariana Islands (MP)
Mauritania (MR) Malta (MT) Maldives (MV)
Malawi (MW) Mexico (MX) Malaysia (MY)
Mozambique (MZ) New Caledonia (NC) Niger (NE)
Netherlands (NL) Norway (NO) Nepal (NP)
Oman (OM) Peru (PE) Philippines (PH)
Pakistan (PK) Portugal (PT) Palau (PW)
Paraguay (PY) Qatar (QA) Reunion (RE)
Russia (RU) Rwanda (RW) Saudi Arabia (SA)
Sudan (SD) Singapore (SG) Senegal (SN)
Somalia (SO) Suriname (SR) Syria (SY)
Chad (TD) Togo (TG) Thailand (TH)
Tajikistan (TJ) Timor Leste (TL) Turkmenistan (TM)
Tunisia (TN) Turkey (TR) Taiwan (TW)
Tanzania (TZ) Ukraine (UA) Uruguay (UY)
Uzbekistan (UZ) Venezuela (VE) Vietnam (VN)
Vanuatu (VU) Yemen (YE) Mayotte (YT)
South Africa (ZA)

Table 5: Countries included in the Language Bias analysis in Section 8. These countries do not have English as their
primary language, as identified by GeoNames.



(a) Language (b) Country

Figure 6: The distribution of languages and countries in the training dataset. For space, the top 15 from each
category are shown individually, and the remaining are aggregated as “Other".

(a) F1 score with respect to country-level prediction for each country. 44 countries with 0.0 accuracy are not shown for space.

(b) Accuracy with respect to country-level prediction for each language.

Figure 7: “Fairness" in GEO-SEQ2SEQ performance as measured by mrcountry across the 69 languages and 185
countries present in the TWITTER-PUG test set.
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