

Bernice: A Multilingual Pre-trained Encoder for Twitter

Alexandra DeLucia,¹ Shijie Wu,¹ Aaron Mueller,¹ Carlos Aguirre,¹ Mark Dredze,¹ and Philip Resnik²

¹ Center for Language and Speech Processing, Johns Hopkins University ² Linguistics/UMIACS, University of Maryland

Model Design

Motivation

- A multilingual model tailored for Twitter
- Existing models are either not multilingual, do not use a Twitter-specific tokenizer, or are only secondarily trained on tweets
- We introduce **Bernice***, the first multilingual model trained exclusively on tweets with a Twitter-trained tokenizer

*Named after Bert's pet pigeon

Twitter

tokenizer

BERTBASE

Multilingual Twitter pre-training only

Summary

- **Bernice** is a BERT_{Base} model customized for multilingual tweet representation
 - Trained on 2.5B tweets
 - Custom tokenizer for hashtag, emoji, and slang
- Benchmark performance is **better** than non-Twitter models and **on-par** with Twitter models, but trained on **significantly less data**
- Domain-specific models are **more efficient** to train overall than domain-adapted models

Try our Model

https://huggingface.co/jhu-clsp/bernice

Architecture

• BERT_{Base} with 270M parameters 128 maximum sequence length, which covers 99.96% of tweets

Training Data

- 2.5 billion tweets in 66 languages from 1% public stream from Jan 2016–Dec 2021
- 56 billion subwords
- Two pre-training datasets with different distributions over language. Both are sampled with exponential resampling with α =0.5
 - **1. Presampled**: language distribution of the full dataset. Resampled on-the-fly during

Evaluation

- Bernice consistently outperforms XLM-R, a model without any Twitter pre-training
- Also, Bernice consistently performs on-par with models that have seen significantly more data, including TwHIN-BERT models, which have seen 7B tweets

Benchmarks

- We compare Bernice to competitive Twitter language models on 3 benchmarks
- All models are fine-tuned on each benchmark task after performing a hyperparameter search

1. TweetEval

- English-only
- 7 Twitter-specific tasks
- Reported score is Macro-F1 for all except sentiment, which is Macro-recall

	Emoji	Emotion	Hate	Irony	Offensive	Sentiment	Stance	All (TE)
BERTweet	33.4	79.3	56.4	82.1	79.5	73.4	71.2	67.9
RoBERTa-RT	31.4	78.5	52.3	61.7	80.5	72.8	69.3	65.2
RoBERTa-Tw	29.3	72.0	49.9	65.4	77.1	69.1	66.7	61.4
XLM-R	28.6	72.3	44.4	57.4	75.7	68.6	65.4	57.6
XLM-T	30.9	77.0	50.8	69.9	79.9	72.3	67.1	64.4
TwHIN-BERT-MLM	30.5	79.3	50.5	71.6	80.0	72.5	69.4	64.8
TwHIN-BERT	30.5	77.5	45.6	69.1	79.1	72.8	67.3	63.1
Bernice	31.2	78.3	50.2	71.5	81.0	73.3	68.2	64.8

	Bernice	XLM-T	XLM-R	TwHIN-MLM	TwHIN
Arabic	65.77	64.99	64.99	65.19	65.15
English	68.05	68.01	66.38	70.36	69.53
French	72.39	70.67	72.46	68.57	70.78
German	77.21	74.70	75.07	74.56	72.80
Hindi	59.14	56.38	47.86	55.34	53.09
Italian	72.82	66.49	68.89	68.79	68.38
Portugues	se 77.86	73.71	72.37	74.78	74.64
Spanish	69.48	66.73	65.87	67.19	65.85
All	70.34	67.71	66.74	68.10	67.53

2. Unified Multilingual Sentiment Analysis

training.

Language-sampled: static exponentiallysampled dataset with high exposure to lowresource languages

Tweets and Tokens per Language in Pre-training Data

8 individual language datasets \bullet

- Label tweet as positive, negative, or \bullet neutral
- Reported score is Macro-F1

3. Multilingual Hate Speech

- Combined 16 datasets across 9 languages
- Label tweets as hate speech or normal
- Reported score is Macro-F1

Bernice XLM-T XLM-R TwHIN-BERT-MLM TwHIN-BERT

Arabic	86.67	88.25	83.29	86.75	87.99
English	82.24	82.02	81.49	82.18	82.26
French	69.51	69.87	68.24	67.58	62.32
German	85.98	71.97	71.97	70.16	81.03
Indonesian	89.82	87.39	87.44	86.78	89.21
Italian	66.90	69.32	67.99	66.84	64.50
Polish	48.99	48.96	48.99	48.96	48.99
Portugese	73.11	70.54	70.01	70.79	70.56
Spanish	82.56	82.54	80.38	80.62	82.04
All	76.20	74.54	73.31	73.41	74.32

Tokenizer

- A Twitter-specific tokenizer (250K vocabulary) using unigram SentencePiece model trained on language-sampled 78M tweets
- Replace user mentions and URLs with special symbols @USER and HTTPURL

Tokenizer Analysis

- Compare coverage of non-Twitter tokenizer (XLM-R) to custom tokenizer
- Bernice tokenizer has better coverage of Twitter-specific vocabulary, hashtags, and emoji

Select emoji in Bernice vocabulary

	Tokenizer	Subwords	Subword length
Tweets	Bernice	26.27 (25.48)	2.95 (1.98)
	XLM-R	27.86 (25.69)	2.78 (1.85)
Hashtags	Bernice	5.0 (2.0)	3.0 (1.9)
	XLM-R	6.5 (2.5)	2.3 (1.1)

Pre-training

- RoBERTa masked language modeling (MLM) objective
- AWS EC2 with a p3.16xlarge instance with 8 NVIDIA Tesla V100 GPUs
- 405K training steps over 330 hours

Hashtag	Bernice	XLM-R
#DahmerNetflix	['D', 'ah', 'mer', 'Netflix']	['D', 'ah', 'mer', 'Net', 'flix']
#AsiaCup2023	['Asia', 'Cup', '2023']	['Asia', 'C', 'up', '20', '23']
#BLEACH_anime	['BLEACH', '_', 'anime']	['BLE', 'ACH', '_', 'an', 'ime']
#ToriesDestroyingOurCountry	['Tories', 'Destroying', 'Our', 'Country']	['To', 'ries', 'D', 'estro', 'ying', 'O', 'ur', 'Count', 'ry']
#MarriedAtFirstSight	['Married', 'At', 'First', 'Sight']	['Mar', 'ried', 'At', 'First', 'S', 'ight']
#NoGOPAbortionBans	['No', 'GOP', 'Abortion', 'Ban', 's']	['No', 'G', 'OPA', 'bor', 'tion', 'Ban', 's']
#SaudiNationalDay	['Saudi', 'National', 'Day']	['S', 'audi', 'National', 'Day']
#PakvsEngland	['Pak', 'vs', 'England']	['Pak', 'vs', 'Eng', 'land']
#pakvsengland	['pak', 'vs', 'england']	['pak', 'v', 'seng', 'land']
#DiaMundialDelTurismo	['Dia', 'Mundial', 'Del', 'Turismo']	['Dia', 'M', 'undi', 'al', 'Del', 'Tur', 'ismo']
#buenmiercoles	['buen', 'miercoles']	['bu', 'en', 'mier', 'cole', 's']
يوم_المعلم#	['يوم','_','المعلم']	['يوم', `_', 'الم', 'علم']
#DraftKingsTNF	['Draft', 'Kings', 'TN', 'F']	['D', 'raf', 't', 'K', 'ings', 'TN', 'F']