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Abstract. This paper introduces a new language model, Coqa, for deeply
embedding concurrent programming into objects. Every program writ-
ten in our language has the desirable behaviors of atomicity, mutual ex-
clusion, and race freedom automatically built in. A key property of our
model is the notion of quantized atomicity: every concurrent program ex-
ecution can be viewed as being divided into quantum regions of atomic
execution, greatly reducing the number of interleavings to consider. So
rather than building atomicity locally, with small declared zones, we
build it globally, down from the top. We justify our approach both from
a theoretical basis by showing that a formal representation, KernelCoqa,
has provable quantized atomicity properties, and by implementing Co-
qaJava, a Java extension incorporating all of the Coqa features.

1 Introduction

Coqa (for Concurrent objects with quantized atomicity) is a new object-oriented
language aimed at facilitating programming in a multi-core CPU environment.
Programming multi-core CPUs requires much greater programmer skill, and is
one of the most significant new demands programmers will face in the coming
decade. The design goal of Coqa is to build a language in which it is easier to
naturally write concurrent programs with good concurrency properties. Unlike
Java where good properties such as race freedom can only be achieved if the
programmer explicitly declares it by using synchronized, the “default” mode
in Coqa is inverted: good properties of race freedom, mutual exclusion, and
atomicity are preserved unless programmers explicitly declare otherwise.

Existing concurrent object language designs are numerous and include for
example [Agh90,Arm96,Mil,BST00]. What makes our work novel is the intrisic
properties Coqa preserves. Most important is atomicity, i.e. the property that a
block of code can always be viewed as occurring atomically no matter what inter-
leaving it is involved in. With tightly coupled computation running on multi-core
CPUs, data sharing between threads is very common and the patterns are more
complex than a single-core CPU due to random variations in scheduling. To sup-
port atomicity, Coqa takes the route of “atomicity-by-design” for each method:
atomicity is ubiquitous because by default each complete method execution is
observably atomic. Note this is much stronger than the synchronized methods



of Java: the Coqa method and all methods it invokes are viewed as happening
atomically. The synchronized methods in Java only provide a shallow notion
of mutual exclusion.

One particular challenge of whole-method atomicity is that it can be overly
strong, and the resulting executions will not be efficient, or may even deadlock if
there is significant contention across methods. For this reason, Coqa allows pro-
grammers to relax whole-method atomicity by dividing a method into a small
number of discrete zones of atomicity (called quanta in Coqa), and each quan-
tum is serializable regardless of the interleaving of the actual execution. This
property, called quantized atomicity, is preserved for all Coqa programs. The
main appeal is to significantly reduce the number of interleavings possible in
concurrent program runs, and thus to ease the debugging burden. If two pieces
of code each have 100 execution steps, reasoning tools would have to consider
101100 interleaving scenarios; however, if the aforementioned 100 steps can be
split into 3 atomic quanta, there are only 43 possibilities to consider. Actors
[Agh90,AMST97] were in some sense the starting point for the design of Coqa:
atomicity is preserved for each Actor method because its execution once initi-
ated does not depend on the state of other actors and each method is therefore
trivially serializable. Actors’ ubiquitous atomicity arises from the fact that the
model supports only asynchronous messaging, and so methods once initiated
cannot receive outside inputs.

Another design goal of Coqa is to make a concurrent language design that
naturally meshes well with object-oriented language features. This stands in con-
strast to the non-object-based syntax and semantics commonly used in existing
languages for concurrent programming. Language abstractions such as library
class Thread, thread spawning via its start method and synchronized blocks in
Java, and the atomic blocks in various Software Transactional Memory (STM)
systems that have been adopted into OO languages [CMC+06], are not that dif-
ferent from what was used three decades ago in non-object-oriented languages
[Lom77].

Existing language models fall short of achieving the goals of both ubiquitous
atomicity and easy OO-style concurrent programmming. Ubiquitous atomicity
is a global property of all programs; Java does not have a notion of atomicity
built into the langauge and the form of atomicity in STM systems is only local
atomicity. STM systems also require rollbacks to deal with atomicity-breaking
contentions and are known to be inapplicable to I/O-intensive applications, such
as GUI and network systems, so they can never be ubiquitous. Out of the desire
of pervasiveness, we take a blocking and not a rollback approach to achieve
atomicity. The Actor model achieves ubiquitous atomicity, but programming
in Actors is very different from what programmers are used to, since with pure
asynchronous messaging any processing of a message reply must be handled by
a completely new message, necessarily chopping up methods into many small
pieces. So, Coqa shares the spirit of ubiquitous atomicity of Actors, but allows
more familiar synchronous messaging syntax to be used which avoids the need
to break up methods. to have language level
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messaging
what it is why you should use it

o . m(v) intra-task messaging promotes mutual exclusion and atomicity

o -> m(v) task creation promotes parallelism by starting up a new task

o => m(v) sub-tasking promotes parallelism by encouraging early free

Fig. 1. The Three Messaging Mechanisms and Their Relative Strengths

In this paper, we formalize Coqa in a formal system called KernelCoqa, in
which we prove the properties of quantized atomicity, mutual exclusion and
race freedom. We have also implemented a prototype language CoqaJava as a
Java extension which simply replaces Java threads with our new forms of object
messaging.

2 Informal Overview

The concurrency unit in our language is a task. A task is a unit of execution
that can potentially be interleaved with other units. Tasks are closely related
to (logical) threads, but come with inherent atomicity properties not found in
threads, and we coin a new term to reflect this distinction. Coqa has a very
simple syntax: the only difference from the Java object model is a richer syntax to
support object messaging, as summarized in Fig. 1. Beyond the familiar o . m(v)

message send expression, o -> m(v) and o => m(v) are additionally provided
for task creation (a form of thread spawning) and subtasking (a form of thread
open nesting), respectively.

The Running Example Throughout the section, we will use a simple example of
basic banking operations, including account opening and balance transfer opera-
tions, as shown in Fig. 2. Bank accounts are stored in a hash table, implemented
in a standard manner with bucket lists.

2.1 Task Creation

Tasks are created by simply sending asynchronous messages to objects, using the
o -> m(v) expression. This is a more “object-based” thread creation than the
current practice in Java, where a special Thread class is used. This notion is more
aligned with Actor languages, where all message passings can be viewed as thread
creations. In Fig. 2, the top-level main method starts up three concurrent tasks,
two balance transfers and one account open, by the invocations of lines M1, M2
and M3. Syntax bk -> transfer("Alice", "Bob", 3) indicates an asynchronous
message transfer sent to object bk with indicated arguments. Asynchronous
message send returns immediately, so the sender can continue, and a new task
is created to execute the invoked method. This new task terminates when its
method is finished. To keep the language simple, asynchronous invocations in
Coqa do not return values.



class BankMain {
public static void main (String [] args) {

Bank bk = new Bank();

bk. open("Alice", 10); bk. open("Bob", 20); bk. open("Cathy", 30);

bk -> transfer("Alice", "Bob", 3); //(M1)

bk -> transfer("Cathy", "Alice", 5); //(M2)

bk -> open("Dan", 40); //(M3)

}}
class Bank {

void transfer (String from, String to, int bal) {
Status status = new Status(); //(A1)

Account afrom = (Account)htable. get(from); //(A2)

afrom. withdraw(bal, status); //(A3)

Account ato = (Account)htable. get(to); //(A4)

ato. deposit(bal, status); //(A5)

}
void open(String n, int b) { htable. put(n, new Account(n, b));}
private HashTable htable = new HashTable();

}
class Account {
Account(String n, int b) {name = n; bal = b; }
void deposit(int b, Status s) { bal += b; s.append("+", b, name); }
void withdraw(int b, Status s) {bal -= b; s.append("-", b, name); }
private String name;

private int bal;

}
class Status {

void append(String s, int i, String name) {info.append(s + i + name);}
private StringBuffer info = new StringBuffer();

}

Fig. 2. A Banking Program

2.2 Intra-Task Messaging

Message send o . m(v) is the same syntax as Java, but has different semantics
giving stronger atomicity properties: when invoked, object o will be captured by
the invoking task and cannot be used by other tasks until the current task is
complete. Capturing is a blocking mechanism, but unlike Java where program-
mers need to explicitly specify what to lock and when to lock, the capture and
blocking of objects is built into Coqa.

This intuitive definition for o . m(v) is the programmer view, but is not
an efficient implementation strategy: only mutation affects the preservation of
atomicity, and so we actually only need to capture objects “lazily” when their
fields are read and written. Our notion of “capture” is a standard two-phase



non-exclusive read lock and exclusive write lock [Gra78]. When an object’s field
is read, the object is said to be read captured ; when the field is written, the object
is said to be write captured. The same object can be read captured by multiple
tasks at the same time, but to be write captured, the object has to be exclusively
owned, i.e. not read captured or write captured by another task. Two-phase
locking optimizes our model since reads are overwhelmingly more common than
writes in most programs. Many other optimizations are also possible by static
analysis, a topic we leave to future work.

The preservation of atomicity can be seen in the transfer method of Fig. 2:
the HashTable object referenced by htable is captured by a task, say the task
created at Line M1, and will not be released until the end of the method (and
hence, the task). Therefore it is not possible for one transfer task to be reading
from the HashTable object while at the same time a different transfer task is
writing to it.

2.3 Subtasking

The model we have presented thus far admits significant parallelism if most
object accesses are read accesses. Blocking is possible, however, when frequent
writes are needed. For instance, consider the parallel execution of the two tasks
spawned by (M1) and (M3). One of them will be blocked as (M1) reads from the
HashTable object, while (M3) attempts to write.1 And the task being blocked
cannot make any progress until the other task completes and release its captured
object. Intuitively, the task of adding Dan as a new account, (M3), is totally
unrelated to the task of transferring money from Alice to Bob, (M1), except
for their shared access to the HashTable object. There should be at least some
parallelism possible between the two tasks.

Coqa achieves this by allowing programmers to spawn off the access of the
HashTable object (and all objects it indirectly accesses) as a new subtask. The
high-level meaning behind a subtask is that it achieves a relatively independent
goal; its completion signals a partial victory so that the captured objects used
to achieve this subtask can be “freed”, i.e. no longer considered captured. In
terms of syntax, the only change to the source code of transfer in Fig. 2 is
to change the dot (.) messagings at (A2) and (A4) to => for subtask creation
messaging. In this case, the task t created at (M1) spawns a subtask t′ at (A2)
via => . The Hashtable object will be captured by t′ but not t. More parallelism
is achieved by such subtasking: other tasks waiting to capture the HashTable

object would have to block for the duration of t instead of the much shorter
span of t′ if (.) was used. Subtasking is a synchronous invocation, i.e., the task
executing transfer waits until its subtask executing get returns a result. But
the subtask has a distinct capture set of its own. And like a task, a subtask frees
objects in its capture set when it finishes.

1 Strictly speaking, the read-write conflict happens on the object representing the
bucket list inside the HashTable, but we omit this detail since we do not have space
to give the source code for the internals of the HashTable.



A subtask is also a task, so it prevents arbitrary interleaving. The change
at line (A2) from (.) to => admits interleaving between task (M1) and (M3)

that was not allowed before, but it does not mean that arbitrary interleaving
can occur; for example, if M1 were in the middle of a key lookup M3 still cannot
add a new bucket. We will discuss such concurrency properties in the presence
of subtasking later in this section. Subtasking related to open nesting in STM
systems [NMAT+07,CMC+06]. Open nesting is used to nest a transaction inside
another transaction, where the nested transaction can commit before the en-
closing transaction runs to completion. While the mechanism of open nesting of
transactions can be summarized as early commit, subtasking can be summarized
as early release.

Capture set inheritance One contentious issue for open nesting is the case where
a nested transaction and the transactions enclosing it both need the same object.
For instance in Atomos [CMC+06], the issue is circumvented by restricting the
read/write sets to be disjoint between the main and nested transaction. When
the same issue manifests itself in the scenario of subtasking, the question is,
“Can a subtask access objects already captured by its enclosing task(s)?”

We could in theory follow Atomos’ approach. This however would signifi-
cantly reduce programmability. Let us consider the example of the Status ob-
ject in the transfer method. From the programmer’s view, this object keeps
track of the status of the entire transfer method. When the Account objects of
Alice and Bob are accessed, some status information needs to be appended to
the Status object, which in our case is already captured by the transfer task.

We believe the essence of having a subtasking relationship between a parent
and a child is that the parent should generously share its resources with the
child. Therefore accessing the Status in the subtask is perfectly legal in Coqa.
Observe that the relationship between a task and its subtask is synchronous, so
there is no concern of interleaving between a task and its subtask.

2.4 Properties

Quantized Atomicity Some tasks simply should not be considered wholly atomic
because they are fundamentally needing to share data with other tasks, and
for this case it is simply impossible to have full atomicity over the whole task.
The main reason why a programmer wants to declare a subtask is to open a
communication channel with other tasks for such sharing, as was illustrated in
the subtasking example above. With subtasking, objects captured by the subtask
can serve as communication points between different tasks. This is because the
objects freed at the end of one subtask might be recaptured later, and the object
may have been mutated by the original subtask.

Quantized atomicity is the property that for any task, its execution sequence
can be viewed as a sequence of atomic regions, the atomic quanta, demarcated by
task and subtask creation points. This atomicity property is weaker than a whole
task being atomic, but as long as full task atomicity is broken only when it is
really necessary (that is, a minimal number of => and -> messagings are used),



the atomic quanta will each be large, and significant reduction of interleaving
can be achieved. In reality, what matters is not that the entire method must be
atomic, but that the method admits a drastically limited number of interleaving
scenarios. Quantized atomicity aims to strikes a balance between what is realistic
and what is reasonable.

Selective Mutual Exclusion For objects accessed by synchronous messaging, the
property of mutual exclusion over mutation spans the lifetime of the current task,
even across the boundaries of quanta. For instance, over the entire duration of
any task executing transfer in Fig. 2, the Status object is guaranteed not to be
mutated by any other task before the current transfer ends, even if other tasks
have reference to Status. Our notion of object mutual exclusion is much stronger
than what Java’s synchronized provides: Java only guarantees the object with
the method is itself not mutated by other threads2, while we are guaranteeing
the property for all objects which are directly or indirectly sent synchronous
messages to at run time by the method, many of which may be unknown to the
caller.

Race Freedom In Coqa, we show that two tasks cannot race to access any object
field, except in the case where both may have been only reading from the same
object field.

3 Formalization

In this section we present KernelCoqa, a small formal kernel language of Coqa.
We first define some basic notation used in our formalization. We write xn as

shorthand for a set {x1, . . . , xn}, with ∅ as empty set. −−−−−→xn 7→ yn denotes a mapping
{x1 7→ y1, . . . , xn 7→ yn}, where {x1, . . . xn} is the domain of the mapping,
dom(H). We also write H(x1) = y1, . . . ,H(xn) = yn. When no confusion arises,
we drop the subscript n for sets and mapping sequences. We write H{x 7→ y}
as a mapping update: if x ∈ dom(H), H and H{x 7→ y} are identical except that
H{x 7→ y} maps x to y; if x /∈ dom(H), H{x 7→ y} = H, x 7→ y. H\x removes
the mapping x 7→ H(x) from H if x ∈ dom(H), otherwise the operation has no
effect.

KernelCoqa is an idealized object-based language with objects, messaging,
and fields. Its abstract syntax is shown on the left of Fig. 3. A program P is
a set of classes. Each class has a unique name cn and its definition consists of
sequences of field (Fd) and method (Md) declarations. To make the formalization
feasible, many features are left out, including types and constructors. Besides
local method invocations via dot (.) notation, synchronous and asynchronous
messages are sent to objects using => and -> , respectively. A class delcared
exclusive will have its objects write captured upon any access. This label is

2 A variant of Java’s synchronized allows programmers to specify what objects to be
accessed in a mutually exclusive manner. Programmers still have to know beforehand
the objects.



P ::=
−−−−−−−−−−−−→
cn 7→ 〈l;Fd;Md〉

Fd ::= fn

Md ::=
−−−−−−−→
mn 7→ λx .e

e ::= null | x | cst | this

| new cn

| fn | fn = e
| e.mn(e)
| e ->mn(e)
| e =>mn(e)
| let x = e in e

l ::= exclusive | ε
cst constant

cn class name

mn method name

fn field name

x variable name

H ::=
−−−−−−−−−−−−−→
o 7→ 〈cn; R; W ;F 〉

F ::=
−−−−→
fn 7→ v

T ::= 〈t;γ; e〉 | T ‖ T ′

N ::=
−−−→
t 7→ t′

R, W ::= t

γ ::= o | null

v ::= cst | o | null

e ::= v | wait t
| e ↑ e | . . .

E ::= • | fn = E

| E.m(e) | v.m(E)
| E ->m(e) | v ->m(E)
| E =>m(e) | v =>m(E)
| let x = E in e

o object ID

t task ID

anc(N, t) =



{t}, if N(t) = null

{t} ∪ anc(N, t′), if N(t) = t′

Fig. 3. Language Abstract Syntax and Dyanimc Data Structure

useful for eliminating deadlocks inherent in a two-phase locking strategy, such
as when two tasks first read capture an object, then both try to write capture
the same object and thus deadlock.

Operational Semantics Our operational semantics is defined as a contextual
rewriting system over states S ⇒ S, where each state is a triple S = (H, N, T )
for H the object heap, N a task ancestry mapping, and T a set of parallel tasks.
Every task has a local evaluation context E. The relevant definitions are given
in Fig. 3. H is a mapping from objects o to field records tagged with their class
name cn. In addition, each o has capture sets, R and W , for recording tasks
that have read or write captured this object. A task is a triple consisting of the
task ID t, the object γ this task currently operates on, and an expression e to
be evaluated.

The core single-step evaluation rules are presented in Fig. 4. The rules for
Let, Return and other standard constructs are omitted here; see [LLS07]. The
rules implicitly operate over some fixed program P . The Invoke rule for intra-
task messaging is interpreted as a standard function application. The Task rule
creates a new task via asynchronous messaging. The SubTask rule creates a
subtask of the current task via synchronous messaging, and the parent task
enters a wait state until the subtask returns. When a task finishes, all objects
it has captured are freed; the TEnd and STEnd are rules for ending a task and
a subtask, respectively. The two-phase locking capture policy is implemented in
the Set and the Get rules. The optional exclusive modifier requires an object
to be write captured in both rules. When a task cannot capture an object it



Set

H(γ) = 〈cn; R; W ;F 〉
H ′ = H{γ 7→ 〈cn; R; W ∪ {t}; F{fn 7→ v}〉} if R ⊆ anc(N, t) and W ⊆ anc(N, t)

H,N, 〈t; γ;E[ fn = v ]〉 ⇒ H ′, N, 〈t; γ;E[ v ]〉

Get

H(γ) = 〈cn; R; W ;F 〉 P (cn) = 〈l;Md;Fd〉 F (fn) = v

H ′ =



H{γ 7→ 〈cn; R; W ∪ {t}; F 〉}, if l = exclusive and R ⊆ anc(N, t) and W ⊆ anc(N, t)
H{γ 7→ 〈cn; R ∪ {t}; W ;F 〉}, if l = ε and W ⊆ anc(N, t)

H, N, 〈t; γ;E[ fn ]〉 ⇒ H,N, 〈t;γ;E[ v ]〉

Invoke

H(o) = 〈cn; R;W ; F 〉 P (cn) = 〈l;Fd; Md〉 Md(mn) = λx .e

H, N, 〈t; γ;E[ o.mn(v) ]〉 ⇒ H, N, 〈t; o;E[ e{v/x}↑γ ]〉

Task(t, γ,mn, v, o, t′)

t′ fresh

H,N, 〈t; γ;E[ o ->mn(v) ]〉 ⇒ H,N, 〈t;γ;E[null ]〉 ‖ 〈t′; o; this.mn(v)〉

SubTask(t, γ, mn, v, γ, t′)

N ′ = N{t′ 7→ t} t′ fresh

H,N, 〈t; γ;E[ o =>mn(v) ]〉 ⇒ H,N ′, 〈t; γ;E[wait t′ ]〉 ‖ 〈t′; o; this.mn(v)〉

TEnd(t)

H ′ =
]

H(o)=〈cn;R;W ;F 〉

(o 7→ 〈cn; R\t; W\t; F 〉) N(t) = null

H,N, 〈t;γ; v〉 ⇒ H ′, N, ε

STEnd(t, v, t′)

H ′ =
]

H(o)=〈cn;R;W ;F 〉

(o 7→ 〈cn; R\t; W\t;F 〉) N(t) = t′

H,N, 〈t; γ; v〉 ‖ 〈t′; γ′;E[wait t ]〉 ⇒ H ′, N\t, 〈t′; γ′;E[ v ]〉

Fig. 4. KernelCoqa Core Operational Semantics Rules

needs, it is implicitly object-blocked on the object until it is entitled to capture
it—the Set/Get rule cannot progress.

Atomicity Theorems Here we formally establish the informal claims about Ker-
nelCoqa: quantized atomicity, mutual exclusion of tasks, and race freedom.
Proofs are provided in [LLS07]. The key Lemma is the Bubble-Down Lemma,
Lemma 1, which shows that consecutive steps of a certain form in a computation
path can be swapped to give an equivalent path. Then, by a series of bubblings,
each quantum of steps can be bubbled to all be consecutive in an equivalent



computation path, showing that the quanta are serializable: Theorem 1. The
technical notion of a quantum is the pmsp below, a pointed maximal sub-path.
These are a series of local steps of one task with a nonlocal step at the end,
which may be embedded in a larger concurrent computation path. We prove in
Theorem 1 that any computation path can be viewed as a collection of pmsp’s,
and all pmsp’s in the path are serializable and thus the whole path is.

Definition 1 (Object State). Recall the global state is a triple S = (H, N, T ).
The object state for o, written so, is defined as H(o), the value of the object o
in the current heap H, or null if o 6∈ dom(H).

Definition 2 (Local and Nonlocal Step). A step str = (S, r, S′) denotes a
transition S ⇒ S′ by rule r of Figure 4. str is a local step if r is one of the
local rules: either Get, Set, This, Let, Return, Inst or Invoke. str is a
nonlocal step if r is one of nonlocal rules: either Task, SubTask, TEnd or
STEnd.

Every nonlocal rule has a label given in Fig 4, used as the observable.

Definition 3 (Computation Path). A computation path p is a finite se-
quence of steps str1

. . . stri
such that str1

str2
. . . stri−1

stri
= (S0, r1, S1) (S1, r2, S2)

. . . (Si−2, ri−1, Si−1) (Si−1, ri, Si).

When no confusion arises, we simply call it a path.

Definition 4 (Observable Behavior). The observable behavior of a path p,
ob(p), is the sequence of labels the nonlocal steps in p.

Note that this definition encompasses I/O behavior elegantly since I/O in Kernel-
Coqa can be viewed as a fixed object which is sent nonlocal and thus observable
messages.

Definition 5 (Observable Equivalence). Two paths p1 and p2 are observ-
ably equivalent, written p1 ≡ p2, iff ob(p1) = ob(p2).

Definition 6 (Object-blocked). A task t is in an object-blocked state S at
some point in a path p if it would be enabled for a next step str = (S, r, S′) for
which r is a Get or Set step on object o, except for the fact that there is a
capture violation on o: one of preconditions of the Get/Set fails to hold in S
and so str cannot in fact be the next step at that point.

Definition 7 (Sub-path and Maximual Sub-path). Given a path p, for
some t a sub-path spt of p is a sequence of steps in p which are all local steps
of task t. A maximal sub-path is a spt in p which is longest: no local t steps in
p can be added to the beginning or the end of spt to obtain a longer sub-path.

Definition 8 (Pointed Maximal Sub-path). For a given path, a pointed
maximal sub-path for t (pmspt) is a maximal sub-path spt with either 1) it has
one nonlocal step appended to its end or 2) there are no more t steps ever in the
path.



The second case is the technical case of when the (finite) path has ended but
the task t is still running. The last step of a pmspt is called its point.

The pmsp’s are the units which we need to serialize: they are all spread out
in the initial path p, and we need to show there is an equivalent path where each
pmsp runs in turn as an atomic unit.

Definition 9 (Task Indexed pmsp). For some fixed path p, define pmspt,i

to be the ith pointed maximal sub-path of task t in p, where all the steps of the
pmspt,i occur after any of pmspt,i+1 and before any of pmspt,i−1.

Definition 10 (Waits-for and Deadlocking Path). For some path p, pmspt1,i

waits-for pmspt2,j if t1 goes into a object-blocked state in pmspt1,i on an object
captured by t2 in the blocked state. A deadlocking path p is a path where this
waits-for relation has a cycle: pmspt1,i waits-for pmspt2,j while pmspt2,i′ waits-
for pmspt1,j′ .

Hereafter we assume in this theoretical development that there are no such
cycles. In Coqa deadlock is an error that should have not been programmed to
begin with, and so deadlocking programs are not ones we want to prove facts
about.

Definition 11 (Quantized Sub-path and Quantized Path). A quantized
sub-path contained in p is a pmspt of p where all steps of pmspt are consecutive
in p. A quantized path p is a path consisting of a sequence of quantized sub-paths.

The main technical Lemma is the following Bubble-Down Lemma, which
shows how local steps can be pushed down in a path. Use of such a Lemma is the
standard technique to show atomicity properties. Lipton [Lip75] first described
such a theory, called reduction; his theory was later refined by [LS89].

Definition 12 (Equivalent Step Swap). For two consecutive steps str1
str2

in a path p, where str1
∈ pmspt1

, str2
∈ pmspt2

, t1 6= t2 and str1
str2

=
(S, r1, S

′)(S′, r2, S
′′),if the step swap of str1

str2
, written as st′r2

st′r1
, gives a new

path p′ such that p ≡ p′ and st′r2
st′r1

= (S, r2, S
∗)(S∗, r1, S

′′), then it is an equiv-
alent step swap.

Lemma 1 (Bubble-down Lemma). For any path p with any two consecutive
steps str1

str2
where str1

∈ pmspt1
,str2

∈ pmspt2
and t1 6= t2, if it is not the

case that pmspt1
waits-for pmspt2

and if str1
is a local step, then a step swap of

str1
str2

is an equivalent step swap.

Theorem 1 (Quantized Atomicity) For all paths p there exists an observ-
ably equivalent quantized path p′.

Theorem 2 (Data Race Freedom) For all paths, no two different tasks can
access a field of an object in consecutive steps, where at least one of the two
accesses changes the value of the field.

Theorem 3 (Mutual Exclusion over Tasks) It can never be the case that
two tasks t1 and t2 overlap execution in a consecutive sequence of steps str1

. . . strn

in a path, and in those steps both t1 and t2 write the same object o, or one reads
while the other writes the same object.



4 Discussion and Related Work

Implementation We have implemented a prototype of Coqa, called CoqaJava.
Polyglot [NCM03] was used to construct a translator from CoqaJava to Java.
All language features introduced in Fig. 3 are included in the prototype. The
implementation dynamically enforces the object capture, freeing, and mutual
exclusion semantics of Coqa. Refer to [LLS07] for more details about CoqaJava.
Making our language more expressive and its implementation more efficient is a
future goal. For instance, it will be interesting to add more concurrency-related
language features, such as futures and synchronization constraints. Optimization
techniques should also be able to minimize the amount of capture information
that needs to be retained at runtime.

Deadlocks There are two forms of deadlock arising in Coqa. The first is inherent
in two-phase locking, when an object is read captured by two tasks but neither
task can further write capture it. The second form is a cyclically dependent
deadlock. The first form of deadlock can be avoided by declaring the class to
be exclusive (see Sec. 3). Programmers can also explicitly introduce interleav-
ing via => to break deadlock. In addition, there are many static and dynamic
analysis techniques and tools to ensure deadlock freedom; for an overview, see
[Sin89]. Observe that the most difficult issue for deadlock detection is that it
must make sure deadlock is not possible for all possible interleaving scenarios.
The precision of static techniques are reduced due to the combinatorial explo-
sion of interleaving. Since all Coqa code observes quantized atomicity, stronger
analysis results should be achievable over Coqa programs because interleaving
has been significantly reduced.

Blocking vs. Rollback Atomicity is commonly addressed in STM systems via
rollbacks; example approaches include Harris and Fraser [HF03], Transactional
Monitors [WJH04] for Java, and Atomos [CMC+06]. Compared with blocking
systems like ours, STM systems have the appeal of not introducing deadlocks.
However, there is a counterpart to deadlock in STM systems, livelock, where roll-
backs resulting from contention might result in further contentions and further
rollbacks, etc. How frequently livelocks occur is typically gauged by experimental
methods. In addition, rollback also may not be as easy as simply discarding the
read/write set and retrying (see AbortHandler, etc. in [CMC+06] and onAbort

etc. methods in [NMAT+07]). In terms of performance there have been no de-
tailed studies that we know of comparing locking and rollback. A good overview
of the pros and cons of blocking and rollback appears in [WHJ06].

A primary reason why Coqa does not take the rollback approach is our de-
sire for ubiquitous atomicity, even for I/O-intensive applications. Existing STM
systems provide atomicity guarantees only for code explicitly specified by pro-
grammers, say, by declaring a block to be atomic; I/O cannot occur in these
regions since it cannot generally be undone. In order to make sure that the sys-
tem can roll back to the state before an abandoned transaction, a STM system



needs to perform bookkeeping on the initial state of every transaction. So pro-
grammers have to be stingy in the number of atomic blocks declared, to avoid
the overhead of such bookkeeping growing unexpectedly large with increasing
number of threads and transaction sizes. As a result, in a large number of STM
systems [HF03,WJH04,Cra05], code by default runs in a mode with no atomicity
guarantees, and the interleaving of this code with atomicity-preserving code in
fact can break the atomicity of the latter, an unfortunate consequence known as
weak atomicity [CMC+06].

Atomicity in Non-STM Languages Of the non-STM languages, our work is most
related to Actor languages. Actors [Agh90,AMST97] provide a simple concurrent
model where each actor is a concurrent unit with its own local state. Inter-actor
communication is achieved by asynchronous messaging. Full atomicity is pre-
served because executing each actor method does not depend on the state of
other actors and so each method execution is trivially serializable. Actors are
also deadlock free. Actors however are a model more suited to loosely-coupled
distributed programming: for tightly-coupled message sequences, programming
them in the pure Actor model means breaking off each method after each send
and wrapping up the continuation as a new actor method. Typically when Ac-
tor languages are implemented [Arm96,Mil,HO06,YBS86], additional language
constructs (such as futures, and explicit continuation capture) are included to
ease programmability, but there is still a gap in that the most natural mode of
programming, synchronous messaging, is not fully supported, only limited forms
thereof. We elect to support full synchronous messaging so that Coqa coding
style can be extremely close to standard programming practice.

Argus [Lis88] pioneered the study of atomicity in object-oriented languages.
Like actors it is focused on loosely coupled computations in a distributed con-
text, so it is quite remote in purpose from Coqa but there is still overlap in
some dimensions. Argus allows nested transactions, called subactions. Unlike
our subtasking, when a subaction ends, all its objects are merged with the par-
ent action, instead of being released early to promote parallelism as a subtask
does. Guava [BST00] was designed with the same philosophy as Coqa: code
is concurrency-aware by default. The property Guava enforces is race freedom,
which is a weaker and more low-level property than the quantized atomicity of
Coqa.

5 Conclusion and Future Work

Coqa is a foundational study of how concurrency can be built deeply into object
models; our particular target is tightly coupled computations running concur-
rently on multi-core CPUs. Coqa has a very simple and sound foundation – it
is defined via only three forms of messaging, which account for (normal) lo-
cal message send, thread spawning via asynchronous message send, and atomic
subtasking via synchronous nonlocal send. We formalized Coqa as the language



KernelCoqa, and proved that it observes a wide range of good concurrency prop-
erties, in particular quantized atomicity. We justify our approach by implement-
ing CoqaJava, a Java extension incorporating all of the Coqa features.
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