Gerald M. Masson Distinguished Lecture Series: Lise Getoor, University of California, Santa Cruz – “The Unreasonable Effectiveness of Structure”

When:
October 10, 2019 @ 10:45 am – 11:45 am
2019-10-10T10:45:00-04:00
2019-10-10T11:45:00-04:00

Location

Hackerman Hall B-17

Abstract

Our ability to collect, manipulate, analyze, and act on vast amounts of data is having a profound impact on all aspects of society. Much of this data is heterogeneous in nature and interlinked in a myriad of complex ways. From information integration to scientific discovery to computational social science, we need machine learning methods that are able to exploit both the inherent uncertainty and the innate structure in a domain. Statistical relational learning (SRL) is a subfield that builds on principles from probability theory and statistics to address uncertainty while incorporating tools from knowledge representation and logic to represent structure. In this talk, I will give a brief introduction to SRL, present templates for common structured prediction problems, and describe modeling approaches that mix logic, probabilistic inference and latent variables. I’ll overview our recent work on probabilistic soft logic (PSL), a SRL framework for large-scale collective, probabilistic reasoning in relational domains. I’ll close by highlighting emerging opportunities (and challenges!!) in realizing the effectiveness of data and structure for knowledge discovery.

Bio

Lise Getoor is a professor in the Computer Science Department at the University of California, Santa Cruz and director of the Data, Discovery and Decisions Research Center at UC Santa Cruz. Her research areas include machine learning, data integration and reasoning under uncertainty, with an emphasis on graph and network data. She has over 250 publications and extensive experience with machine learning and probabilistic modeling methods for graph and network data. She is a Fellow of the Association for Artificial Intelligence, an elected board member of the International Machine Learning Society, serves on the board of the Computing Research Association (CRA), and was co-chair for ICML 2011. She is a recipient of an NSF Career Award and thirteen best paper and best student paper awards. She received her PhD from Stanford University in 2001, her MS from UC Berkeley, and her BS from UC Santa Barbara, and was a professor in the Computer Science Department at the University of Maryland, College Park from 2001-2013.

Host

Xin Jin

Video

Watch seminar video.

Back to top