
From Constraints to Models Walking Experiment Comparing Gait Formulation Algorithm Conclusion

Towards a Universal Temporal Ordering of
Discrete Events for Bipedal Walking

via the Optimal Control of Switched Systems

Ram Vasudevan

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

May 5th, 2011

Anthropomorphic Walking 1



From Constraints to Models Walking Experiment Comparing Gait Formulation Algorithm Conclusion

Which is More Anthropomorphic?
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Prior Work

Focus of work on bipedal robotics has been either on studying
stability or minimizing some energy function.

1 mode 2 mode 3 mode 4 mode 5 mode

w/o F, w/o K
McGeer 1990,
Goswami 1996

– – – –

w/o F, w/ K Grizzle 2001
Ames 2006,
McGeer 1990

– – –

w/ F, w/o K Grizzle 2001 Tlalonini 2009
Schaub 2009,
Tlalonini 2009

– –

w/ F, w/ K Grizzle 2001
Choi 2005,
Tlalolini 2009

Schaub 2009
Braun 2009,
Grizzle 2010

Sinnet
2009
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Preview of Our Result

1. Experimentally show there exists a universal temporal ordering
of discrete events for bipedal walking.

2. Construct a metric to determine the anthropomorphism of
gait.

3. Develop an algorithm for the optimal control of constrained
nonlinear switched dynamical systems which provably
converges to local minima of our problems.
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1. From Constraints to Models

2. Walking Experiment

3. Human-Data Based Cost

4. Recasting the Problem

5. Algorithm

6. Conclusion
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Hybrid Systems

Hybrid System

A hybrid system H is a tuple
(Γ,D,U,G ,R,FG ) where

• Γ = (V ,E ) is an oriented graph,

• D = {Dv}v∈V is a set of domains,

• U = {Uv}v∈V is a set of controls,

• G = {Ge}e∈E is a set of guards,

• R = {Re}e∈E is a set of reset maps,

• FG = {(fv , gv )}v∈D is a set of vector
fields.
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From Contact Points to a Hybrid System
The bipedal robot is modeled as a hybrid control system:

H = (Γ,D,U,G ,R,FG ).

• Γ is an oriented graph.
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From Contact Points to a Hybrid System
The bipedal robot is modeled as a hybrid control system:

H = (Γ,D,U,G ,R,FG ).

• D is the phase space of the configuration spaces for each
discrete domain.
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From Contact Points to a Hybrid System
The bipedal robot is modeled as a hybrid control system:

H = (Γ,D,U,G ,R,FG ).

• FG are the control systems (fi , gi ) obtained from the
Lagrangians Li on each domain.
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From Contact Points to a Hybrid System
The bipedal robot is modeled as a hybrid control system:

H = (Γ,D,U,G ,R,FG ).

• G and R are obtained from kinematic and holonomic
constraints.
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Hybrid Models for Bipedal Walking

• The sequence of contact points along with a Lagrangian that
is intrinsic to the biped completely determines the hybrid
model.

• The sequence of contact points can be arbitrarily complex,
where do we focus our attention?

• Focus our attention on 6 contact points: left knee [lk], left
heel [lh], left toe [lt], right knee [rk], right heel [rh], and right
toe [rt].
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The Setup

• Use a 12-camera motion capture system
(480 fps, approximately 1mm accuracy),
to record the 3D position of 19 LED
sensors.

• To simplify the data analysis each subject
was required to place their right foot at
the starting point of the blue line at the
start of the experiment and was required
to repeat the experiment 12 times.
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The Participants
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Figure 3: The data for the height of the heel and
toe (left) and knee (right) after averaging over all
12 walking trials

161 centimeters, and weights ranging between 47.6 and 90.7
kilograms. Table 1 describes the measurements of each of
the subjects. The data for each individual is then rotated so
that the walking occurs in the x-direction and for each sub-
ject, the 12 walking trials are averaged (after appropriately
shifting the data in time) which results in a single trajec-
tory for each constraint for each subject for at least two
steps (one step per leg); the resulting data can be seen in
Fig. 3. Any interested researcher should be able to perform
analysis on the collected data [2].

Function Fitting. In order to determine the domain
breakdowns for the subjects in the walking experiment, it is
necessary to determine the times when the number of con-
tact points change, i.e., the event times. The obvious ap-
proach to determining the domain breakdown based upon
the human data is threshold the data, i.e., below the thresh-
old a given constraint (heel or toe) is enforced and above
it, it is not. Unfortunately, due to the noisy nature of the
data for the constraints “near the ground,” in order to pick
a proper threshold, it would have to be chosen above this
noise level. Doing so actually results in the constraint being
enforced for too long a time. Looking at the data for the
contact points in Fig. 3, it can be seen that when a contact
point is not constrained it tends to follow relatively simple
functions. Therefore, rather than looking for when the con-
tact point is constrained (through thresholds), we look for
the “simplest” function that the contact point follows when
not enforced. When this function is not being followed, the
constraints are enforced and thus constant.

Sex Age Weight Height L1 L2 L3 L4

1 M 30 90.7 184 14.5 8.50 43.0 44.0
2 F 19 53.5 164 15.0 8.00 41.0 44.0
3 M 17 83.9 189 16.5 8.00 45.5 55.5
4 M 22 90.7 170 14.5 9.00 43.0 39.0
5 M 30 68.9 170 15.0 8.00 43.0 43.0
6 M 29 59.8 161 14.0 8.50 37.0 40.0
7 M 26 58.9 164 14.0 9.00 39.0 41.0
8 F 77 63.5 163 14.0 8.00 40.0 42.0
9 F 23 47.6 165 15.0 8.00 45.0 43.0

Table 1: Table describing each of the subjects.
The subject number is in the left column and
the L1, L2, L3, L4 measurements correspond to the
lengths described in Fig. 2. The measurement in
column 4 is in kilograms and the measurements in
columns 5− 9 are in centimeters.
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Figure 4: The data for the height of the heel (top
left), the toe (top right) and knee (bottom) together
with the fittings of a constant, Gaussian, and con-
stant for the heel (top left), a constant, 4th order
polynomial, and constant for the toe (top right)
and a constant, Gaussian, and constant for the knee
(bottom). The vertical lines indicate the transitions
points between the fitting functions.

To formalize the idea of function fitting to determine event
times, given a set of contact points C, let sc(t, a) be the“sim-
plest” function that the contact point c ∈ C follows then not
being constrained; here a ∈ Rk is a collection of parame-
ters for the function. Denote the data for a contact point
by yc(tn) where tn ∈ R and n ∈ {1, . . . , T}. When the
contact point is constrained it is constant and when it is
unconstrained it follows sc(t, a). We therefore consider the
function:

fc(tn, τl, τs, a) =





sc(τl, a) if tn ≤ τl
sc(tn, a) if τl < tn < τs
sc(τs, a) if τs ≤ tn

where τl, τs ∈ {tn}Tn=1 are the event times indicating when
the contact point becomes unconstrained (lift) (τl) and con-
strained (strike) (τs).

2 To determine the event times as they
best fit the data, we solve the following optimization prob-
lem:

min
τl,τs∈{tn}Tn=1

min
a∈Rk

1

T

T∑

n=1

|fc(tn, τl, τs, a)− yc(tn)|.

To illustrate this procedure consider, the averaged data
for the heel and toe illustrated in Fig. 3(a); here we have
plotted the data against time. Looking at this data, the be-
havior of the heel appears to follow a constant, followed by
a Gaussian, followed by a constant; therefore, we claim that
the “simplest” function that the heel follows when uncon-
strained is a Gaussian. In a similar fashion, the averaged
data for the toe appears to follow is a constant, followed
by a 4th order polynomial, followed by a constant. With
this observations in hand, we fit the averaged heel and toe
data to these functions using the described procedure. The

2Here we assume that τl < τs. If this is not the case then
fc would consist of the “simplest” function, followed by a
constant, followed by the “simplest” function.
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The Pre-Processing
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What About the Signal?
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1. Treat each signal independently.

2. Treat contact point as constrained when signal is constant.
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1. Treat each signal independently.

2. Treat contact point as constrained when signal is constant.
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Detecting Constraint Enforcement

Let y : [0,T ]→ R be a contact point sensor.

• Suppose we have a canonical walking function s(t;φ) we
expect the contact point sensor to behave like:

c(t;φ, τl , τs) =





constant1(φ) if t ≤ τl
s(t;φ) if τl < t < τs

constant2(φ) if τs ≤ t

• Determine φ, τl , τs by solving an optimization problem:

minτl ,τs∈[0,T ]minφ∈Rk

1

T

T∑

t=0

|c(t;φ, τl , τs)− y(t)|
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Functions to Fit
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Persistence
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Determining a Temporal Ordering of Discrete Events
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The Universal Temporal Ordering w/o Knee-Lock

Heel-LiftToe-Lift
hl

hstl hstl

Heel StrikeToe Strike

ts

Heel-StrikeToe-Strike

[lh,lt]

[lt]

[lt,rh]

[lh,rh,rt]

There was a common temporal ordering of discrete events for all
human subjects in the case w/o knee-lock.
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Walking Cycles

The difference between each subject is found in the amount of
time spent in each mode, which we call a walking cycle:

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

1 1( , )uS α=

17.74% 17.74% 18.43% 46.08%

15.95% 12.07% 24.78% 47.20%
[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

2 2( , )uS α=

3 3( , )uS α=

23.09% 21.09% 15.09% 40.73%

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

3 3 u

4 4( , )uS α=

18.93% 7.40% 23.67% 50.00%

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

5 5( , )uS α=

16.89% 19.62% 10.07% 53.41%

19 92% 14 79% 17 16% 48 13%
[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

6 6( , )uS α=

( )S

19.92% 14.79% 17.16% 48.13%

19.00% 19.94% 19.94% 41.12%

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

7 7( , )uS α=

8 8( , )uS α=
17.27% 20.03% 13.13% 49.57%

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt
9 9( , )uS α=

25.59% 15.42% 14.41% 44.58%

This can be represented as a weighted graph (α, `):

` : [lt] → [lt, rh] → [lt, rh, rt] → [lh, lt]
α(`) : 17.74% → 17.74% → 18.43% → 46.08%
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The Universal Temporal Ordering w/ Knee Lock

[ , , ]lh lt lk

[ ]lh lt lk

[ , ]lt lk

[ ]lt lk

[ , , ]lt lk rk [ , , , ]lt lk rh rk [ , , ]lt rh rk [ , , , ]lt rh rt rk

[ , , , ]lt rh rt rk[ ]lt [ , ]lt rk [ , , ]lt rh rk

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

1 1 1( , )S α=1 1 1( , )S α=

[ , , ]lh lt lk

[ , , ]lh lt lk

[ , ]lt lk

[ , ]lt lk

[ , , , ]lt rh rt rk[ ]lt [ , ]lt rk [ , , ]lt rh rk

[ , , ]lt lk rk [ , ]lt rk [ , , ]lt rh rk [ , , , ]lt rh rt rk

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

2 2 2( , )S α=

3 3 3( , )S α=

2 2 2( , )S α=

3 3 3( , )S α=

[ , ]lt lk [ , , ]lt lk rk [ , ]lt rk [ , , ]lt rh rk [ , , , ]lt rh rt rk [ , , ]lh lt lk[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

4 4 4( , )S α=4 4 4( , )S α=

[ , ]lt rk [ , , ]lt rh rk [ , , ]lh lt lk[ , , , ]lt rh rt rk [ , ]lh lt [ , , ]lh lt rk[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

5 5 5( , )S α=5 5 5( , )S α=

[ , , ]lh lt lk

[ , , ]lh lt lk

[ , , ]lt lk rk [ , , , ]lt rh rt rk

[ , , , ]lt rh rt rk

[ , ]lt rk [ , , ]lt rh rk [ , , , ]lh lt lk rk

[ , ]lt lk [ ]lt [ , ]lt rh [ , , ]lt rh rk

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

6 6 6( , )S α=

( )S α=

6 6 6( , )S α=

( )S α=

[ , , ]lh lt lk[ , ]lt lk [ , , ]lt lk rh [ , , , ]lt lk rh rk [ , , ]lt rh rk [ , , , ]lt rh rt rk[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

7 7 7( , )S α=

8 8 8( , )S α=

7 7 7( , )S α=

8 8 8( , )S α=

[ , , ]lh lt lk[ , ]lt lk [ , , ]lt lk rk [ , , ]lt rh rk [ , , , ]lt rh rt rk[ , ]lt rk[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt
9 9 9( , )S α=9 9 9( , )S α=

1. 7 distinct temporal orderings!
2. Issues probably arise due to poor knee fitting, but they still

seem to have a lot in common.
3. Can we measure how much they have in common?
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The Universal Temporal Ordering w/ Knee Lock

[ , , ]lh lt lk

[ ]lh lt lk

[ , ]lt lk

[ ]lt lk
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1 1 1( , )S α=1 1 1( , )S α=

[ , , ]lh lt lk

[ , , ]lh lt lk

[ , ]lt lk

[ , ]lt lk

[ , , , ]lt rh rt rk[ ]lt [ , ]lt rk [ , , ]lt rh rk

[ , , ]lt lk rk [ , ]lt rk [ , , ]lt rh rk [ , , , ]lt rh rt rk

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

2 2 2( , )S α=

3 3 3( , )S α=

2 2 2( , )S α=

3 3 3( , )S α=

[ , ]lt lk [ , , ]lt lk rk [ , ]lt rk [ , , ]lt rh rk [ , , , ]lt rh rt rk [ , , ]lh lt lk[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

4 4 4( , )S α=4 4 4( , )S α=

[ , ]lt rk [ , , ]lt rh rk [ , , ]lh lt lk[ , , , ]lt rh rt rk [ , ]lh lt [ , , ]lh lt rk[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

5 5 5( , )S α=5 5 5( , )S α=

[ , , ]lh lt lk

[ , , ]lh lt lk

[ , , ]lt lk rk [ , , , ]lt rh rt rk

[ , , , ]lt rh rt rk

[ , ]lt rk [ , , ]lt rh rk [ , , , ]lh lt lk rk

[ , ]lt lk [ ]lt [ , ]lt rh [ , , ]lt rh rk

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

6 6 6( , )S α=

( )S α=

6 6 6( , )S α=

( )S α=

[ , , ]lh lt lk[ , ]lt lk [ , , ]lt lk rh [ , , , ]lt lk rh rk [ , , ]lt rh rk [ , , , ]lt rh rt rk[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt

7 7 7( , )S α=

8 8 8( , )S α=

7 7 7( , )S α=

8 8 8( , )S α=

[ , , ]lh lt lk[ , ]lt lk [ , , ]lt lk rk [ , , ]lt rh rk [ , , , ]lt rh rt rk[ , ]lt rk[ , ]lh lt[ ]lt [ , ]lt rh [ , , ]lt rh rt
9 9 9( , )S α=9 9 9( , )S α=

1. 7 distinct temporal orderings!
2. Issues probably arise due to poor knee fitting, but they still

seem to have a lot in common.
3. Can we measure how much they have in common?
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Comparing Weighted Graphs

We are after a weighted
graph metric that satisfies
the following properties:

1. penalizes those
walking cycles that do
not have domains in
common

2. penalizes those
walking cycles that do
not have transitions
in common

An example of such a
metric is the cut metric.
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Comparing Weighted Graphs

We are after a weighted
graph metric that satisfies
the following properties:

1. penalizes those
walking cycles that do
not have domains in
common

2. penalizes those
walking cycles that do
not have transitions
in common

An example of such a
metric is the cut metric.

[ , , , ]lh lt lk rk[ , , ]lh lt lk [ , , , ]lh lt lk rk

[ , , ]lh lt lk[ , , ]lh lt lk[ , , ]lh lt lk [ , , , ]lh lt lk rk

100%75% 25%

50% 50% 100%

W1

W2

W3

W4

Cut Distance between pairs:

W1 W2 W3 W4

W1 0.000 3.000 2.500 2.000

W2 3.000 0.000 1.500 2.000

W3 2.500 1.500 0.000 0.625

W4 2.000 2.000 0.625 0.000
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The Optimal Walking Cycle and the Human Based Cost

Optimal Walking Cycle

Letting L =
⋃N

i=1 `i be the
graph obtained by combining
all N cycles `i , we define the
optimal walking cycle denoted
(α∗, `∗) by:

argmin
(α,`)∈R|`|×L

1

N

N∑

i=1

d(α, `, αi , `i )

Human Based Cost (HBC)

Given a biped with walking cycle (αr , `r ), the human-based cost
(HBC) of walking is:

H(R) = d(αr , `r , α
∗, `∗).
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The HBC: w/o Knee-Lock

Heel-Lift

Heel-StrikeToe-Strike

Toe-Lift

[ , ]lh lt

[ ]lt

[ , ]lt rh

[ , , ]lt rh rt

59%

18%

17%

6%
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The HBC: w/o Knee-Lock

[ , ]lh lt [ ]lt

[ ]rh

[ , , ]lt rh rt

2 3 3, ,a b  

2

3
a

3
a

3
b

3
b

R2a R2b R3a R3b R3c
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
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Models are drawn from Tlaloni et al. 2009 and Schaub et al. 2009.
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The HBC: w/ Knee-Lock
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[ , , ]lh lt lk [ , ]lt lk

59 61% 13 14%

[ , , ]lt lk rk[ , ]lt rk[ , , ]lt rh rk

[ , , , ]lt rh rt rk

* * * *
1 2 3 4, , ,   
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*
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The HBC: w/ Knee-Lock

[ , , ]lh lt lk [ , , , ]lh lt lk rk

[ , , ]lt lk rk[ , , ]lt rh rk

[ , , , ]lt rh rt rk

1

2 4 5, ,  
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Models are drawn from Goswami et al. 1996, Ames et al. 2009,
and Sinnet et al. 2009.
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Mini-Conclusion
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A Teaser
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Definition: Switched Dynamical System

• Let Q = {1, . . . ,Q} be the set of modes.

• Let {fq}q∈Q be a set of vector fields, fq : Rn × Rm → Rn.

• Consider a system governed by the following differential
equation:

ẋ(t) = fπ(t)
(
x(t), u(t)

)
, x(0) = x0

where u : [0,∞),→ Rm, and π : [0,∞)→ Q.

• Let NF denote the mode in which the trajectories stop
evolving, i.e. fNF(x , u) = 0.
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Relaxing Constraint Satisfaction
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Prior Work: Switched System Optimization
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Modeling the Optimization Problem

• Given a fixed initial condition, x0 ∈ Rn, the trajectory of a
“classical” continuous dynamical system is determined by a
continuous-valued input, u.

• Given a fixed initial condition, x0 ∈ Rn, the trajectory of a
switched dynamical system is determined by a
continuous-valued input, u, and a discrete-valued input, π.

Idea

We need to encode the two types of inputs in a way that allows for
the application of as much existing optimal control theory as
possible.
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Modeling the Discrete-Valued Input
1. A mode sequence, σ, is an element in the Mode Sequence Space:

Σ =
∞⋃

N=1

{
σ ∈ (Q∪ NF)N

∣∣σ(j) ∈ Q j ≤ N, σ(j) = NF j > N
}
.

2. A transition time sequence, s, represents the time spent in each mode in
σ and is an element in the Switching Time Sequence Space:

S =
{

s ∈ l1
∣∣ s(j) ≥ 0 ∀j ≤ N, s(j) = 0 ∀j > N

}
.

Define µ(i) =
∑i

k=1 s(k), and µf =
∑∞

k=1 s(k).

π(t)

t

Q

s(3) = 2s(2) = 2.5s(1) = 2

σ(3) = 2σ(1) = 1 σ(2) = 3

1 2 3 4 5 6 7

1

2

3

µ(1) = 2µ(0) = 0 µ(2) = 5 µ(3) = 6.5
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Continuous Input and Waypoint Spaces

1. Let the Continuous Input Space be:

U =
{

u ∈ L2([0,∞),Rm) | u(t) ∈ U, ∀t ∈ [0,∞)
}
,

where U ⊂ Rm is a compact, connected set containing the
origin.

2. Let the Waypoint Space be NW , where W is equal to the
number of waypoints.

• Associates each waypoint to a particular element of a modal
sequence.

• Specifically it gives an index into the modal sequence space.
• Utility becomes clear only after considering implementation of

the algorithm.
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Optimization Space

• Given σ ∈ Σ, let #σ = max{j ∈ N | σ(j) 6= NF}, i.e. #σ is
the number of non-trivial modes in the sequence.

• Combine the four spaces together to define an Optimization
Space as:

X =
{

(σ, s, u,w) ∈ Σ× S × U × NW |
s(k) = 0 ∀k > #σ, and w(i) ≤ #σ ∀i

}
,

• Denote ξ ∈ X by a 4–tuple ξ = (σ, s, u,w).

• Meterize the optimization space by letting:

d(ξx , ξy ) = 1{σx 6= σy}+‖sx−sy‖l1+‖ux−uy‖2+1{wx 6= wy},

where ‖ · ‖l1 is the l1–norm and ‖ · ‖2 is the L2–norm.
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Optimization Problem
• Given a ξ ∈ X and an initial condition, x0, the corresponding

trajectory, x (ξ)(t), is the unique solution to:

ẋ (ξ)(t) = fπ(t;ξ)
(
x (ξ)(t), u(t)

)
, ∀t ∈ (0, µf ]

x (ξ)(0) = x0,

• Let J : X → R be the cost function:

J(ξ) =

∫ µf

0
L
(
x (ξ)(t), u(t)

)
dt+

W∑

i=1

φi
(
x (ξ)(µ(w(i)))

)
+φ
(
x (ξ)(µf )

)
,

where each of the φi ’s is a waypoint.
• Let hj : Rn → R, j = 1, . . . ,Nc , be the state constraints, i.e. we

want x(t) ∈ {y ∈ Rn | hj(y) ≤ 0, ∀j}, ∀t ∈ [0, µf ].
• Compactly, describe all of the constraints via a constraint function:

ψ(ξ) = max
j=1,...,Nc

t∈[0,µf ]

hj

(
x (ξ)(t)

)
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Assumptions

1. The functions L and fq are Lipschitz and differentiable in x
and u for all q ∈ Q. In addition, the derivatives of these
functions with respect to x and u are also Lipschitz.

2. The functions φi , φ, and hj are Lipschitz and differentiable in
x for all i ∈ {1, . . . ,W } and j ∈ J . In addition, the derivatives
of these functions with respect to x are also Lipschitz.
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Optimization Problem

Multiple Waypoint Switched Hybrid Optimal Control Problem

min
ξ∈X

J(ξ)

s.t. ψ(ξ) ≤ 0
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Required Properties of Our Algorithm

Initializing an algorithm at a feasible point is non-trivial, therefore
having an algorithm capable of coping with infeasibility is critical.

1. Phase I/Phase II: If the initialization is infeasible, find a
feasible point and then minimize the cost.

2. Stay Feasible: Once a feasible point is found make sure to
stay feasible.

Anthropomorphic Walking 43



From Constraints to Models Walking Experiment Comparing Gait Formulation Algorithm Conclusion

Optimal Control Algorithm

• Numerical methods for “classical” optimal control, are able to
simultaneously optimize over the input and initial condition.

• Given a fixed mode sequence, σ and a fixed waypoint sequence
w , our problem is transformed into a “classical” optimal
control problem via the time-free transformation, wherein:

optimization over time spent in each mode is transformed into
optimization over the initial condition with the addition of
states with null flows.
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Algorithm for the Discrete Input

• We cannot define gradients in our optimization space since
there is no notion of locality in the mode sequence space.

• Define a “variation” to the discrete control input by inserting
a new mode in the mode sequence for a short interval of time
and computing the change in the cost and constraints due to
this variation.

Local Minima for the Switched System Problem

Whenever the first-order approximation of the cost (constraint) is
constant with respect to this variation when initialized at a feasible
(infeasible) point we are at an extrema.
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Variation ρ

• Let H = Q× [0, µf ]× U

• Given a 3–tuple η = (α̂, t̂, û) ∈ H and ξ ∈ X , define a
variation ρ(η) : [0,∞)→ X that inserts a mode α̂, at time t̂,
with continuous-valued input û, for a period of time of length
λ which is equal to its argument.

s:

µ(0) µ(i)

σ(i + 1)

s(i + 1)

σ(1)

s(1)

µ(1)

σ(i − 1)

s(i − 1)

µ(i − 1)

α̂

λ

σ(i)

t̂ − µ(i − 1)− λ
2

σ(i)

µ(i)− t̂ − λ
2

σ(N)

s(N)

µft̂ − λ
2

t̂ + λ
2

ρ
(η)
σ (λ):

ρ
(η)
s (λ):

µ(0)

σ(1)

s(1)

µ(1)

s(i − 1)

µ(i − 1)

σ(i − 1)

µ(i)

s(i + 1)

σ(i + 1)

s(N)

σ(N)

µft̂

σ(i)

s(i)

σ:
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First-Order Approximation of Cost and Constraints

The variation of J and ψ:

dJ
(
ρ(η)(λ)

)

dλ

∣∣∣
λ=0

= lim
λ↓0

J
(
ρ(η)(λ)

)
− J(ξ)

λ

dψ
(
ρ(η)(λ)

)

dλ

∣∣∣
λ=0

= lim
λ↓0

ψ
(
ρ(η)(λ)

)
− ψ(ξ)

λ

1. If dJ(ρ(η)(λ))
dλ

∣∣∣
λ=0

< 0, then the new mode sequence “locally”

reduces the cost.

2. If ψ(ξ) = 0 and dψ(ρ(η)(λ))
dλ

∣∣∣
λ=0

< 0, then the new mode

sequence remains feasible.
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Bi-Level Optimization Scheme

Stage 1

Fix a mode sequence, σ, and waypoint sequence, w , find either a
locally optimal transition time sequence, s, and continuous control,
u.

Stage 2

If for all variations, ρ, that insert a new mode, the first-order
approximation is constant, then the algorithm is at a local minima,
so terminate.
Otherwise choose the variation that produces the steepest descent,
and repeat Stage 1 using the mode sequence created by the
variation.
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Stage 1: Methodology

• Given a discrete mode sequence, σ and a waypoint sequence,
w , we need to find a transition time sequence, s, and
continuous-valued input, u, that minimize the cost, J.

1. Transform optimization over the transition time sequence, s,
and the continuous-valued input, u, into an optimization over
initial conditions and inputs on a family of #σ continuous
systems.

2. Use any numerical method for optimal control like SNOPT or
NPSOL.

• Let â : S × U → S × U denote the algorithm that implements
Stage 1.
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Stage 1: Sketch of Time-Free Transformation

• Let z be the solution of:

dz(t)

dt
= f
(
z(t), u(t)

)
, z(0) = z0, ∀t ∈ [t1, t2]

• Define τ(t) = t−t1
t2−t1 , ũ

(
τ(t)

)
= u(t) for each t ∈ [0, µf ]. Let

(z̃ , r) be the solution of:

dz̃(τ)

dτ
= r(τ)f

(
z̃(τ), ũ(τ)

)
, z̃(0) = z0, ∀τ ∈ [0, 1]

dr(τ)

dτ
= 0, r(0) = t2 − t1, ∀τ ∈ [0, 1]

then z̃
(
τ(t)

)
= z(t) for each t. In the z̃ formulation, the time

interval is an initial condition.
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Stage 1: Formulation

Given x0 ∈ Rn, σ ∈ Σ, and w ∈ NW , Stage 1 solves:

Time-Free Transformation

min
(sk )

#σ
1 ⊂ R+, (ũk )

#σ
1 ⊂ U

#σ∑

k=1

γk(1) +
W∑

i=1

φi
(
zw(i)(1)

)
+ φ

(
z#σ(1)

)

subject to:




żk(t)
ṙk(t)
γ̇k(t)


 =




rk(t)fσk
(
zk(t), ũk(t)

)

0
rk(t)L

(
zk(t), ũk(t)

)


 ,




zk(0)
rk(0)
γ(0)


 =




zk−1(1)
sk
0




hj

(
zk(t)

)
≤ 0, ∀j = 1, . . . ,Nc , ∀k = 1, . . . ,#σ, ∀t ∈ [0, 1]

where z0(1) = x0.
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Stage 2: Methodology

Given ξ ∈ X , employ the variation, ρ, to find a new ξ̂ ∈ X that
either reduces the cost if the initialization is feasible or the
constraint if the initialization is infeasible:

1. Find an insertion η̂ that decreases the cost

2. Find a suitable insertion length denoted as λ̂ and define a new
point ξ̂ = ρ(η̂)(λ̂).

Intuitively, η̂ is a “descent direction” in the space X and λ̂ is the
“step size”.
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Stage 2: Optimality Function

• Fix γ > 0 and let θ : X → (−∞, 0] be:

θ(ξ) =

minη∈H max
{

dJ(ρ(η)(λ))
dλ

∣∣∣
λ=0

, ψ(ξ) + dψ(ρ(η)(λ))
dλ

∣∣∣
λ=0

}
if ψ(ξ) ≤ 0

minη∈H max
{

dJ(ρ(η)(λ))
dλ

∣∣∣
λ=0

− γ · ψ(ξ), dψ(ρ(η)(λ))
dλ

∣∣∣
λ=0

}
if ψ(ξ) > 0

.

• If θ(ξ) < 0 and

1. ψ(ξ) ≤ 0, then the variation produces a reduction in the cost, while
remaining feasible.

2. ψ(ξ) > 0, then the variation produces a reduction in the infeasibility.

• θ(ξ) is always less than or equal to zero since we can always perform
an insertion that leaves the trajectory unaffected.

• θ is called an optimality function since θ’s zeros encode points local
minima of our switched system problem.

Anthropomorphic Walking 53



From Constraints to Models Walking Experiment Comparing Gait Formulation Algorithm Conclusion

Stage 2: Step Size

• Fix α, β ∈ (0, 1). Let η̂ be the argument that minimizes θ and denote
ρ(λ) = ρ(η̂)(λ). Define:

λ̂ =

{
maxk∈N{βk |ψ(ρ(βk)) ≤ 0, J(ρ(βk))− J(ξ) ≤ αβkθ(ξ)} if ψ(ξ) ≤ 0

maxk∈N{βk |ψ(ρ(βk))− ψ(ξ) ≤ αβkθ(ξ)} if ψ(ξ) > 0
.
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Algorithm for Switched Optimal Control

Data: ξ0 = (σ0, s0, u0,w0) ∈ X , α, β,∈ (0, 1), γ > 0.
Step 0. Let (s1, u1) = â(s0, u0), σ1 = σ0, w1 = w0,

define ξ1 = (σ1, s1, u1,w1).
Step 1. Set j = 1.
Step 2. If θ(ξj) = 0 then stop and return ξj .
Step 3. ξj+1 = a(ξj), where a is defined as follows:

1. Let η̂ = (α̂, t̂, û) be the argument that minimizes θ(ξj), and

let ρ(η̂)(λ̂) = (σ̃j , s̃j , ũj , w̃j).

2. Given σ̃j , let (sj+1, uj+1) = â(s̃j , ũj).

3. Set σj+1 = σ̃j , wj+1 = w̃j , and define
ξj+1 = a(ξj) = (σj+1, sj+1, uj+1,wj+1).

Step 5. Replace j by j + 1 and go to Step 2.
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Algorithm Analysis
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Bevel-Tip Flexible Needle

• Asymmetric needles that move
along curved trajectories when a
forward pushing force is applied
[Cowan et al., 2004].

• Due to the stiffness of the needle,
naturally thought of as a switched
system.

• Optimal control has been considered
using heuristics [Duindam et al., 2008]
and RRTs [Xu et al., 2008].

Figure: [Duindam et al.,
2008]
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Forward/Turn Needle Kinematics

Forward Mode: q = F

ẋ(t) = u1(t) sin
(
βp(t)

)
ẏ(t) = −u1(t) cos

(
βp(t)

)
sin
(
βy (t)

)
ż(t) = u1(t) cos

(
βy (t)

)
cos
(
βp(t)

)
β̇y (t) =

u1(t)

r
cos
(
βr (t)

)
sec
(
βp(t)

)
β̇p(t) =

u1(t)

r
sin
(
βr (t)

)
β̇r (t) = −u1(t)

r
cos
(
βr (t)

)
tan
(
βp(t)

)

Turn Mode: q = T

ẋ(t) = 0

ẏ(t) = 0

ż(t) = 0

β̇y (t) = 0

β̇p(t) = 0

β̇r (t) = u2(t)

Cost Function

J(ξ) =

∫ µf

0

(
0.05 · u21 (t) + 0.005 · u22 (t) + 1

)
dt + 100 ·

∥∥∥∥∥∥
x(µw1

)
y(µw1

)
z(µw1

)

− ŵ1

∥∥∥∥∥∥
2

+ 30 ·

∥∥∥∥∥∥
x(µf )
y(µf )
z(µf )

− ŵf

∥∥∥∥∥∥
2
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First Iteration
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0

5
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12

X

Z

Y

α̂ = F
−6

0
3 −3.5 0

5

0

12

Y
X

Z

α̂ = F

• σ = (T ,F ,T ,F )

• J = 1564.5
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Second Iteration
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0

5
0

12

X

Z

Y

α̂ = T
−6

0
3 −3.5 0

5

0

12

Y
X

Z

α̂ = T

• σ = (T ,F ,T ,F ,T ,F )

• J = 1103.5
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Third Iteration
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5
0
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X
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Y

α̂ = F
−6

0
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5

0

12
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X
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α̂ = F

• σ = (T ,F ,T ,T ,F ,T ,F )

• J = 68.532
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Fourth Iteration
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12

X

Z

Y

−6

0
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5

0

12

Y
X

Z

• σ = (T ,F ,T ,T ,F ,F ,T ,F )

• J = 15.819
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Discussion

• AMD Opteron, 8
cores, 2.2 GHz, 16
GB RAM.

• Total time to solve
Stage 1: 156.49[s]

• Total time to solve
Stage 2: 200.86[s]

0 2 4 6 8 10 12 14

0

1

2

3

Time

u 1
0 2 4 6 8 10 12 14

−2

−1

0

1

2

Time
u 2

i 1 2 3 4 5 6 7 8
σ T F T T F F T F
s 0.47[s] 1.51[s] 0.10[s] 1.26[s] 0.35[s] 1.20[s] 3.52[s] 5.00[s]
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Conclusion and Future Work
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Questions?
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Sufficient Descent

Definition (Sufficient Descent)

An algorithm a : X → X is said to have the sufficient descent property
with respect to an optimality function, θ, if for all ξ in X with θ(ξ) < 0,
there exists a δξ > 0 and a neighborhood of ξ, Uξ ⊂ X , such that given a
cost function J and feasible set F the following inequality is satisfied:

J
(
a(ξ′)

)
− J(ξ′) ≤ −δξ, ∀ξ′ ∈ Uξ ∩ F .

Theorem (Theorem 1, Polak 1997)

If the cost and constraint functions are continuous, and an algorithm
satisfies the sufficient descent property with respect to an optimality
function, then the sequence of points generated by the algorithm
converges to the zeros of the optimality function.
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Outline of Convergence

• Show that the standard cost is continuous (Proposition 1).

• Show that the constraint function is continuous (Proposition
2).

• Compute expressions for the variation of the cost and
constraint function (Propositions 5 and 6).

• Prove that the algorithm has the sufficient descent property
and has the Phase I/Phase II property (Theorem 1).
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