
David Wingate
wingated@mit.edu

Joint work with Noah Goodman, Dan Roy,

Leslie Kaelbling and Joshua Tenenbaum

Hierarchical Bayesian Methods for

Reinforcement Learning

mailto:wingated@mit.edu

My Research: Agents

Rich sensory data

Reasonable

abstract behavior

Structured prior knowledge

Problems an Agent Faces

State estimation

Perception

Generalization

Planning

Model building

Knowledge representation

Improving with experience

…

Problems:

My Research Focus

State estimation

Perception

Generalization

Planning

Model building

Knowledge representation

Improving with experience

…

Problems:

Hierarchical Bayesian Models

Reinforcement Learning

Tools:

Today’s Talk

State estimation

Perception

Generalization

Planning

Model building

Knowledge representation

Improving with experience

…

Problems:

Hierarchical Bayesian Models

Reinforcement Learning

Tools:

Today’s Talk

State estimation

Perception

Generalization

Planning

Model building

Knowledge representation

Improving with experience

…

Problems:

Hierarchical Bayesian Models

Reinforcement Learning

Tools:

Outline

• Intro: Bayesian Reinforcement Learning

• Planning: Policy Priors for Policy Search

• Model building: The Infinite Latent Events Model

• Conclusions

Bayesian Reinforcement

Learning

What is Bayesian Modeling?

Find structure in data

while dealing explicitly with uncertainty

The goal of a Bayesian is to reason about

the distribution of structure in data

Example

What line generated this data?

This one?

What about this one?

Probably not this one

That one?

What About the “Bayes” Part?

PriorLikelihood

Bayes Law is a mathematical fact that helps us

Distributions Over Structure

Visual perception

Natural language

Speech recognition

Topic understanding

Word learning

Causal relationships

Modeling relationships

Intuitive theories

…

Distributions Over Structure

Visual perception

Natural language

Speech recognition

Topic understanding

Word learning

Causal relationships

Modeling relationships

Intuitive theories

…

Distributions Over Structure

Visual perception

Natural language

Speech recognition

Topic understanding

Word learning

Causal relationships

Modeling relationships

Intuitive theories

…

Distributions Over Structure

Visual perception

Natural language

Speech recognition

Topic understanding

Word learning

Causal relationships

Modeling relationships

Intuitive theories

…

Inference

• Some questions we can ask:
– Compute an expected value

– Find the MAP value

– Compute the marginal likelihood

– Draw a sample from the distribution

• All of these are computationally hard

So, we’ve defined these distributions

mathematically.

What can we do with them?

Inference

• Some questions we can ask:
– Compute an expected value

– Find the MAP value

– Compute the marginal likelihood

– Draw a sample from the distribution

• All of these are computationally hard

So, we’ve defined these distributions

mathematically.

What can we do with them?

MAP value

Reinforcement Learning

RL = learning meets planning

Reinforcement Learning

Logistics and scheduling

Acrobatic helicopters

Load balancing

Robot soccer

Bipedal locomotion

Dialogue systems

Game playing

Power grid control

…

RL = learning meets planning

Reinforcement Learning

Logistics and scheduling

Acrobatic helicopters

Load balancing

Robot soccer

Bipedal locomotion

Dialogue systems

Game playing

Power grid control

…

Model: Pieter Abbeel. Apprenticeship Learning and

Reinforcement Learning with Application to Robotic Control.

PhD Thesis, 2008.

RL = learning meets planning

Reinforcement Learning

Logistics and scheduling

Acrobatic helicopters

Load balancing

Robot soccer

Bipedal locomotion

Dialogue systems

Game playing

Power grid control

…

Model: Peter Stone, Richard Sutton, Gregory Kuhlmann.

Reinforcement Learning for RoboCup Soccer Keepaway.

Adaptive Behavior, Vol. 13, No. 3, 2005

RL = learning meets planning

Reinforcement Learning

Logistics and scheduling

Acrobatic helicopters

Load balancing

Robot soccer

Bipedal locomotion

Dialogue systems

Game playing

Power grid control

…

Model: David Silver, Richard Sutton and Martin Muller.

Sample-based learning and search with permanent and

transient memories. ICML 2008

RL = learning meets planning

Bayesian RL

Use Hierarchical Bayesian methods to

learn a rich model of the world

while using planning to

figure out what to do with it

Outline

• Intro: Bayesian Reinforcement Learning

• Planning: Policy Priors for Policy Search

• Model building: The Infinite Latent Events Model

• Conclusions

Bayesian Policy Search

Joint work with Noah Goodman, Dan Roy
Leslie Kaelbling and Joshua Tenenbaum

Search

Search is important for AI / ML (and CS!) in general
Combinatorial optimization, path planning, probabilistic inference…

Often, it’s important to have the right search bias
Examples: heuristics, compositionality, parameter tying, …

But what if we

don’t know the search bias?

Let’s learn it.

Snake in a (planar) Maze

10 segments

9D continuous action

Anisotropic friction

State: ~40D

Deterministic

Observations:

walls around head

Goal: find a trajectory

(sequence of 500 actions) through the track

Snake in a (planar) Maze

This is a search problem.

But it’s a hard space to search.

Human* in a Maze

* Yes, it’s me.

Domain Adaptive Search

One answer:

As you search, learn more than just the trajectory.

Spend some time navel gazing.

Look for patterns in the trajectory, and use those patterns

to improve your overall search.

How do you find good trajectories in

hard-to-search spaces?

Bayesian Trajectory

Optimization

Prior

Allows us to

incorporate

knowledge

Likelihood

We’ll use “distance

along the maze”

Posterior

This is what we

want to optimize!

This is a MAP inference problem.

Example: Grid World

Objective:

for each state,

determine

the optimal action

(one of N, S, E, W)

The mapping from state

to action is called a

policy

Key Insight

In a stochastic hill climbing inference algorithm,

the action prior can structure the proposal

kernels, which structures the search

Algorithm: Stochastic Hill-Climbing Search

Policy = initialize_policy()

Repeat forever

new policy = propose_change(policy | prior)

noisy-if (value(new_policy) > value(policy))

policy = new_policy

End;

1. Compute value of policy

2. Select a state

5. Compute value of new policy

3. Propose new action

6. Accept / reject

from the learned prior

4. Inference about structure

in the policy itselfnew_prior = find_patterns_in_policy()

Example: Grid World

Totally uniform prior

P(goal | actions)

P(actions)

Example: Grid World

Note:

The optimal action

in most states is

North

Let’s put that

in the prior

Example: Grid World

North-biased prior

P(goal | actions)

P(actions | bias)

Example: Grid World

South-biased prior

P(goal | actions)

P(actions | bias)

Example: Grid World

Hierarchical (learned) prior

P(goal | actions)

P(actions | bias)

P(bias)

Example: Grid World

Hierarchical (learned) prior

P(goal | actions)

P(actions | bias)

P(bias)

Grid World Conclusions

Learning the prior alters the policy search space!

Some call this the blessing of abstraction

This is the introspection I was talking about!

Back to Snakes

Finding a Good Trajectory

Simplest approach:

direct optimization

A0: 9 dimensional vector

A1: 9 dimensional vector

…

A499: 9 dimensional vector

actions

…of a 4,500

dimensional

function!

Direct Optimization Results

Direct optimization

P(goal | actions)

P(actions)

Repeated Action Structure

…

Suppose we encode some prior

knowledge: some actions are

likely to be repeated

Repeated Action Structure

Suppose we encode some prior

knowledge: some actions are

likely to be repeated

…

Of course, we don’t know which ones should

be tied. So we’ll put a distribution over all

possible ways of sharing.

If we can tie them together, this would

reduce the dimensionality of the

problem

same

Whoa!

Wait, wait, wait.

Are you seriously suggesting taking a

hard problem, and making it harder

by increasing the number of things

you have to learn?

Doesn’t conventional machine

learning wisdom say that as you

increase model complexity you run

the risk of overfitting?

Direct Optimization

Direct optimization

P(goal | actions)

P(actions)

Shared Actions

P(goal | actions)

P(shared actions)

P(actions)

Direct optimization

Shared Actions

Reusable actions

Direct optimization

P(goal | actions)

P(shared actions)

P(actions)

a1

a2

a1

a1

a2

a3

a4

a1

a2

a3

a1

a2

a3

States of Behavior in the Maze

Favor

state reuse

Favor

transition reuse

Potentially unbounded number of states and primitives

Each state picks its

own action

Direct Optimization

Direct optimization

P(goal | actions)

P(actions)

Finite State Automaton

Reusable states

Reusable actions

Direct optimization

P(goal | actions)

P(states|actions)

P(actions)

Sharing Action Sequences

a1

a2

a1

a2

a3
a1

a2

a3
a1

a2

a3

a1

a2

Add the ability to

reuse actions across states

same
same

Finite State Automaton

Reusable states

Reusable actions

Direct optimization

P(goal | actions)

P(states|actions)

P(actions)

Final Model

Reusable states + reusable actions

Reusable states

Reusable actions

Direct optimization

P(goal | actions)

P(states|actions)

P(shared actions)

P(actions)

Snake’s Policy Prior

State prior:

Nonparametric finite

state controller

Note: this is like an HDP-HMM

Hierarchical action prior:

Open-loop motor

primitives

This Gets All the Way Through!

Reusable states + reusable actions

Reusable states

Reusable actions

Direct optimization

At this point, we have

essentially

learned everything

about the domain!

Snakes in a Maze

Let’s examine what was learned

Four states wiggle forward

Snakes in a Maze

Bonus: Spider in a Maze

Key Point

Increasing the richness of our model

decreased the complexity of solving

the problem

Summary

• Search is important for AI / ML in general

– Combinatorial optimization, path planning, probabilistic inference…

• Adaptive search can be useful for many problems

– Transferring useful information within or between tasks

– Learned parameter tying simplifies the search space

• Contribution: a novel application of Bayes

– Modeling side: finding and leveraging structure in actions

– Computational side: priors can structure a search space

• Many future possibilities here!

Outline

• Intro: Bayesian Reinforcement Learning

• Planning: Policy Priors for Policy Search

• Model building: The Infinite Latent Events Model

• Conclusions

The Infinite Latent Events

Model

Joint work with Noah Goodman, Dan Roy
and Joshua Tenenbaum

Learning Factored Causal Models

Suppose I hand you…
– Temporal gene expression

data

– Neural spike train data

– Audio data

– Video game data

What do these problems have in common?
– Must find explanatory variables

– Clusters of genes / neurons; individual sounds; sprite objects

– Could be latent or observed

– Must identify causal relationships between them

…and I ask you to build a predictive model

Problem Statement

Given a sequence of observations

Simultaneously discover
– Number of latent factors (events)

– Which events are active at which times

– The causal structure relating successive events

– How events combine to form observations

Example Factorization

Observed data

Latent eventsPrototypical

observations
Causal relations

Observation

function

Our Model: The ILEM

……… …

p(data | structure) ~ linear Gaussian

p(structure) ~ ILEM

The ILEM is a distribution over factored causal structures

Relationship to Other Models

…

O
b

s
e

rv
a

ti
o

n
s

L
a

te
n

t
s
ta

te
s

HMM

Relationship to Other Models

…

O
b

s
e

rv
a

ti
o

n
s

L
a

te
n

t
s
ta

te
s

Factorial HMM

Relationship to Other Models

…

…

O
b

s
e

rv
a

ti
o

n
s

L
a

te
n

t
s
ta

te
s

Infinite Factorial

HMM

Relationship to Other Models

…

…

O
b

s
e

rv
a

ti
o

n
s

L
a

te
n

t
s
ta

te
s

Infinite Latent

Events Model

Applications of the ILEM

Experiments in four domains:

Causal source separation

Neural spike train data

Simple video game

Network intruder detection

Applications of the ILEM

Experiments in four domains:

Causal source separation

Neural spike train data

Simple video game

Network intruder detection

Neural Spike-Train Data

Image from NMDA receptors, place cells and hippocampal spatial memory

Kazu Nakazawa, Thomas J. McHugh, Matthew A. Wilson & Susumu Tonegawa

Nature Reviews Neuroscience 5, 361-372 (May 2004)

Setup

Original data

Place cell tuning curves

Important note:

Tuning curves were

generated from

supervised data!

Results

ILEM Results (unsupervised)

Estimated ground truth (supervised)

Learns latent

prototypical neural

activations which

code for location

The Future

A future multicore scenario

– It’s the year 2018

– Intel is running a 15nm process

– CPUs have hundreds of cores

There are many sources of asymmetry

– Cores regularly overheat

– Manufacturing defects result in different

frequencies

– Nonuniform access to memory controllers

How can a programmer take full advantage of this hardware?

One answer: let machine learning help manage complexity

Smartlocks

A mutex combined with a reinforcement

learning agent

Learns to resolve

contention by

adaptively prioritizing

lock acquisition

Smartlocks

A mutex combined with a reinforcement

learning agent

Learns to resolve

contention by

adaptively prioritizing

lock acquisition

Smartlocks

A mutex combined with a reinforcement

learning agent

Learns to resolve

contention by

adaptively prioritizing

lock acquisition

Smartlocks

A mutex combined with a reinforcement

learning agent

Learns to resolve

contention by

adaptively prioritizing

lock acquisition

Could be applied to resolve contention for different

resources: scheduler, disk, network, memory…

ILEM + RL + Multicore

Better: learn a factored causal model of the current workload!

Smartlocks are currently a model-free method

More generally: RL + ML for managing complex systems

Future work: scale up to meet this challenge

Conclusions

Conclusions

• Creating compelling agents touches many different problems

– Perception, sys id, state estimation, planning, representations…

• Finding factored, causal structure in timeseries data is
a general problem that is widely applicable
– Many possibilities for extended ILEM-type models

– Structure might exist in data, states, or actions

– Useful in routing, scheduling, optimization, inference…

– A Bayesian view of domain-adaptive search is potentially powerful

• Hierarchical Bayes is a useful lingua franca

– Can reason about uncertainty at many levels

– Learning at multiple levels of abstraction can simplify problems

– A unified language for talking about policies, models, and state
representations and uncertainty at every level

Thank you!

The ILEM

Theorems: related to the

HDP-HMM and Noisy-OR DBNs

Assume there is a distribution over infinite-by-infinite binary DBN

Integrate them all out: results in a nonparametric distribution

Can be informally thought of as

• a factored Infinite HMM

• an infinite binary DBN

• the causal version of the IBP

Graphical modelGenerative process
Favors

determinism and

reuse

Causal Factorization of

Soundscapes

• Causal version of a blind-source separation problem

• Linear-Gaussian observation function

• Observations confounded in time and frequency domains

Original sound:

Causal Factorization of

Soundscapes: Results

True events

Inferred events

Recovered prototypical observations:

ILEM

ICA

Generic MCMC Inference

Can be viewed as

stochastic local search

with special properties

Key concept:

Incremental changes to

the current state

