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Test and Reliability @ YALE
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 Machine learning-based testing
 Correlation mining for post-fabrication tuning and yield enhancement
 Design of on-chip checkers and on-line test methods
 Hardware Trojan detection in wireless cryptographic circuits

Research Areas
 Analog/RF circuits

 Workload-driven error impact analysis in modern microprocessors
 Logic transformations for improved soft-error immunity 
 Concurrent error detection / correction methods for FSMs

 Digital Circuits

 Fault simulation & test generation for speed-independent circuits
 Test methods for high-speed pipelines (e.g. Mousetrap)
 Error detection and soft-error mitigation in burst-mode controllers

 Asynchronous circuits



Presentation Outline 
• Testing analog/RF circuits

• Summary

• Testing via a non-linear neural classifier
• Construction and training
• Selection of measurements
• Test quality vs. test time trade-off

• Machine learning-based testing

• Experimental results

• Analog/RF specification test compaction

• Stand-alone Built-in Self-Test (BIST)

• Yield enhancement
• Performance calibration via post-fabrication tuning



Definition of Analog/RF Functionality

Transistor-Level

Symbol Specifications



Design

Analog/RF IC Testing - Problem Definition

ChipLayout

Actual silicon 
performances

Measurement

• Targets manufacturing defects
• Once per chip

Testing:

Pre-layout or post-layout 
performances

Simulation

• Targets design errors
• Once per design

Verification:

Comparison

Fabrication

http://www.eng.yale.edu/elab/patchc.html�


Analog/RF IC Test - Industrial Practice

Interface BoardWafer

• Post-silicon production flow

Automatic Test 
Equipment (ATE)Die

design
specifications

performance
parameters compare

pass/fail

• Current practice is specification testing

chip

test configurations

ATE



Limitations

• Expensive ATE (multi-million dollar equipment)
• Specialized circuitry for stimuli generation and  

response measurement

Test Cost:

• Multiple measurements and test configurations
• Switching and settling times

Test Time:

• Fault-model based test – Never really caught on
• Machine learning-based (a.k.a. “alternate”) testing

– Regression (Variyam et al., TCAD’02)

– Classification (Pan et al., TCAS-II’99, Lindermeir et al., TCAD’99)

Alternatives?

Presenter
Presentation Notes




Machine Learning-Based Testing

• Determine if a chip meets its specifications without 
explicitly computing the performance parameters 
and without assuming a prescribed fault model

General idea:

• Infer whether the specifications are violated through a 
few simpler/cheaper measurements and information 
that is “learned” from a set of fully tested chips

How does it work?

• Since chips are produced by the same manufacturing 
process, the relation between measurements and 
performance parameters can be statistically learned

Underlying assumption:



Regression vs. Classification
Problem Definition:

simple 
functions

performance
parameters π

specification tests
(T1, … , Tk)

design
specificationscompare

pass/fail

unknown,complex,
non-linear functions

(no closed-form)

alternate tests
(x1, … , xn)

Use machine-learning to 
approximate these functions

• Explicitly learn 
these functions 
(i.e. approximate 
f:x → π)

Regression:
• Implicitly learn 

these functions
(i.e. approximate 
f:x→Y,Y={pass/fail})

Classification:



Overview of Classification Approach

specification tests

pass/fail labels

training set of chips

projection on 
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Using a Non-Linear Neural Classifier  

• Allocates a single boundary of arbitrary order

• No prior knowledge of boundary order is required

• The topology is not fixed, but it grows (ontogeny)
until it matches the intrinsic complexity of the 
separation problem

• Constructed using linear perceptrons only



Linear Perceptron

1x dx

iy

1=ox

0i
w

1i
w

di
w

perceptron connectivity

synapses

∑
=

d

j
jx

0
jiw

iy (x)

0

1

-1

perceptron output

threshold 
activation 
function

geometric interpretation

1x

2x

∑
=

d

j
jx

0
jiw = 0

1

Nominal patterns
Faulty patterns

iy (x)=
for nominal

-1iy (x)=
for faulty

adjusts
jiw

training

to minimize
error



Topology of Neural Classifier
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• Pyramid structure
– First perceptron receives 

the pattern  x ∈ Rd

– Successive perceptrons 
also receive inputs from 
preceding perceptrons 
and a parabolic pattern 
xd+1=∑xi

2, i=1…d

• Non-linear boundary by 
training a sequence of 
linear perceptrons



Training and Outcome
• Weights of added layer are adjusted through the 

thermal perceptron training algorithm

• Allocated boundary is non-linear in the original space x ∈ Rd

• Each perceptron separates its input space linearly

• Weights of preceding layers do not change

Theorem:
• The sequence of boundaries allocated by the neurons 

converges to a boundary that perfectly separates the 
two populations in the training set



Boundary Evolution Example (layer 0)

Faulty patterns erroneously classifiedFaulty patterns correctly classified

Nominal patterns erroneously classifiedNominal patterns correctly classified
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Boundary Evolution Example (layer 1)

Faulty patterns erroneously classifiedFaulty patterns correctly classified

Nominal patterns erroneously classifiedNominal patterns correctly classified
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Boundary Evolution Example (layer 2)

Faulty patterns erroneously classifiedFaulty patterns correctly classified

Nominal patterns erroneously classifiedNominal patterns correctly classified
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Boundary Evolution Example (output layer)

Faulty patterns erroneously classifiedFaulty patterns correctly classified

Nominal patterns erroneously classifiedNominal patterns correctly classified
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Matching the Inherent Boundary Order

• Monitor classification on validation set
• Prune down network to layer that achieves 

the best generalization on validation set
• Evaluate generalization on test set

Finding The Trade-Off Point (Early Stopping)

• No! The goal is to generalize
• Inflexible and over-fitting 

boundaries

Is Higher Order Always Better?
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Are All Measurements Useful?
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Curse of Dimensionality

• Several possible boundaries exist – choice is random 

• By increasing the dimensionality we may reach 
a point where the distributions are very sparse 

New patterns

• Random label assignment to new patterns

Nominal training patterns

Faulty training patterns

Nominal training patterns

Faulty training patterns

Nominal training patterns

Faulty training patterns



Genetic Measurement Selection
• Encode measurements in a bit string, with the k-th bit 

denoting the inclusion (1) or exclusion (0) of the k-th
measurement

0 1 1 0 1 1 1 0 0 1

0 0 0 0 1 1 1 0 0 1

1 1 1 0 1 1 0 0 0 0

0 1 1 1 1 0 1 0 0 0

1 0 1 0 1 1 1 0 0 0
0 1 0 0 1 0 1 0 1 1

0 0 1 0 1 1 1 0 1 1

0 0 1 0 1 1 1 0 0 1

0 1 1 0 1 1 0 0 0 0

0 1 1 1 1 1 0 0 0 0

1 0 1 0 1 1 1 0 0 0
0 1 0 0 1 0 1 0 0 0

Reproduction
Crossover &

Mutation

GENERATION
t

GENERATION
t+1

NSGA II: Genetic algorithm with multi-objective fitness 
function reporting pareto-front for error rate (gr) and 
number of re-tested circuits (nr) 

Fitness function:



Two-Tier Test Strategy

Low-Cost 
Tester

All Chips
Simple

Alternative
Measurements

Neural 
Classifier

Most
Chips

Highly Accurate
Pass/Fail
Decision

Measurement
Pattern in

Guard-band

Few
Chips

High-Cost 
Tester

Specification
Test

Measurements
Compare

Highly Accurate Pass/Fail Decision

Design
Specs

Inexpensive Machine Learning Test

Expensive Specification Test



Guard-bands
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• Introduce a trichotomy in the measurement space 
in order to assess the confidence of the decision



Testing Using Guard-bands

• Examine measurement pattern with respect to the guard-bands
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test hypersurface

Guard-banded region

Classify chip to 
dominant class

Re-test via
specification test

• Identify circuits that need to be re-tested via specification tests



Guard-band Allocation

D

• Identify the overlapping regions

• Guard-bands are allocated separately

• The ontogenic classifier allocates the guard-band

D

• Clear the overlapping regions 

D

Nominal patterns

Faulty patterns



Guard-band Allocation

D

D D

D

• The guard-banded region can been varied by controlling D

Nominal patterns

Faulty patterns



Experiment 1: Switch-Capacitor Filter
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Specifications considered

• Ripples in stop- and 
pass-bands

• Gain errors
• Group delay
• Phase response
• THD

Experiment Setup

• N=2000 instances
• N/2 assigned to the 

training set, N/4 to 
the validation set and 
N/4 to the test set



White-Noise Test Stimulus
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Test Time vs. Test Accuracy Trade-Off 
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Experiment 2: RFMD2411

Gain 3rd Order 
Intercept

Noise 
Figure

Other S Parameters

LNA x x x x x x
Mixer x x x x - -

LNA + Mixer 
(Cascade)

x x x - - -

• 541 devices (training set 341, validation set 100, test set 100)
• Considered 13 specs @850MHz  (7 different test configurations)



Test Configuration
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Analog/RF Specification Test Compaction

• Instead of “other, alternate measurements” use 
existing inexpensive specification tests to predict 
pass/fail for the chip and eliminate expensive ones

Non-disruptive application:

• RFCMOS zero-IF down-converter for cell-phones
• Fabricated at IBM, in production until late 2008
• Data from 944 devices (870 pass – 74 fail)
• 136 performances (65 non-RF – 71 RF)
• Non-RF measurements assumed much cheaper than 

RF, aim at minimizing number of measurements

Case-Study:



Setup and Questions Asked

• How accurately can we predict pass/fail of a device 
using only a subset of non-RF measurements?

Question #1:

• How does this accuracy improve by selectively adding 
a few RF measurements to this subset?

Question #2:

• Split 944 devices into training and test set (472 devices 
each, chosen uniformly at random.

• Repeat 200 times and average to obtain statistically 
significant results

Setup:



Results

Only non-RF performances:
• 16 measurement suffice to 

predict correctly over 99% 
of the devices (in our case 
4 out of 472 are on 
average mispredicted

Adding RF performances:
• By adding to these 16 non-

RF performances 12 RF 
performances, error drops to 
0.38% (i.e. 1 out of 472 
devices mispredicted)



Continuation of Case-Study

• Given appropriate test cost information (test time per 
performance, cost per test configuration, groups of 
performances sharing test configuration, per second 
cost of non-RF vs RF ATE, etc.) select subsets of 
performances that minimize cost instead of cardinality

Cost-driven compaction (TVLSI’09 – in press):

• Assess the effectiveness of our guard-banding method in 
enabling exploration of test-cost / test quality trade-off

Guard-banding:

• Experiment repeated for data from 4450 devices with 
very similar results

Larger Data Set:



Current Research Activities (TI/IBM)

• Investigate whether process variations over the lifetime 
of production affect the accuracy of the models

• Devise a method for adapting to process variations 
(periodic, event-driven, or monitoring-based retraining)

Dealing with process variations, shifts, and drifts:

• Investigate whether variations across sites of an ATE or 
across ATE affect the accuracy of the models

• Devise a method for adapting to ATE/site variations 
(training per site or ATE, using calibration filters, etc.)

Dealing with variations across ATE and across sites:

• Use correlations between PCM, wafer sort, and final test 
measurements to support adaptive test

Measurement correlations:



What’s Next? Stand-alone Built-in Self-Test

• On-chip generation of simple test stimulus
• On-chip acquisition of simple measurements
• On-chip implementation of trainable neural classifier (w. floating gates)

A stand-alone BIST method for mixed-signal/RF circuits:

On-Chip
Stimulus

Generator

Analog
Mux

Mixed-
Signal

/
RF

Circuit

Programmable
Response
Acquisition

Trainable
On-Chip Neural

Classifier

Input

Output

BIST Input

BIST Output

BIST 
Control



Summary

• A non-linear neural classifier supporting a 
novel paradigm for testing analog/RF circuits 
– Achieves significant reduction in test cost 

without sacrificing accuracy of specification test
– Enables exploration of  trade-off between 

test cost and test accuracy via guard-bands

Contribution:

• Disruptive: Machine learning-based test  
• Non-disruptive: Specification test compaction
• Futuristic: Stand-alone Built-in Self-Test

Applications:



Knob-Tuning for Performance Calibration

• Low-cost machine-learning based testing
• Iterative, correlation-based knob tuning

“Healing” of failing chips:



Correlation Mining for Yield Improvement

• Guiding modifications in potential design re-spin
• Assisting in fabrication process  quality control

Improve yield by:



More Information

• E-mail: yiorgos.makris@yale.edu
Contact:
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Publications:



Questions?
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