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Learning from Observation for Humanoids

Learn to accomplish tasks by observing a human teacher, rather
than programming or trajectory planning

Take advantage of similar structure between human and robot

Suitable for non-expert demonstrators
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Related Work

[Calinon and Billard 2007] HOAP at EPFL [Ikeuchi et al. 2004] HRP-2 at AIST
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Limitations of the current approaches

Motions are specified manually by the designer

In learning systems, motions are segmented and clustered a-priori

Off-line, one-shot training

No further learning during the execution stage
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Desired System

- A robot that cohabits with humans, and learns incrementally over a
lifetime of observations

- A robot that accumulates knowledge and improves performance over
time

- Fully autonomous, on-line, continuous learning

System Requirements:

Autonomous Motion Segmentation

Autonomous, On-line Motion Clustering

Autonomous Knowledge Management with fast Retrieval
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Talk Outline

Robot Learning from Observation

Representing full-body Motion

On-line Segmentation

On-line Clustering and Organization

Combining Segmentation and Clustering

Learning the sequencing of motion primitives

Incremental Memory Consolidation

Conclusions and Directions for Future Work
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Learning from Observation - Mirror Neurons

The same neural structure is used for both recognition and generation
[Rizzolatti et al. 2001]
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Motion Representation by Hidden Markov Models

[Inamura et al. 2004]

Stochastic model capturing both spatial and temporal variability

Model training (learning) is implemented with the Baum-Welch
Algorithm

Once the model is trained, the same model can be used for both

Recognition (Forward Procedure)

Generation (either stochastic or deterministic)

Factorial HMMs also used for representing motions with greater
accuracy [Kulić et al. IROS 2007]
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On-line Segmentation

Want to segment with no a-priori knowledge of the motions

Must make some assumption about the structure of the data

Mean velocity falls below a certain value [Pomplun and Matarić,
2000]

Zero velocity crossing in some dimensions [Fod et al., 2002]

Minimize variance [Koenig and Matarić, 2006]

Same motion will belong to same underlying distribution
[Kohlmorgen and Lemm, 2001] [Janus and Nakamura, 2005]

Incremental learning of motion primitives for full body motions – p. 9/43



Stochastic Segmentation

[Kohlmorgen and Lemm, 2001]

Embed the data into a higher-dimensional space

~xt = (~yt, ~yt−1, . . . , ~yt−(m−1)τ )

Estimate the density distribution over a sliding window of length W

pt(x) =
1

W

W−1
∑

w=0

1

(2πσ2)d/2
exp(− (x − ~xt−w)2

2σ2
)
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Computing the distance between states

Can compute the distance between windows based on integrated
square error between two pdfs

d(pt1, pt2) =

∫

(pt1(x) − pt2(x))2dx

d(pt1(x), pt2(x)) =
1

W 2(4πσ2)d/2

W−1
∑

w,v=0

[exp(− ( ~xt1−w − ~xt1−v)2

4σ2
)

− 2exp(− ( ~xt1−w − ~xt2−v)2

4σ2
)

+ exp(− ( ~xt2−w − ~xt2−v)
2

4σ2
) (1)
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Defining a stochastic model over the data

Define an HMM over a set of sliding windows.

Observation Function:

p(pt(x)|s) =
1√
2πς

exp(−d(ps(x), pt(x))

2ς2
)

State Transition Model:

aij =







k
k + N − 1

if i = j;
1

k + N − 1
if i 6= j.
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Segmentation via the Viterbi Algorithm

Find the optimum state sequence for the specified HMM, given the
actual data sequence

A simple example:

t
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Segmentation via the Viterbi Algorithm

Find the optimum state sequence for the specified HMM, given the
actual data sequence

A simple example:

s1 s2 s3 s4 s5 s6

t
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Segmentation via the Viterbi Algorithm

Find the optimum state sequence for the specified HMM, given the
actual data sequence

A simple example:

s1 s2 s3 s4 s5 s6

1 1 1 4 4 4

t

Optimum State

Sequence (Viterbi)
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Improving the Segmentation

[Kuli ć Nakamura IROS 2008]

Bias state transition model towards known states

aij =















k
C

if i = j;
1
C

if i 6= j and i ∈ St;
Ks
C

if i 6= j and i ∈ Sp.

Modify pdf based on active joints in the known state

Dw(pt1(x), pt2(x)) =
1

L2(4πσ2

k)d/2

L−1
∑

i,j=0

[exp(−
W ( ~xt1−i − ~xt1−j)

2

4σ2

k

)

− 2exp(−
W ( ~xt1−i − ~xt2−j)

2

4σ2

k

)

+ exp(−
W ( ~xt2−i − ~xt2−j)

2

4σ2

k

) (2)
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On-line clustering and hierarchy formation

[Kuli ć et al. ISRR 2007, IJRR 2008]

Use HMM representation to abstract motion patterns as they are perceived

Cluster individual motion patterns incrementally, based on intra-model

distances

Use formed clusters to form group models

Autonomously select appropriate model type, based on model distances in
the considered region of the motion space
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Algorithm Pseudo-Code

Following observation of each motion sequence:

Step1 Encode observation sequence Oi into an
HMM λi

Step2 Calculate the distance between λi and each
existing behavior group model λGj

Step3 Place λi into the closest group Gc

Step4 Cluster all exemplars within Gc

Step5 If a sub-group forms, form a new node Gn,
containing the exemplars of the cluster

Step6 Using the observation sequences from the
exemplars in Gn, form the new sub-group
model λGn
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Combining segmentation and Clustering

[Kuli ć et al. ICRA 2008]
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z
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Experiments

θ

θ

t

x
y
z

4 minutes of continuous whole body motion data of a single
subject from motion capture data

data is converted to a 20DoF humanoid model by online inverse
kinematics

First, test the basic segmentation algorithm, with no known states,
and compare with manual segmentation
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Testing the Segmentation

θ

θ

t

x
y
z

Next, test the improvements obtained through adding known motions

Provide manually extracted primitives as exemplars

Incremental learning of motion primitives for full body motions – p. 21/43



Segmentation Results

70 72 74 76 78 80 82 84

RAR RALSL SRCurrent

Motion

Segmentation

Result

(with known motions)

Manual

Segmentation

Segmentation

Result

(no known motions)

RKE RKR WLR

WMID

WRLLAR LAL

Time [seconds]

Algorithm Correct False Pos False Neg

Basic 128 65 43

Scaffolded (with Squat and Kick) 139 59 32

Worst performance occurs at switching points where few joints are moving

Sample Video
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Testing the Combined Segmentation and Clustering

θ

θ

t

x
y
z

Present the complete 4min sequence and apply segmentation

The leaf nodes of the resulting tree are used to scaffold the
segmentation

To facilitate analysis, 4min sequence is presented repeatedly
(epochs), and new exemplars are added to the segmentation
module at the end of each epoch
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After Epoch 1

LAL/partial RAR SL WRS WLS WF

Epoch = 0

Leaf Groups Formed

LAL / 

partial

WF

WRS

WLS

RAR SL

Example Extracted Motion: Right Arm Raise
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After Epoch 2

LAL RAR SL KR WRS WLS WF

Epoch = 1

Leaf Groups Formed

LAL

WF

WRS

WLS

RAR

KR

SL

Example Extracted Motion: Left Arm Lower
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After Epoch 3

LAL RAR KR KE SR SL MISC WLS WRS WF RAL LAR

Epoch = 2

Leaf Groups Formed

LAL

RAL

LAR

WF

WRS

WLS

RAR

KR

KE

SR

MISC

SL

Example Extracted Motion: Kick Extend, Squat Raise
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Motion Primitive Graph

[Kuli ć et al. Humanoids 2008]
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At the same time as learning the motion primitives, learn the transition

rules between primitives

Each node in the motion primitive graph represents a motion primitive,

while each edge represents an observed transition between two motion
primitives

Each time a new motion primitive is abstracted by the clustering algorithm

as a leaf node, a corresponding node is added to the motion primitive
graph.

Each time a transition is observed between two known motions, the edge

count is updated

The motion primitive graph can then be used to generate valid sequences
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Experiments with a Humanoid Robot

Collected 16 min of continuous whole body
motion data (26 different motion types) of a
single subject from motion capture data

data is converted to a 32DoF humanoid model
by online inverse kinematics

online feed to automated segmentation,
clustering and motion graph extraction
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Data Flow Diagram
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Robot Hardware and Control System
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The Extracted Motion Primitive Tree

LKR MMID MRL BAR BAD BAU RAR LAR LAL RAL BAL AR RKR LPR SQD MLR SQR

Leaf Groups Formed
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The Extracted Motion Primitive Graph
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Due to current hardware limitations of the robot, motions involving foot
raising are manually removed from the graph
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Robot Motion Generation

Video of Experiment
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Summary on Automated Segmentation

Autonomous, on-line segmentation of full body motion data, by
building an HMM over a window of previous observations, and
finding the optimum state sequence [Kohlmorgen and Lemm]

Input segments into automated incremental clustering algorithm for
motion primitive extractions

Improve segmentation results by scaffolding with known motion
primitives obtained from the clustering

As more motions become known, motion model and segmentation
results become more accurate

At the same time, learn the transition model of the motion
primitives by constructing a motion primitive graph

Incremental learning of motion primitives for full body motions – p. 34/43



Memory Consolidation

Want to re-examine the performance of the clustering algorithm

What type of errors can occur during clustering, and how do these
errors depend on the algorithm parameters?

false negative errors

tree structure errors

Both errors occur due to the incremental nature of the algorithm,
where not enough information is available at the start of the
algorithm to identify the correct segmentation boundary
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Memory Consolidation in Biological Systems

How is motor memory formed in biological systems?

Following learning, the motor memory does not remain constant,
but changes over time - memory consolidation [Stickgold, 2005]
[Krakauer and Shadmehr, 2006] [Shadmehr and Holcomb, 1997]
[Diekelmann and Born, 2007]

Two Complementary Consolidation Processes:

Stabilization Stage (the waking stage)

Sleep-dependant Stage (occurs during sleep)

During the sleep-dependent stage, brain imaging studies show
that brain regions active during memory formation are repeatedly
reactivated - rehearsal [Ogata, 2005]

During the sleep-dependent stage, evidence of system-level
reorganization of memory
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Using Memory Consolidation for Motion Learning

[Kuli ć Nakamura EpiRob 2008]

In previous work, focused on getting high accuracy at the leaf
nodes by using adaptable models [Kulić et al., 2007]

However, this may not always be the best approach

Results in flat tree structure

Delays node formation

Alternate approach: form nodes quickly (with lower Kcutoff ), and
correct any errors later using memory consolidation

Repeatedly apply clustering procedure on the same data at a later
time - rehearsal

As more data become available, initial mistakes can be corrected
in an incremental, on-line fashion, analogous to memory
consolidation in biological systems

Two levels of consolidation: individual motion level, node level
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Experiments

Tested on a motion database of 137 motions (9
types: KIck, PUnch, THrow, WAalk, Sumo Leg
raise, CHeer, SQuat, BOw and DAnce)

Data obtained from motion capture studio,
converted to 20DoF humanoid model

Motions are pre-segmented and presented in
random order

Tested with no consolidation and with
consolidation

Consolidation was executed after each 10
exemplars
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Results: False Negative Errors, Comparison

Walk Cheer Dance Kick Punch Sumo Squat Throw Bow
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No Consol, K = 1.2
No Consol, K = 0.9
With Consol, K = 0.9
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Results: Tree Structure Errors

WA CH SL KI PU TH BO SQ DA

RunId = 87

Leaf Groups Formed

Kcutoff Consolidation Mean Error Mean Depth

1.2 No 2.11 2.08

0.9 No 1.96 2.94

0.9 Yes 1.21 3.81
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Summary

1. Motion primitives are autonomously segmented by building an
HMM over a window of previous observations, and finding the
optimum state sequence over the model

2. Segmented motions are incrementally clustered and organized
into a hierarchical tree structure, with the leaf nodes representing
the most detailed representation

3. At the same time, learn the transition model of the motion
primitives by constructing a motion primitive graph

4. The algorithm is able to autonomously extract motion primitives
from a continuous data stream, and is robust to segmentation and
real-time measurement errors

5. Generated motion graph can then be used to generate extended
motion sequences composed of motion primitives

6. Errors made by the incremental clustering algorithm due to lack of
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Current and Future Work

Getting away from motion capture and using simpler sensors

[Kulić et al. ICRA 2009]

Examining system performance for higher accuracy kinematic models
[Kulić Nakamura IROS 2009]

Including additional learning modalities: learning from practice and
interaction with the teacher

[Kulić et al. RO-MAN 2009]

Applications for rehabilitation and sports training
[Kulić et al. EMBC 2009]

Incorporating interaction with the environment

Selecting the correct task representation

Planning with motion primitives

Learning complex behaviors from the motion primitives
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The End

Questions?

Additional Questions or Comments?
Email: dkulic@ece.uwaterloo.ca

Copies of publications can be obtained from:
http://ece.uwaterloo.ca/∼dkulic
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