Algorithms for Analyzing Intraspecific Sequence Variation

Srinath Sridhar

Computer Science Department Carnegie Mellon University

March 2, 2009

Srinath Sridhar Algorithms for Analyzing Intraspecific Sequence Variation

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline

Motivation

- - Definitions
 - Imperfect Phylogeny Reconstruction
 - Extensions
 - Empirical Results
- - Pure Populations
 - Admixture

・ロン ・回 と ・ ヨン ・ ヨン

臣

Intra-specific Variation

• How can we characterize and use genomic variation that exists within a single species to understand its *recent* history?

イロト イヨト イヨト イヨト

Significance

- Fundamental to understanding of genome variation
- Disease association tests: ensure association of SNPs to cases/controls not underlying population substructure
- Direct to consumer genotyping: ancestry and life-time risks

ancestry painting				
Trace the ancestry of your chromosomes, one segment at a time. Last updated April 23th, 2008. Chromosome View				
Solid segments indicate that both chromosomes come from the same geographic region. See a Cambodian Woman's painting. Dual-colored segments indicate chromosomes from different geographic regions. See an African American Man's painting. Salert a person: African American Moman a				
	African American Woman (2) Most African Americans today trace a large part of ther ancety to sub-Shahara Africa as a result of the silve trade. Over the generations since, both Europeans and Native Americans have intermarted with African Americans and contributed ancestry, as seen in the accestry painting of this woman, who identified herself as African American.			

イロト イヨト イヨト イヨト

Analysis of Genetic Variation

- Finding genetic variation
 - What forms of variation does the genome exhibit?
- Analyzing evolution of the genome
 - How does one genome transform to another?
- Analyzing genetic distribution in populations
 - How do the variants characterize sub-populations?

・ロト ・同ト ・ヨト ・ヨト

Analysis of Genetic Variation

- Finding genetic variation
 - What forms of variation does the genome exhibit?
- Analyzing evolution of the genome
 - How does one genome transform to another?
- Analyzing genetic distribution in populations
 - How do the variants characterize sub-populations?

・ロト ・同ト ・ヨト ・ヨト

Analysis of Genetic Variation

- Finding genetic variation
 - What forms of variation does the genome exhibit?
- Analyzing evolution of the genome
 - How does one genome transform to another?
- Analyzing genetic distribution in populations
 - How do the variants characterize sub-populations?

Finding Genetic Variation

- Large segments of mouse genome missing or duplicated
- Newer form of large-scale variation
- Joint work with Cold Spring Harbor Labs; *Nature Genetics* 2007

Citation

'Breakthrough of the year 2007' – Science magazine

Evolution of Genome

First Part of Talk

Phylogeny reconstruction Vertex: an individual's Chromosome 2

Genetic Distribution in Populations

Second part of Talk

Substructure in populations

Single Nucleotide Polymorphisms (SNPs)

- Variation due to single base change (SNPs)
- Only two bases per site
- Data-set represented by binary $n \times m$ matrix

Example	
ACGT	0000
AACT	0110
TCGA	1001

イロン イ団ン イヨン イヨン 三日

Definitions **Empirical Results**

Outline

2 Phylogeny Reconstruction

- Definitions
- Imperfect Phylogeny Reconstruction
- Extensions
- Empirical Results
- - Pure Populations
 - Admixture

・ロン ・回 と ・ ヨン ・ ヨン

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Outline

- 2 Phylogeny Reconstruction
 - Definitions
 - Imperfect Phylogeny Reconstruction
 - Extensions
 - Empirical Results
- 3 Population Substructure
 - Pure Populations
 - Admixture

・ロン ・回 と ・ ヨ と ・ ヨ と …

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Phylogeny Reconstruction

- Input matrix I: $n \times m$ binary
- Rows: taxa (chromosomes of individuals)
- Columns: sites (SNPs)
- Assume all sites contain both 0,1

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Phylogeny Reconstruction

Definition

A *phylogeny* is an unrooted tree T(V, E) where each vertex $v \in \{0, 1\}^m$ represents a taxon and an edge represents a *single* mutation (Hamming distance 1). Then length(T) = |E|.

Definition

A vertex v that represents an input taxon is called a *terminal* vertex. Every other vertex is a *Steiner* vertex.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Example

Srinath Sridhar Algorithms for Analyzing Intraspecific Sequence Variation

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

E

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Imperfection of Phylogeny

Any phylogeny has length at least m

Definition

Phylogeny T is called q-imperfect if length(T) = m + q. Phylogeny T is perfect if length(T) = m.

Imperfection $q \Leftrightarrow q$ recurrent mutations

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Example

Srinath Sridhar Algorithms for Analyzing Intraspecific Sequence Variation

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Outline

- 2 Phylogeny Reconstruction
 - Definitions
 - Imperfect Phylogeny Reconstruction
 - Extensions
 - Empirical Results
- 3 Population Substructure
 - Pure Populations
 - Admixture

・ロン ・回 と ・ ヨン ・ ヨン

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Problem Definition

- Input: $n \times m \{0, 1\}$ -matrix I
- Output: phylogeny T connecting all n taxa of I
- Objective: minimize length(T)
- NP-complete, Steiner Minimum Tree over hypercubes
- Traditional approaches: Hill-climbing heuristics, brute-force

・ロン ・団 と ・ ヨ と ・ ヨ と

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Problem Definition

- Input: $n \times m \{0, 1\}$ -matrix *I*, parameter *q*
- Output: phylogeny T connecting all n taxa of I
- Objective: minimize length(T)
- Assumption: length(T^{*}) ≤ m + q where T^{*} is the optimal tree

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Results

State	Imperf (q)	Time	Work
2	0	O(nm)	Gusfield 92
k	q	$m^{O(q)}2^{O(q^2k^2)}$	Fernandez-Baca and Lagergren 03
2	q	$O(21^{q} + 8^{q} nm^{2})$	ICALP 06, TCBB 07

Fixed Parameter Tractability

Other: many heuristics Nearest-neighbor, Tree bisection and reconnection etc

・ロン ・回 と ・ ヨン ・ ヨン

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Imperfection

- imperfect(I) $=_{def}$ imperfect(T^*) where T^* is the optimal tree
- imperfection: number of duplicate edge labels

・ロン ・回 と ・ ヨ と ・ ヨ と

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Algorithm Overview

2-imperfect

Algorithm

function buildTree(matrix M)

- If imperfect(M) = 0 return T_M^*
- Guess' site j that mutates exactly once
- **3** 'Guess' adjacent vertices u, v
- Partition *M* into *M*0, *M*1 using *j*
- Seturn buildTree(M0) ∪ buildTree(M1) ∪ {(u, v)}

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Algorithm Overview

2-imperfect

Algorithm

function buildTree(matrix M)

- If imperfect(M) = 0 return T_M^*
- Guess' site j that mutates exactly once
- **3** 'Guess' adjacent vertices u, v
- Partition *M* into *M*0, *M*1 using *j*
- Seturn buildTree(M0) ∪ buildTree(M1) ∪ {(u, v)}

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ →

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Algorithm Overview

Algorithm

function buildTree(matrix M)

- If imperfect(M) = 0 return T_M^*
- Guess' site j that mutates exactly once
- **3** 'Guess' adjacent vertices u, v
- Partition M into M0, M1 using j
- Return buildTree $(M0) \cup$ buildTree $(M1) \cup \{(u, v)\}$

2-imperfect

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ →

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Algorithm Overview

Algorithm

function buildTree(matrix M)

- If imperfect(M) = 0 return T_M^*
- Guess' site j that mutates exactly once
- **3** 'Guess' adjacent vertices u, v
- Partition M into M0, M1 using j
- Seturn buildTree(M0) ∪ buildTree(M1) ∪ {(u, v)}

2-imperfect

◆□ → ◆□ → ◆ □ → ◆ □ → ◆ □ → ◆ □ →

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Algorithm Overview

Algorithm

function buildTree(matrix M)

- If imperfect(M) = 0 return T_M^*
- Guess' site j that mutates exactly once
- **3** 'Guess' adjacent vertices u, v
- Partition *M* into *M*0, *M*1 using *j*
- Seturn buildTree(M0) ∪ buildTree(M1) ∪ {(u, v)}

2-imperfect

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Projections: If imperfect(M) = 0 return T_M^*

- Let P(i,j) be projection of I on sites i,j
- imperfect(I) > 0 iff $\exists i, j \text{ st } |P(i, j)| = 4$
- Implication: Easy to check if Gusfield's algorithm

Example 0000 0101 1100 1010 • $P(1,2) = \{(0,0), (0,1), (1,0), (1,1)\}$ • $P(3,4) = \{(0,0), (0,1), (1,0)\}$

イロト イヨト イヨト イヨト

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Projections: If imperfect(M) = 0 return T_M^*

- Sites i, j conflict if |P(i, j)| = 4
- Idea: if i, j conflict then T^* contains $i \to j \to i$ or $j \to i \to j$ path

Srinath Sridhar Algorithms for Analyzing Intraspecific Sequence Variation

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

'Guess' site that mutates exactly once

- K: set of sites that conflict
- If $|K| \ge 2q$ then guess $j \leftarrow_{u.a.r} K$
- $\Pr[j \text{ occurs exactly once in } T^*] \ge 0.5 \text{ (correct guess)}$

Srinath Sridhar Algorithms for Analyzing Intraspecific Sequence Variation

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

'Guess' adjacent vertices u.v.

If all vertices in M0 contain state s on site k then u[k] = s therefore v[k] = s

Example

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・ ・

臣

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

'Guess' adjacent vertices w, v

- If both M0 and M1 contain both states on site k then guess $u[k] \leftarrow_{u.a.r} \{0, 1\}$ (Pr[correct guess] = 0.5)
- If t guesses performed then imperfect(M0) + imperfect(M1) ≤ imperfect(M) - t

Srinath Sridhar Algorithms for Analyzing Intraspecific Sequence Variation

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Analysis

- Each guess has success probability 0.5
- Each guess reduces imperfection by at least 1
- imperfect(I) = q
- $\Pr[\text{algorithm finds } T_I^*] \ge 0.25^q$
- Recap: Running time: exponential in q polynomial in n, m
- Can be derandomized by enumeration

(日) (同) (E) (E) (E)

Definitions Extensions **Empirical Results**

Outline

2 Phylogeny Reconstruction

- Definitions
- Imperfect Phylogeny Reconstruction

Extensions

- Empirical Results
- - Pure Populations
 - Admixture

・ロン ・回 と ・ ヨ と ・ ヨ と …

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Results

Genotypes: Conflated combinations of $\{0,1\}^m$ sequences

Imperf (q)	Time	Work	
0	$O(nm\alpha(n,m))$	Gusfield 2003	
0	<i>O</i> (<i>nm</i> ²)	Eskin, Halperin and Karp 2004	
0	O(nm)	Ding, Filkov and Gusfield 2005	
1	<i>O</i> (<i>nm</i> ³)	Song, Wu and Gusfield 2005	
<i>q</i> , 1 site	$O(nm^{q+2})$	Satya et al. 2006	
q	nm ^{O(q)}	Sridhar, Blelloch, Ravi, Schwartz 2006	

・ロン ・回 と ・ヨン ・ヨン

臣

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Outline

2 Phylogeny Reconstruction

- Definitions
- Imperfect Phylogeny Reconstruction
- Extensions
- Empirical Results

3 Population Substructure

- Pure Populations
- Admixture

・ロン ・回 と ・ ヨ と ・ ヨ と …

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Phylogenies

Practical ILP based algorithm (S, Lam, Blelloch, Ravi, Schwartz 07)

			time(secs)			
Data Set	input	q	FPT	ILP	pars	penny
human Y	150×49	1	0.02	0.02	2.55	—
bacterial	17 imes1510	7	4.61	0.08	0.06	—
chimp mtDNA	24 imes 1041	2	0.14	0.08	2.63	—
chimp Y	15 imes 98	1	0.02	0.02	0.03	—
human mtDNA	40 × 52	21		13.39	11.24	—
human mtDNA	395 imes 830	14		53.4	712.95	—
human mtDNA	13 imes 390	6	9.75	0.02	0.41	1160.97
human mtDNA	33 imes 405	4	1.36	0.09	0.59	_

・ロン ・回 と ・ ヨン ・ ヨン

臣

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Webserver: Phylogeny Reconstruction

• Buddhists and Muslims of Ladakh: 52 mtDNA SNPs

Srinath Sridhar Algorithms for Analyzing Intraspecific Sequence Variation

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Genome-Wide Scan (Sridhar and Schwartz 2008)

- Sliding window across whole genome
- Construct phylogeny for each window
- Chromosome 2 imperfection on Central Europeans (top) and Africans (bottom)

x-axis: genomic position, y-axis: imperfection

・ロト ・ 同ト ・ ヨト ・ ヨト

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Recent Work

- Tsai et al. used our method to cluster sub-populations
- CEU: Central Europeans, YRI: Yoruba Africans, CHB: Han Chinese, JPT: Japanese from Tokyo

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○

Definitions Imperfect Phylogeny Reconstruction Extensions Empirical Results

Empirical Results

- Solved millions of problem instances spanning whole genome
- Provided fine-scale mutation rates across genome
- Software used hundreds of times online
- Exciting new avenues
 - Find sub-populations
 - Find rapidly evolving regions of the genome

(D) (A) (A) (A) (A)

Pure Populations Admixture

Outline

1 Motivation

2 Phylogeny Reconstruction

- Definitions
- Imperfect Phylogeny Reconstruction
- Extensions
- Empirical Results

Opulation Substructure

- Pure Populations
- Admixture

・ロン ・回 と ・ ヨ と ・ ヨ と …

Pure Populations Admixture

Outline

Motivation

2 Phylogeny Reconstruction

- Definitions
- Imperfect Phylogeny Reconstruction
- Extensions
- Empirical Results

3 Population Substructure

- Pure Populations
- Admixture

・ロン ・回 と ・ ヨ と ・ ヨ と …

Pure Populations Admixture

Problem Overview

Srinath Sridhar Algorithms for Analyzing Intraspecific Sequence Variation

Pure Populations Admixture

Example

- Two populations: 'Asians' (p) and 'Europeans' (q)
- For simplicity, consider two SNPs with state 1 probabilities:
 - $(p_1, p_2) = (0.4, 0.1)$ (Asians)
 - $(q_1, q_2) = (0.3, 0.5)$ (Europeans)
- Randomly sampled European, SNP 2 has state 1: 0.5

Pure Populations Admixture

Problem Definition

- Input: $n \times m$ -matrix G
- Output: classification $\hat{\theta} : \{1, \dots, n\} \rightarrow \{0, 1\}$
- Errors: min $\sum_{i=1}^{n} |\theta(i) \hat{\theta}(i)|$ θ is the correct classification
- Want to minimize errors (no training data)

Pure Populations Admixture

Graph Based (RECOMB 2007)

• Graph G(V, E)

- Each vertex represents an individual
- Edge distance captures genomic distance
- Perform max-cut on G

Example

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへの

Pure Populations Admixture

Mathematical Properties

Distance function properties

- Expected intra-distance= 0
- Expected inter-distance= $2d^2$, where *d* is the L_2 distance between the two populations

Convergence

• When $m = \Omega(\frac{\log n}{\gamma^2})$ where

 $\gamma:$ Expected (over SNPs) L^2_2 distance between populations

- n: number of individuals
- m: number of SNPs.
 - max-cut is the correct partition
 - max-cut can be found efficiently (polynomial time)

Pure Populations Admixture

Accuracy in practice (RECOMB 2007)

89 individuals: 45 Chinese, 44 Japanese structure: Markov Chain Monte Carlo based (cited 1000+ times)

Srinath Sridhar Algorithms for Analyzing Intraspecific Sequence Variation

Pure Populations Admixture

Outline

1 Motivation

2 Phylogeny Reconstruction

- Definitions
- Imperfect Phylogeny Reconstruction
- Extensions
- Empirical Results

3 Population Substructure

- Pure Populations
- Admixture

・ロン ・回 と ・ ヨン ・ ヨン

Pure Populations Admixture

Admixture Example

Pure Populations Admixture

Problem Definition

- Input: $n \times m$ matrix G
- Output: classification $\hat{\theta}: \{1, \dots, n\} \times \{1, \dots, m\} \rightarrow \{0, 0.5, 1\}$
- Errors: $\theta(i,j) \neq \hat{\theta}(i,j)$

 $\boldsymbol{\theta}$ is the correct classification

• Ancestry of every locus of every individual

・ロン ・回 ・ ・ ヨ ・ ・ ヨ ・

Pure Populations Admixture

High Level Idea

- Sliding window of length w
- Predict ancestry $\hat{ heta}: \{0, 0.5, 1\}$ for local region
- Combine local predictions
- Software downloaded and used by hundreds of labs including Cornell, UCSF, Scripps, Harvard medical school etc.
- American Journal of Human Genetics 2008

Pure Populations Admixture

Recap of Contributions

- Finding polymorphisms: copy number variation in mouse
- Phylogeny Reconstruction
 - Fixed parameter tractability for haplotypes
 - Polynomial time (when q is fixed) for genotypes
 - Integer Linear Programming for general problem
 - Genome-wide analysis of phylogenies
- Population Substructure
 - Pure populations: Poly-time, provably correct; outperforms other methods in accuracy (closely related populations) and run-time
 - Admixed populations: outperforms other methods in accuracy (well-separated ancestral populations) and significantly faster

・ロン ・回 ・ ・ ヨ ・ ・ ヨ ・

Pure Populations Admixture

Conclusions and Future Work

- Finding variation
 - Finding copy number changes, reversals, deletions
- Analysis of Variation
 - Phylogenies over sub-populations
 - Richer population models
 - Selection
- Disease Association Tests
- Direct to consumer genotyping
 - No longer controlled studies
 - Identifying relationships: cousins, ancestry

・ロト ・ 同ト ・ ヨト ・ ヨト