
VoteBox:
a verifiable, tamper-evident
electronic voting system

Daniel R. Sandler
Rice University

February 17, 2009 | The Johns Hopkins University

Talk outline
Background
Trustworthiness of electronic voting machines
Why it’s worth improving them
The design of VoteBox
Durability and audit
Ballot casting assurance
Beyond

1. Background

DRE voting machines
(Direct Recording Electronic)

graphical display

buttons

touch screen

dials

flash memory

+
US Presidential election (2000) HAVA (2002)

DREs discredited
High-profile failures in real elections

A few examples:

2006: Sarasota, FL undervoting
~18,000 ballots blank in the congressional race (~15%)
margin of victory: 369 votes

2008: video documentation of “vote
flipping”
touch-screen calibration? buggy input filters?

Ongoing: long lines due to complex set-
up, equipment problems, etc.

Software bugs & design flaws
identified by e-voting researchers

2003 Analysis of Diebold AccuVote TS
Leaked source code analyzed [Kohno et al. 2004]
Poor software engineering, incorrect cryptography,
vulnerable to malicious upgrades, multiple voting

2006 “Voting-machine virus” developed
Self-propagating malicious upgrades that spread from
machine to machine, altering votes and leaving no trace
[Feldman et al. 2006]

DREs discredited

Software bugs & design flaws
identified by e-voting researchers

2007 Involvement by computer scientists
in statewide voting systems audits

groundbreaking access to source code of commercial
voting systems

Top-To-Bottom Review (California)
‣All machines certified for use in CA found to have

serious bugs & be vulnerable to attack
‣Viral-style attacks found in all systems

EVEREST study (Ohio)
‣All machines certified in OH found vulnerable

(validating CA-TTBR)
‣Showed that hundreds of votes were lost in 2004

DREs discredited

malfunctions
could result in changed or lost votes

design flaws
could let attackers alter the election
outcome without leaving evidence

Result:
undermined trust
in elections

?

voters
prefer
electronic
voting
S. P. Everett, K. K. Greene, M. D. Byrne, D. S. Wallach, K. Derr, D. R. Sandler, and T. Torous.
Electronic voting machines versus traditional methods: Improved preference, similar performance.
In CHI 2008.

legitimate benefits
accessibility
feedback
flexibility
satisfaction

can we
design a
better DRE?

“better” = ?

1.	resistance to failure & tampering
essential vote data should survive
hardware failure, poll worker mistakes,
attempts to attack the system

goals

2.	tamper-evidence
if we are unable to prevent data loss,
we must always be able to detect the
failure

goals

3.	verifiability
two useful properties:
cast-as-intended

“Was my vote recorded faithfully?”
very, very hard for DREs to satisfy

counted-as-cast
“Has my vote been tallied correctly?”
can be somewhat addressed with recounts

goals

resistance to failure & tampering
prevent or minimize data loss

tamper-evidence
if resistance is futile

verifiability
cast-as-intended; counted-as-cast
(DRE user experience)

goals

a computer science problem

resistance to failure & tampering
replication; gossip

tamper-evidence
secure logs

verifiability
cryptography

Auditorium

Ballot challenge

2. VoteBox

A field study.

Webb County, TX

March 7, 2006:
Democratic primary election
(County’s first use of DREs)

Laredo

Voters given a choice:

An unusual situation

OR

DRE
(ES&S iVotronic)

Paper
(central ES&S op-scan)

Flores v. Lopez
~50,000 votes cast
Margin of victory: ~100 votes

The loser suspected the DREs
…because he looked better on paper
Lawsuit
Bring in the experts.

initial investigation: gathering data

(April 2006)

Webb Co. data
Raw binary data from Compact Flash cards
Opaque, undocumented format

Text output from tabulation process
IMAGELOG.TXT (cast ballots)
EVENTLOG.TXT (more on that later)

 A smoking gun?
Evil voting machines?

inherently difficult to find
evidence with DREs!

 HACKS??

What we found

Anomalies in the event logs
Per-machine records
Captured during machine run time
Transferred to tabulator (IMAGELOG.TXT)

A timeline of important election events
e.g. “terminal open,” “ballot cast,” …

What we (really) found

Example event log

 Votronic PEB# Type Date Time Event

 5140052 161061 SUP 03/07/2006 15:29:03 01 Terminal clear and test
 160980 SUP 03/07/2006 15:31:15 09 Terminal open
 03/07/2006 15:34:47 13 Print zero tape
 03/07/2006 15:36:36 13 Print zero tape
 160999 SUP 03/07/2006 15:56:50 20 Normal ballot cast
 03/07/2006 16:47:12 20 Normal ballot cast
 03/07/2006 18:07:29 20 Normal ballot cast
 03/07/2006 18:17:03 20 Normal ballot cast
 03/07/2006 18:37:24 22 Super ballot cancel
 03/07/2006 18:41:18 20 Normal ballot cast
 03/07/2006 18:46:23 20 Normal ballot cast
 160980 SUP 03/07/2006 19:07:14 10 Terminal close

03/07/2006 15:29:03

Problem #1
Logs starting mid-day

03/07/2006 15:29:03 Terminal clear and test
03/07/2006 15:31:15 Terminal open

Polls opened around 7 AM across Webb Co.

What happened between 7 and 3:30?
Lost votes?

Problem #2
Election events on wrong day

 Votronic PEB# Type Date Time Event

 5142523 161061 SUP 02/26/2006 19:07:05 01 Terminal clear and test
 161115 SUP 03/06/2006 06:57:23 09 Terminal open
 03/06/2006 07:01:47 13 Print zero tape
 03/06/2006 07:03:41 13 Print zero tape
 161109 SUP 03/06/2006 10:08:26 20 Normal ballot cast

 [... 9 more ballots cast ...]

 161115 SUP 03/06/2006 19:29:00 27 Override
 03/06/2006 19:29:00 10 Terminal close

The election was held on 03/07!
Ballot box stuffing the day before?

A normal voting pattern:

 Votronic PEB# Type Date Time Event

 5145172 161061 SUP 03/06/2006 15:04:09 01 Terminal clear and test
 161126 SUP 03/06/2006 15:19:34 09 Terminal open
 160973 SUP 03/06/2006 15:26:59 20 Normal ballot cast
 03/06/2006 15:30:39 20 Normal ballot cast
 161126 SUP 03/06/2006 15:38:37 27 Override
 03/06/2006 15:38:37 10 Terminal close

26 machines with exactly two ballots
cast the day before

(always for the same guy)

We learned that these might be
“logic and accuracy test” votes,
erroneously included in the tally

A different pattern:

initial investigation

follow-up trip: direct inspection

photo of
voting

machines

source: wunderground.com

Machines containing only two votes
Hardware clock appeared normal
Most likely L&A test votes
Others
Hardware clock set incorrectly
…just enough to account for anomaly
This is not proof of correct behavior!

Findings

Problem #3
Insufficient audit data
We couldn’t collect data from every machine
Many were cleared after the election
(Poll workers not supposed to do this!)
Paper records missing
Zero tapes
Cancelled ballot logs

Procedural errors by administrators, pollworkers
(but the machines didn’t help)

“Mistakes were made.”

Violations of election procedures
Counting test votes in final results
Loss of zero tapes and other paper logs
Erasure of some machines

Local (mis)configuration
Hardware clocks set wrong
These things cast doubt on the results

Mistakes were made

Honest mistakes
or illegitimate votes?

No way to be sure.
Believable audits
impossible.

Research goals
Make it easier to audit results after the election

Make it harder to make mistakes on election day

In particular:
Prove
every vote tallied is valid
every valid vote is present
Tolerate
accidental loss/deletion of records
election-day machine failure

How?

Connect the machines
together.

“The Auditorium”“The Auditorium”

Auditorium’s approach
Store everything everywhere
Massive redundancy
Stop trusting DREs to keep their own audit data

Link all votes, events together
Create a secure timeline of election events
Tamper-evident proof of each vote’s legitimacy

D. Sandler and D. S. Wallach. Casting Votes in the Auditorium. In Proceedings
of the 2nd USENIX/ACCURATE Electronic Voting Technology Workshop (EVT’07).

http://www.usenix.org/events/evt07/tech/
http://www.usenix.org/events/evt07/tech/

Ingredient: hash chains

A hash-chained secure log
Every event includes the cryptographic hash (e.g. SHA1) of
a previous event

Result: provable order
If Y includes H(X), then Y must have happened after X

Any individual change to the log
invalidates all later hashes (breaks the chain)

To alter, insert, or delete a single record
you must alter every subsequent event as well

“Machine turned on” (HASH = 0x1234)
“Cast a vote after event 0x1234” (HASH = 0xABCD)
“Cast a vote after event 0xABCD” (HASH = 0xBEEF)
“Turned off after event 0xBEEF” (HASH = 0x4242)

[Schneier & Kelsey ’99]

Ingredient: timeline entanglement

Entanglement = “chain
with hashes from others”
Result: event ordering
between participants

Malicious machines can’t retroactively
alter their own logs
it would violate commitments they have
already exchanged with others

[Maniatis & Baker ’02]

Ingredient: broadcast
All-to-all communication
All messages signed & sent to every VoteBox
Each machine records each message independently
→ massive replication
O(N2), but N is small in a polling place

Mechanism for entanglement
When publishing a new message,
include hashes of recent messages in the log
(regardless of their origin!)

Broadcast entanglement =
Auditorium

The supervisor console
Assistance for poll workers

Shows status of all machines
Votes cast, battery running low, etc.

Helps conduct the election
Open/close polls, authorize machines to
cast ballots
Less opportunity for poll-worker error

Ballots distributed over the network
Booths are stateless, interchangeable
(Supervisor can have a spare as well)

A pragmatic benefit

SUPERVISOR

BOOTH

voting machines connected in a private polling-place network
all election events are signed and broadcast
each broadcast is logged by every machine
isolated failures won’t lose data
secure logs provide a global timeline for meaningful audits

encrypted cast ballot

authorization to cast a ballot
on votebox booth #4

“Everyone hears everything in the Auditorium.”

Voting in the Auditorium

The Papal Conclave
Proceedings closed to outsiders
All ballots cast in plain view
All ballots secret

Unusual prior art

How do you audit a secure log?

D. Sandler, K. Derr, S. Crosby, and D. S. Wallach. Finding the evidence in
tamper-evident logs. In Proceedings of the 3rd International Workshop on
Systematic Approaches to Digital Forensic Engineering (SADFE’08).

Where is that program?
“suspicious” is domain-specific

QUERIFIER: an audit log analysis tool
Predicate logic for expressing rules over secure logs
Key predicate: “precedes” — requires graph search
Querifier runs on a complete log (“OK” / “Violation”)
or iteratively on a growing log (“OK so far” / “Violation”)

“Audit logs are useless unless someone reads them. Hence,
we first assume that there is a software program whose job it
is to scan all audit logs and look for suspicious entries.”

—Schneier & Kelsey ‘99

http://conf.ncku.edu.tw/sadfe/sadfe08/
http://conf.ncku.edu.tw/sadfe/sadfe08/

Ballots.

privacy

Privacy
Secure log of votes could be a problem
When decrypted for tallying, votes are exposed in order
An observer could match them with voters
Loss of privacy → bribery & coercion*
Anonymity through clever ballot ordering
re-encryption mixnets
lexicographic sorting
These would still require the ballots to be removed
from the ordered audit logs

Ballots in VoteBox
logically, a cast ballot is a vector of counters
one per candidate

e.g., for one race with three candidates:

 ballot = (a, b, c) a, b, c ∈ { 0, 1 }

ballots may therefore be summed

 tally = ∑ balloti = (∑ ai , ∑ bi , ∑ ci)

Encryption
Ballots should be sealed
protected from prying eyes
once cast, they should be readable only by the parties
trusted to count them

But how do we count them?
Remember, we don’t want to decrypt them in order

Homomorphic encryption
An encryption scheme with a special property
mathematical operations can be performed on
ciphertexts, the result of which is a valid ciphertext
We can use this to tally without decrypting
e.g.,

E(x) ⨀ E(y) = E(x + y)
for some homomorphic operation “⨀”

Homomorphic ElGamal does this nicely
Other research voting systems use this cryptosystem
Adder [Kiayias et al. ’06]; Civitas [Clarkson et al. ’08]; Helios [Adida ’08]

f, g
 group generators
c
 plaintext (counter)

r
 random (chosen at encryption time)
a
 (private) decryption key
ga
 (public) encryption key

structure needs not be organized into races or contests;
it is simply an opaque list of choice values. We define
each element as an integer (rather than a bit) so that bal-
lots can be homomorphically combined. That is, ballots
A = (a0, a1, . . .) and B = (b0, b1, . . .) can be summed to-
gether to produce a third ballot S = (a0 + b0, a1 + b1, . . .),
whose elements are the total number of votes for each
choice.3

Homomorphic encryption of counters. VB uses
an El Gamal variant that is additively homomorphic to en-
crypt ballots before they are cast. Each element of the
tuple is independently encrypted. The encryption and de-
cryption functions are defined as follows:

E(c, r, ga) = 〈gr, (ga)r f c〉

D(〈gr, gar f c〉, a) =
gar f c

(gr)a

D(〈gr, gar f c〉, r) =
gar f c

(ga)r

where f and g are group generators, c is the plaintext
counter, r is randomly generated at encryption time, a is
the decryption key, and ga is the public encryption key.
To decrypt, a party needs either a or r in order to con-
struct gar. (gr, which is given as the first element of the
cipher tuple, can be raised to a, or ga, which is the public
encryption key, can be raised to r.) After constructing gar,
the decrypting party should divide the second element of
the cipher tuple by this value, resulting in f c.

To recover the counter’s actual value c, we must invert
the discrete logarithm f c, which of course is difficult. As
is conventional in such a situation, we accelerate this task
by precomputing a reverse mapping of f x → x for 0 <
x ≤ M (for some large M) so that for expected integral
values of c the search takes constant time. (We fall back
to a linear search, starting at M+1, if c is not in the table.)

We now show that our encryption function is additively
homomorphic by showing that when two ciphers are mul-
tiplied, their corresponding counters are added:

E(c1, r1) % E(c2, r2) = 〈gr1 , gar1 f c1〉 % 〈gr2 , gar2 f c2〉
= 〈gr1+r2 , ga(r1+r2) f c1+c2〉

Immediate ballot challenge. To allow the voter to ver-
ify that her ballot was cast as intended, we need some way
to prove to the voter that the encrypted cipher published
in the A log represents the choices she actually
made. This is, of course, a contentious issue wrought with
negative human factors implications.

We term our solution to the first requirement of end-to-
end verifiability “immediate ballot challenge,” borrowing

an idea from Benaloh [4]. A voter should be able (on
any arbitrary ballot) to challenge the machine to produce
a proof that the ballot was cast as intended. Of course,
because these challenges generally force the voting ma-
chine to reveal information that would compromise the
anonymity of the voter, challenged ballots must be dis-
carded and not counted in the election. A malicious vot-
ing system now has no knowledge of which ballots will
be challenged, so it must either cast them all correctly or
risk being caught if it misbehaves.

Our implementation of this idea is as follows. Before
a voter has committed to her vote, in most systems, she
is presented with a final confirmation page which offers
two options: (1) go back and change selections, or (2)
commit the vote. Our system, like Benaloh’s, adds one
more page at the end, giving the voter the opportunity to
challenge or cast a vote. At this point, Benaloh prints a
paper commitment to the vote. VBwill similarly en-
crypt and publish the cast ballot before displaying this fi-
nal “challenge or cast” screen. If the voter chooses to cast
her vote, VB simply logs this choice and behaves
as one would expect, but if the voter, instead, chooses to
challenge VB, it will publish the value for r that it
passed to the encryption function (defined in equation 1)
when it encrypted the ballot in question. Using equation
1 and this provided value of r, any party (including the
voter) can decrypt and verify the contents of the ballot
without knowing the decryption key. An illustration of
this sequence of events is in Figure 3.

In order to make this process immediate, we need a way
for voters (or voter advocates) to safely observe A-
 traffic and capture their own copy of the log. It is
only then that the voter will be able to check, in real time,
that VB recorded and encrypted her preferences cor-
rectly. To do this, we propose that the local network con-
structed at the polling place be connected to the public In-
ternet via a data diode [27], a physical device which will
guarantee that the information flow is one way. 4 This
connectivity will allow any interested party to watch the
polling location’s A traffic in real time. In fact,
any party could provide a web interface, suitable for ac-
cess via smart phones, that could be used to see the voting
challenges and perform the necessary cryptography. This
arrangement is summarized in Figure 4. Additionally, on
the output side of the data diode, we could provide a stan-
dard Ethernet hub, allowing challengers to locally plug in
their own auditing equipment without relying on the elec-
tion authority’s network infrastructure. Because all A-
 messages are digitally signed, there is no risk of
the challenger being able to forge these messages.

= f c

ElGamal encrypted ballots

〈gr, gar fc〉 · 〈gr′, ga′r′ fc′〉 = 〈gr+r′, gar+a′r′ fc+c′〉
Homomorphic property using multiplication:

Encryption & decryption:

cast-as-intended

How can I be sure my
vote is faithfully captured
by the voting machine?

“software independence”

an undetected system problem cannot create
an undetectable change in the results

or,
equipment failures can’t affect the result

paper—directly inspect the ballot before casting
electronic—?

current DREs fail this test miserably

polling place

ALICE

BOB

this doesn’t work:

“logic &
 accuracy testing”

this is helpful:

trusted hardware

VoteBox’s approach:

ballot challenge

ballot challenge
a technique due to [Benaloh ’07]

at the end of the voting session:
1. force the machine to commit to the ballot it is

about to cast
2. the voter chooses to cast the ballot

or challenge the machine to reveal its
commitment

the voting machine cannot distinguish this from a
real vote

no artificial L&A testing conditions

ballot challenge

voter makes
selections

voting machine commits
irrevocably to

the ballot to be cast

confirmed
(ballot is cast)

show commitment
(ballot is spoiled)

voter’s
choice

“cast” “challenge”

What is the commitment?
How do we force the machine to produce proof of what it’s
about to cast on the voter’s behalf?

Benaloh’s proposal
print the encrypted ballot behind an opaque shield
You can’t see the contents, but you can see the page
the computer cannot “un-print” the ballot

How do you test the commitment?

Decrypt it.
But decryption requires the private key for tabulating the
whole election!

ballot commitment

structure needs not be organized into races or contests;
it is simply an opaque list of choice values. We define
each element as an integer (rather than a bit) so that bal-
lots can be homomorphically combined. That is, ballots
A = (a0, a1, . . .) and B = (b0, b1, . . .) can be summed to-
gether to produce a third ballot S = (a0 + b0, a1 + b1, . . .),
whose elements are the total number of votes for each
choice.3

Homomorphic encryption of counters. VB uses
an El Gamal variant that is additively homomorphic to en-
crypt ballots before they are cast. Each element of the
tuple is independently encrypted. The encryption and de-
cryption functions are defined as follows:

E(c, r, ga) = 〈gr, (ga)r f c〉

D(〈gr, gar f c〉, a) =
gar f c

(gr)a

D(〈gr, gar f c〉, r) =
gar f c

(ga)r

where f and g are group generators, c is the plaintext
counter, r is randomly generated at encryption time, a is
the decryption key, and ga is the public encryption key.
To decrypt, a party needs either a or r in order to con-
struct gar. (gr, which is given as the first element of the
cipher tuple, can be raised to a, or ga, which is the public
encryption key, can be raised to r.) After constructing gar,
the decrypting party should divide the second element of
the cipher tuple by this value, resulting in f c.

To recover the counter’s actual value c, we must invert
the discrete logarithm f c, which of course is difficult. As
is conventional in such a situation, we accelerate this task
by precomputing a reverse mapping of f x → x for 0 <
x ≤ M (for some large M) so that for expected integral
values of c the search takes constant time. (We fall back
to a linear search, starting at M+1, if c is not in the table.)

We now show that our encryption function is additively
homomorphic by showing that when two ciphers are mul-
tiplied, their corresponding counters are added:

E(c1, r1) % E(c2, r2) = 〈gr1 , gar1 f c1〉 % 〈gr2 , gar2 f c2〉
= 〈gr1+r2 , ga(r1+r2) f c1+c2〉

Immediate ballot challenge. To allow the voter to ver-
ify that her ballot was cast as intended, we need some way
to prove to the voter that the encrypted cipher published
in the A log represents the choices she actually
made. This is, of course, a contentious issue wrought with
negative human factors implications.

We term our solution to the first requirement of end-to-
end verifiability “immediate ballot challenge,” borrowing

an idea from Benaloh [4]. A voter should be able (on
any arbitrary ballot) to challenge the machine to produce
a proof that the ballot was cast as intended. Of course,
because these challenges generally force the voting ma-
chine to reveal information that would compromise the
anonymity of the voter, challenged ballots must be dis-
carded and not counted in the election. A malicious vot-
ing system now has no knowledge of which ballots will
be challenged, so it must either cast them all correctly or
risk being caught if it misbehaves.

Our implementation of this idea is as follows. Before
a voter has committed to her vote, in most systems, she
is presented with a final confirmation page which offers
two options: (1) go back and change selections, or (2)
commit the vote. Our system, like Benaloh’s, adds one
more page at the end, giving the voter the opportunity to
challenge or cast a vote. At this point, Benaloh prints a
paper commitment to the vote. VBwill similarly en-
crypt and publish the cast ballot before displaying this fi-
nal “challenge or cast” screen. If the voter chooses to cast
her vote, VB simply logs this choice and behaves
as one would expect, but if the voter, instead, chooses to
challenge VB, it will publish the value for r that it
passed to the encryption function (defined in equation 1)
when it encrypted the ballot in question. Using equation
1 and this provided value of r, any party (including the
voter) can decrypt and verify the contents of the ballot
without knowing the decryption key. An illustration of
this sequence of events is in Figure 3.

In order to make this process immediate, we need a way
for voters (or voter advocates) to safely observe A-
 traffic and capture their own copy of the log. It is
only then that the voter will be able to check, in real time,
that VB recorded and encrypted her preferences cor-
rectly. To do this, we propose that the local network con-
structed at the polling place be connected to the public In-
ternet via a data diode [27], a physical device which will
guarantee that the information flow is one way. 4 This
connectivity will allow any interested party to watch the
polling location’s A traffic in real time. In fact,
any party could provide a web interface, suitable for ac-
cess via smart phones, that could be used to see the voting
challenges and perform the necessary cryptography. This
arrangement is summarized in Figure 4. Additionally, on
the output side of the data diode, we could provide a stan-
dard Ethernet hub, allowing challengers to locally plug in
their own auditing equipment without relying on the elec-
tion authority’s network infrastructure. Because all A-
 messages are digitally signed, there is no risk of
the challenger being able to forge these messages.

= f c




ElGamal encrypted ballots
More than one way to decrypt a counter:

= f c

f, g
 group generators
c
 plaintext (counter)

r
 random (chosen at encryption time)
a
 (private) decryption key
ga
 (public) encryption key

When challenged, the machine must reveal r
We can then decrypt this ballot (only) and see if it’s what
we expected to see
In Benaloh, the encrypted ballot is on paper
An irrevocable output medium
decrypting requires additional equipment

VoteBox happens to have its own irrevocable
publishing system
One that doesn’t run out of ink or paper

Auditorium.

challenging the machine

Challenges in Auditorium
When challenged,
a VoteBox must announce r on the network
Irrevocable thanks to the properties of Auditorium
We still need help decrypting the commitment, even
given r

If we are careful, we can send challenges offsite
Allow a third party to assist in verifying the challenge
Trusted by the challenger!

polling place

voterchallengerobservers

“data
 diode”

tap uploader

I
N

T
E

R
N

E
T

challenge
center

commitments
& challenge
responses

internet
device

challenge
verification

results

OK

Ballot challenges:
cast-as-intended verification
preserving privacy
without artificial test conditions.

3. Conclusion

why?

lots of research on
individual pieces
of the e-voting problem

VoteBox integrates
these techniques in a
single system.
Auditorium (Sandler et al.)
robustness, tamper-evidence

Ballot challenge (new adaptation of Benaloh)
verifiability

D. R. Sandler, K. Derr, D. S. Wallach. VoteBox: A tamper-evident, verifiable
electronic voting system. In USENIX Security 2008.

Other techniques
Smaller TCB through pre-rendered UI [Yee ’06]

http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html

platform
VoteBox is open-source
votebox.cs.rice.edu & code.google.com/p/votebox
suitable for further research, HCI experiments, class
projects, security analysis

HCI research
Platform for human factors
research & experimentation
VoteBox’s ballot designed jointly
with CHIL
VoteBox-HF includes extensive
instrumentation for HCI work

Questions answered include:
“Do DREs improve performance?”
“Do voters notice if DREs
malfunction?”

Research output
workshop papers, journal articles,
conferences (CHI), two theses

Collaboration ongoing

thanks
co-authors
Dan S. Wallach (adviser); Kyle Derr

students who have worked on VoteBox
Emily Fortuna, George Mastrogiannis, Kevin Montrose, Corey Shaw, Ted Torous

designers of the VoteBox ballot
Mike Byrne, Sarah Everett, Kristen Greene

others who have offered ideas and criticism
Ben Adida, Josh Benaloh, Peter Neumann, Chris Piekert, Brent Waters

NSF/ACCURATE

