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1. Background



DRE voting machines
(Direct Recording Electronic)



graphical display

buttons

touch screen

dials

flash memory



+
US Presidential election (2000) HAVA (2002)



DREs discredited
High-profile failures in real elections

A few examples:

2006: Sarasota, FL undervoting
~18,000 ballots blank in the congressional race (~15%)
margin of victory: 369 votes

2008: video documentation of “vote 
flipping”
touch-screen calibration? buggy input filters?

Ongoing: long lines due to complex set-
up, equipment problems, etc.



Software bugs & design flaws 
identified by e-voting researchers

2003 Analysis of Diebold AccuVote TS
Leaked source code analyzed [Kohno et al. 2004]
Poor software engineering, incorrect cryptography, 
vulnerable to malicious upgrades, multiple voting

2006 “Voting-machine virus” developed
Self-propagating malicious upgrades that spread from 
machine to machine, altering votes and leaving no trace 
[Feldman et al. 2006]

DREs discredited



Software bugs & design flaws 
identified by e-voting researchers

2007 Involvement by computer scientists 
in statewide voting systems audits

groundbreaking access to source code of commercial 
voting systems

Top-To-Bottom Review (California)
‣All machines certified for use in CA found to have 

serious bugs & be vulnerable to attack
‣Viral-style attacks found in all systems

EVEREST study (Ohio)
‣All machines certified in OH found vulnerable 

(validating CA-TTBR)
‣Showed that hundreds of votes were lost in 2004

DREs discredited



malfunctions
could result in changed or lost votes

design flaws
could let attackers alter the election
outcome without leaving evidence



Result:
undermined trust 
in elections



?



voters
prefer 
electronic 
voting
S. P. Everett, K. K. Greene, M. D. Byrne, D. S. Wallach, K. Derr, D. R. Sandler, and T. Torous. 
Electronic voting machines versus traditional methods: Improved preference, similar performance. 
In CHI 2008.



legitimate benefits
accessibility
feedback
flexibility
satisfaction



can we 
design a 
better DRE?

“better” = ?



1.	resistance to failure & tampering
essential vote data should survive 
hardware failure, poll worker mistakes, 
attempts to attack the system

goals



2.	tamper-evidence
if we are unable to prevent data loss, 
we must always be able to detect the 
failure

goals



3.	verifiability
two useful properties:
cast-as-intended

“Was my vote recorded faithfully?”
very, very hard for DREs to satisfy

counted-as-cast
“Has my vote been tallied correctly?”
can be somewhat addressed with recounts

goals



resistance to failure & tampering
prevent or minimize data loss

tamper-evidence
if resistance is futile

verifiability
cast-as-intended; counted-as-cast
(DRE user experience)

goals



a computer science problem

resistance to failure & tampering
replication; gossip

tamper-evidence
secure logs

verifiability
cryptography

Auditorium

Ballot challenge



2. VoteBox



A field study.



Webb County, TX



March 7, 2006:
Democratic primary election
(County’s first use of DREs)

Laredo



Voters given a choice:

An unusual situation

OR

DRE
(ES&S iVotronic)

Paper
(central ES&S op-scan)



Flores v. Lopez
~50,000 votes cast
Margin of victory: ~100 votes

The loser suspected the DREs
…because he looked better on paper
Lawsuit
Bring in the experts.



initial investigation: gathering data

(April 2006)



Webb Co. data
Raw binary data from Compact Flash cards
Opaque, undocumented format 

Text output from tabulation process
IMAGELOG.TXT (cast ballots)
EVENTLOG.TXT (more on that later)



 A smoking gun?
Evil voting machines?

inherently difficult to find 
evidence with DREs!

  HACKS??

What we found



Anomalies in the event logs
Per-machine records
Captured during machine run time
Transferred to tabulator (IMAGELOG.TXT)

A timeline of important election events
e.g. “terminal open,” “ballot cast,” …

What we (really) found



Example event log

 Votronic  PEB#   Type    Date       Time     Event

 5140052  161061  SUP   03/07/2006 15:29:03   01 Terminal clear and test
          160980  SUP   03/07/2006 15:31:15   09 Terminal open
                        03/07/2006 15:34:47   13 Print zero tape
                        03/07/2006 15:36:36   13 Print zero tape
          160999  SUP   03/07/2006 15:56:50   20 Normal ballot cast
                        03/07/2006 16:47:12   20 Normal ballot cast
                        03/07/2006 18:07:29   20 Normal ballot cast
                        03/07/2006 18:17:03   20 Normal ballot cast
                        03/07/2006 18:37:24   22 Super ballot cancel
                        03/07/2006 18:41:18   20 Normal ballot cast
                        03/07/2006 18:46:23   20 Normal ballot cast
          160980  SUP   03/07/2006 19:07:14   10 Terminal close

03/07/2006 15:29:03



Problem #1
Logs starting mid-day

03/07/2006 15:29:03  Terminal clear and test
03/07/2006 15:31:15  Terminal open

Polls opened around 7 AM across Webb Co.

What happened between 7 and 3:30?
Lost votes?



Problem #2
Election events on wrong day

 Votronic  PEB#   Type    Date       Time     Event

 5142523  161061  SUP   02/26/2006 19:07:05   01 Terminal clear and test
          161115  SUP   03/06/2006 06:57:23   09 Terminal open
                        03/06/2006 07:01:47   13 Print zero tape
                        03/06/2006 07:03:41   13 Print zero tape
          161109  SUP   03/06/2006 10:08:26   20 Normal ballot cast

                                    [... 9 more ballots cast ...]

          161115  SUP   03/06/2006 19:29:00   27 Override
                        03/06/2006 19:29:00   10 Terminal close

The election was held on 03/07!
Ballot box stuffing the day before?

A normal voting pattern:



 Votronic  PEB#   Type    Date       Time     Event

 5145172  161061  SUP   03/06/2006 15:04:09   01 Terminal clear and test
          161126  SUP   03/06/2006 15:19:34   09 Terminal open
          160973  SUP   03/06/2006 15:26:59   20 Normal ballot cast
                        03/06/2006 15:30:39   20 Normal ballot cast
          161126  SUP   03/06/2006 15:38:37   27 Override
                        03/06/2006 15:38:37   10 Terminal close

26 machines with exactly two ballots 
cast the day before

(always for the same guy)

We learned that these might be 
“logic and accuracy test” votes, 
erroneously included in the tally

A different pattern:



initial investigation

follow-up trip: direct inspection



photo of 
voting 

machines





source: wunderground.com



Machines containing only two votes
Hardware clock appeared normal
Most likely L&A test votes
Others
Hardware clock set incorrectly
…just enough to account for anomaly
This is not proof of correct behavior!

Findings



Problem #3
Insufficient audit data
We couldn’t collect data from every machine
Many were cleared after the election
(Poll workers not supposed to do this!)
Paper records missing
Zero tapes
Cancelled ballot logs

Procedural errors by administrators, pollworkers
(but the machines didn’t help)



“Mistakes were made.”



Violations of election procedures
Counting test votes in final results
Loss of zero tapes and other paper logs
Erasure of some machines

Local (mis)configuration
Hardware clocks set wrong
These things cast doubt on the results

Mistakes were made



Honest mistakes
or illegitimate votes?



No way to be sure.
Believable audits 
impossible.



Research goals
Make it easier to audit results after the election

Make it harder to make mistakes on election day

In particular:
Prove
every vote tallied is valid
every valid vote is present
Tolerate
accidental loss/deletion of records
election-day machine failure



How?



Connect the machines 
together.



“The Auditorium”“The Auditorium”



Auditorium’s approach
Store everything everywhere
Massive redundancy
Stop trusting DREs to keep their own audit data

Link all votes, events together
Create a secure timeline of election events
Tamper-evident proof of each vote’s legitimacy

D. Sandler and D. S. Wallach. Casting Votes in the Auditorium. In Proceedings 
of the 2nd USENIX/ACCURATE Electronic Voting Technology Workshop (EVT’07).

http://www.usenix.org/events/evt07/tech/
http://www.usenix.org/events/evt07/tech/


Ingredient: hash chains

A hash-chained secure log
Every event includes the cryptographic hash (e.g. SHA1) of 
a previous event

Result: provable order
If Y includes H(X), then Y must have happened after X

Any individual change to the log
invalidates all later hashes (breaks the chain)

To alter, insert, or delete a single record
you must alter every subsequent event as well

“Machine turned on” (HASH = 0x1234)
“Cast a vote after event 0x1234” (HASH = 0xABCD)
“Cast a vote after event 0xABCD” (HASH = 0xBEEF)
“Turned off after event 0xBEEF” (HASH = 0x4242)

[Schneier & Kelsey ’99]



Ingredient: timeline entanglement

Entanglement = “chain 
with hashes from others”
Result: event ordering 
between participants

Malicious machines can’t retroactively 
alter their own logs
it would violate commitments they have 
already exchanged with others

[Maniatis & Baker ’02]



Ingredient: broadcast
All-to-all communication
All messages signed & sent to every VoteBox
Each machine records each message independently
→ massive replication
O(N2), but N is small in a polling place

Mechanism for entanglement
When publishing a new message,
include hashes of recent messages in the log
(regardless of their origin!)



Broadcast entanglement = 
Auditorium



The supervisor console
Assistance for poll workers

Shows status of all machines
Votes cast, battery running low, etc.

Helps conduct the election
Open/close polls, authorize machines to 
cast ballots
Less opportunity for poll-worker error

Ballots distributed over the network
Booths are stateless, interchangeable
(Supervisor can have a spare as well)

A pragmatic benefit



SUPERVISOR

BOOTH

voting machines connected in a private polling-place network
all election events are signed and broadcast
each broadcast is logged by every machine
isolated failures won’t lose data
secure logs provide a global timeline for meaningful audits

encrypted cast ballot

authorization to cast a ballot
on votebox booth #4

“Everyone hears everything in the Auditorium.”

Voting in the Auditorium



The Papal Conclave
Proceedings closed to outsiders
All ballots cast in plain view 
All ballots secret

Unusual prior art



How do you audit a secure log?

D. Sandler, K. Derr, S. Crosby, and D. S. Wallach. Finding the evidence in 
tamper-evident logs. In Proceedings of the 3rd International Workshop on 
Systematic Approaches to Digital Forensic Engineering (SADFE’08).

Where is that program?
“suspicious” is domain-specific

QUERIFIER: an audit log analysis tool
Predicate logic for expressing rules over secure logs
Key predicate: “precedes” — requires graph search
Querifier runs on a complete log (“OK” / “Violation”)
or iteratively on a growing log (“OK so far” / “Violation”) 

“Audit logs are useless unless someone reads them. Hence, 
we first assume that there is a software program whose job it 
is to scan all audit logs and look for suspicious entries.”

—Schneier & Kelsey ‘99

http://conf.ncku.edu.tw/sadfe/sadfe08/
http://conf.ncku.edu.tw/sadfe/sadfe08/


Ballots.



privacy



Privacy
Secure log of votes could be a problem
When decrypted for tallying, votes are exposed in order
An observer could match them with voters
Loss of privacy → bribery & coercion*
Anonymity through clever ballot ordering
re-encryption mixnets
lexicographic sorting
These would still require the ballots to be removed 
from the ordered audit logs



Ballots in VoteBox
logically, a cast ballot is a vector of counters
one per candidate

e.g., for one race with three candidates:

 
 ballot  =  (a, b, c)                         a, b, c  ∈  { 0, 1 }

ballots may therefore be summed

 
 tally  =  ∑ balloti  =  (∑ ai , ∑ bi , ∑ ci) 



Encryption
Ballots should be sealed
protected from prying eyes
once cast, they should be readable only by the parties 
trusted to count them

But how do we count them?
Remember, we don’t want to decrypt them in order



Homomorphic encryption
An encryption scheme with a special property
mathematical operations can be performed on 
ciphertexts, the result of which is a valid ciphertext
We can use this to tally without decrypting
e.g.,

E(x) ⨀ E(y) = E(x + y)
for some homomorphic operation “⨀”

Homomorphic ElGamal does this nicely
Other research voting systems use this cryptosystem
Adder [Kiayias et al. ’06]; Civitas [Clarkson et al. ’08]; Helios [Adida ’08]



f, g
 group generators
c
 plaintext (counter)

r
 random (chosen at encryption time)
a
 (private) decryption key 
ga
 (public) encryption key

structure needs not be organized into races or contests;
it is simply an opaque list of choice values. We define
each element as an integer (rather than a bit) so that bal-
lots can be homomorphically combined. That is, ballots
A = (a0, a1, . . .) and B = (b0, b1, . . .) can be summed to-
gether to produce a third ballot S = (a0 + b0, a1 + b1, . . .),
whose elements are the total number of votes for each
choice.3

Homomorphic encryption of counters. VB uses
an El Gamal variant that is additively homomorphic to en-
crypt ballots before they are cast. Each element of the
tuple is independently encrypted. The encryption and de-
cryption functions are defined as follows:

E(c, r, ga) = 〈gr, (ga)r f c〉

D(〈gr, gar f c〉, a) =
gar f c

(gr)a

D(〈gr, gar f c〉, r) =
gar f c

(ga)r

where f and g are group generators, c is the plaintext
counter, r is randomly generated at encryption time, a is
the decryption key, and ga is the public encryption key.
To decrypt, a party needs either a or r in order to con-
struct gar. (gr, which is given as the first element of the
cipher tuple, can be raised to a, or ga, which is the public
encryption key, can be raised to r.) After constructing gar,
the decrypting party should divide the second element of
the cipher tuple by this value, resulting in f c.

To recover the counter’s actual value c, we must invert
the discrete logarithm f c, which of course is difficult. As
is conventional in such a situation, we accelerate this task
by precomputing a reverse mapping of f x → x for 0 <
x ≤ M (for some large M) so that for expected integral
values of c the search takes constant time. (We fall back
to a linear search, starting at M+1, if c is not in the table.)

We now show that our encryption function is additively
homomorphic by showing that when two ciphers are mul-
tiplied, their corresponding counters are added:

E(c1, r1) % E(c2, r2) = 〈gr1 , gar1 f c1〉 % 〈gr2 , gar2 f c2〉
= 〈gr1+r2 , ga(r1+r2) f c1+c2〉

Immediate ballot challenge. To allow the voter to ver-
ify that her ballot was cast as intended, we need some way
to prove to the voter that the encrypted cipher published
in the A log represents the choices she actually
made. This is, of course, a contentious issue wrought with
negative human factors implications.

We term our solution to the first requirement of end-to-
end verifiability “immediate ballot challenge,” borrowing

an idea from Benaloh [4]. A voter should be able (on
any arbitrary ballot) to challenge the machine to produce
a proof that the ballot was cast as intended. Of course,
because these challenges generally force the voting ma-
chine to reveal information that would compromise the
anonymity of the voter, challenged ballots must be dis-
carded and not counted in the election. A malicious vot-
ing system now has no knowledge of which ballots will
be challenged, so it must either cast them all correctly or
risk being caught if it misbehaves.

Our implementation of this idea is as follows. Before
a voter has committed to her vote, in most systems, she
is presented with a final confirmation page which offers
two options: (1) go back and change selections, or (2)
commit the vote. Our system, like Benaloh’s, adds one
more page at the end, giving the voter the opportunity to
challenge or cast a vote. At this point, Benaloh prints a
paper commitment to the vote. VBwill similarly en-
crypt and publish the cast ballot before displaying this fi-
nal “challenge or cast” screen. If the voter chooses to cast
her vote, VB simply logs this choice and behaves
as one would expect, but if the voter, instead, chooses to
challenge VB, it will publish the value for r that it
passed to the encryption function (defined in equation 1)
when it encrypted the ballot in question. Using equation
1 and this provided value of r, any party (including the
voter) can decrypt and verify the contents of the ballot
without knowing the decryption key. An illustration of
this sequence of events is in Figure 3.

In order to make this process immediate, we need a way
for voters (or voter advocates) to safely observe A-
 traffic and capture their own copy of the log. It is
only then that the voter will be able to check, in real time,
that VB recorded and encrypted her preferences cor-
rectly. To do this, we propose that the local network con-
structed at the polling place be connected to the public In-
ternet via a data diode [27], a physical device which will
guarantee that the information flow is one way. 4 This
connectivity will allow any interested party to watch the
polling location’s A traffic in real time. In fact,
any party could provide a web interface, suitable for ac-
cess via smart phones, that could be used to see the voting
challenges and perform the necessary cryptography. This
arrangement is summarized in Figure 4. Additionally, on
the output side of the data diode, we could provide a stan-
dard Ethernet hub, allowing challengers to locally plug in
their own auditing equipment without relying on the elec-
tion authority’s network infrastructure. Because all A-
 messages are digitally signed, there is no risk of
the challenger being able to forge these messages.

=   f c

ElGamal encrypted ballots

〈gr, gar fc〉 · 〈gr′, ga′r′ fc′〉   =   〈gr+r′, gar+a′r′ fc+c′〉
Homomorphic property using multiplication:

Encryption & decryption:



cast-as-intended



How can I be sure my 
vote is faithfully captured 
by the voting machine?



“software independence”

an undetected system problem cannot create 
an undetectable change in the results

or,
equipment failures can’t affect the result

paper—directly inspect the ballot before casting
electronic—?

current DREs fail this test miserably



polling place

ALICE

BOB



this doesn’t work:

“logic &
 accuracy testing”



this is helpful:

trusted hardware



VoteBox’s approach:

ballot challenge



ballot challenge
a technique due to [Benaloh ’07]

at the end of the voting session:
1. force the machine to commit to the ballot it is 

about to cast
2. the voter chooses to cast the ballot 

or challenge the machine to reveal its 
commitment

the voting machine cannot distinguish this from a 
real vote

no artificial L&A testing conditions



ballot challenge

voter makes 
selections

voting machine commits 
irrevocably to

the ballot to be cast

confirmed
(ballot is cast)

show commitment
(ballot is spoiled)

voter’s
choice

“cast” “challenge”



What is the commitment?
How do we force the machine to produce proof of what it’s 
about to cast on the voter’s behalf?

Benaloh’s proposal
print the encrypted ballot behind an opaque shield
You can’t see the contents, but you can see the page
the computer cannot “un-print” the ballot

How do you test the commitment?

Decrypt it.
But decryption requires the private key for tabulating the 
whole election!

ballot commitment



structure needs not be organized into races or contests;
it is simply an opaque list of choice values. We define
each element as an integer (rather than a bit) so that bal-
lots can be homomorphically combined. That is, ballots
A = (a0, a1, . . .) and B = (b0, b1, . . .) can be summed to-
gether to produce a third ballot S = (a0 + b0, a1 + b1, . . .),
whose elements are the total number of votes for each
choice.3

Homomorphic encryption of counters. VB uses
an El Gamal variant that is additively homomorphic to en-
crypt ballots before they are cast. Each element of the
tuple is independently encrypted. The encryption and de-
cryption functions are defined as follows:

E(c, r, ga) = 〈gr, (ga)r f c〉

D(〈gr, gar f c〉, a) =
gar f c

(gr)a

D(〈gr, gar f c〉, r) =
gar f c

(ga)r

where f and g are group generators, c is the plaintext
counter, r is randomly generated at encryption time, a is
the decryption key, and ga is the public encryption key.
To decrypt, a party needs either a or r in order to con-
struct gar. (gr, which is given as the first element of the
cipher tuple, can be raised to a, or ga, which is the public
encryption key, can be raised to r.) After constructing gar,
the decrypting party should divide the second element of
the cipher tuple by this value, resulting in f c.

To recover the counter’s actual value c, we must invert
the discrete logarithm f c, which of course is difficult. As
is conventional in such a situation, we accelerate this task
by precomputing a reverse mapping of f x → x for 0 <
x ≤ M (for some large M) so that for expected integral
values of c the search takes constant time. (We fall back
to a linear search, starting at M+1, if c is not in the table.)

We now show that our encryption function is additively
homomorphic by showing that when two ciphers are mul-
tiplied, their corresponding counters are added:

E(c1, r1) % E(c2, r2) = 〈gr1 , gar1 f c1〉 % 〈gr2 , gar2 f c2〉
= 〈gr1+r2 , ga(r1+r2) f c1+c2〉

Immediate ballot challenge. To allow the voter to ver-
ify that her ballot was cast as intended, we need some way
to prove to the voter that the encrypted cipher published
in the A log represents the choices she actually
made. This is, of course, a contentious issue wrought with
negative human factors implications.

We term our solution to the first requirement of end-to-
end verifiability “immediate ballot challenge,” borrowing

an idea from Benaloh [4]. A voter should be able (on
any arbitrary ballot) to challenge the machine to produce
a proof that the ballot was cast as intended. Of course,
because these challenges generally force the voting ma-
chine to reveal information that would compromise the
anonymity of the voter, challenged ballots must be dis-
carded and not counted in the election. A malicious vot-
ing system now has no knowledge of which ballots will
be challenged, so it must either cast them all correctly or
risk being caught if it misbehaves.

Our implementation of this idea is as follows. Before
a voter has committed to her vote, in most systems, she
is presented with a final confirmation page which offers
two options: (1) go back and change selections, or (2)
commit the vote. Our system, like Benaloh’s, adds one
more page at the end, giving the voter the opportunity to
challenge or cast a vote. At this point, Benaloh prints a
paper commitment to the vote. VBwill similarly en-
crypt and publish the cast ballot before displaying this fi-
nal “challenge or cast” screen. If the voter chooses to cast
her vote, VB simply logs this choice and behaves
as one would expect, but if the voter, instead, chooses to
challenge VB, it will publish the value for r that it
passed to the encryption function (defined in equation 1)
when it encrypted the ballot in question. Using equation
1 and this provided value of r, any party (including the
voter) can decrypt and verify the contents of the ballot
without knowing the decryption key. An illustration of
this sequence of events is in Figure 3.

In order to make this process immediate, we need a way
for voters (or voter advocates) to safely observe A-
 traffic and capture their own copy of the log. It is
only then that the voter will be able to check, in real time,
that VB recorded and encrypted her preferences cor-
rectly. To do this, we propose that the local network con-
structed at the polling place be connected to the public In-
ternet via a data diode [27], a physical device which will
guarantee that the information flow is one way. 4 This
connectivity will allow any interested party to watch the
polling location’s A traffic in real time. In fact,
any party could provide a web interface, suitable for ac-
cess via smart phones, that could be used to see the voting
challenges and perform the necessary cryptography. This
arrangement is summarized in Figure 4. Additionally, on
the output side of the data diode, we could provide a stan-
dard Ethernet hub, allowing challengers to locally plug in
their own auditing equipment without relying on the elec-
tion authority’s network infrastructure. Because all A-
 messages are digitally signed, there is no risk of
the challenger being able to forge these messages.

=   f c




ElGamal encrypted ballots
More than one way to decrypt a counter:

=   f c

f, g
 group generators
c
 plaintext (counter)

r
 random (chosen at encryption time)
a
 (private) decryption key 
ga
 (public) encryption key



When challenged, the machine must reveal r
We can then decrypt this ballot (only) and see if it’s what 
we expected to see
In Benaloh, the encrypted ballot is on paper
An irrevocable output medium
decrypting requires additional equipment

VoteBox happens to have its own irrevocable 
publishing system
One that doesn’t run out of ink or paper

Auditorium.

challenging the machine



Challenges in Auditorium
When challenged,
a VoteBox must announce r on the network
Irrevocable thanks to the properties of Auditorium
We still need help decrypting the commitment, even 
given r

If we are careful, we can send challenges offsite
Allow a third party to assist in verifying the challenge
Trusted by the challenger!



polling place

voterchallengerobservers

“data
    diode”

tap uploader

I
N

T
E

R
N

E
T

challenge
center

commitments
& challenge
responses

internet
device

challenge
verification

results

OK



Ballot challenges:
cast-as-intended verification
preserving privacy
without artificial test conditions.



3. Conclusion



why?



lots of research on 
individual pieces
of the e-voting problem



VoteBox integrates 
these techniques in a 
single system.
Auditorium (Sandler et al.)
robustness, tamper-evidence

Ballot challenge (new adaptation of Benaloh)
verifiability

D. R. Sandler, K. Derr, D. S. Wallach. VoteBox: A tamper-evident, verifiable 
electronic voting system. In USENIX Security 2008.

Other techniques
Smaller TCB through pre-rendered UI [Yee ’06]

http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html
http://www.usenix.org/events/sec08/tech/sandler.html


platform
VoteBox is open-source
votebox.cs.rice.edu & code.google.com/p/votebox
suitable for further research, HCI experiments, class 
projects, security analysis



HCI research
Platform for human factors 
research & experimentation
VoteBox’s ballot designed jointly 
with CHIL
VoteBox-HF includes extensive 
instrumentation for HCI work

Questions answered include:
“Do DREs improve performance?”
“Do voters notice if DREs 
malfunction?”

Research output
workshop papers, journal articles, 
conferences (CHI), two theses

Collaboration ongoing
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