One-Size-Fits-All: A DBMS Idea Whose Time has Come and Gone

Michael Stonebraker December, 2008

DBMS Vendors (The Elephants) Sell

One Size Fits All (OSFA)

It's too hard for them to maintain multiple code bases for different specialized purposes

- * engineering problem
- * sales problem
- * marketing problem

The OSFA Elephants

- Sell code lines that date from the 1970's
 - Legacy code
 - Built for very different hardware configurations
 - And some cannot adapt to grids....
- That was designed for business data processing (OLTP)
 - Only market back then
 - Now warehouses, science, real time, embedded, ..

Current DBMS Gold Standard

- Store fields in one record contiguously on disk
- Use B-tree indexing
- Use small (e.g. 4K) disk blocks
- Align fields on byte or word boundaries
- Conventional (row-oriented) query optimizer and executor

Terminology -- "Row Store"

Record 2

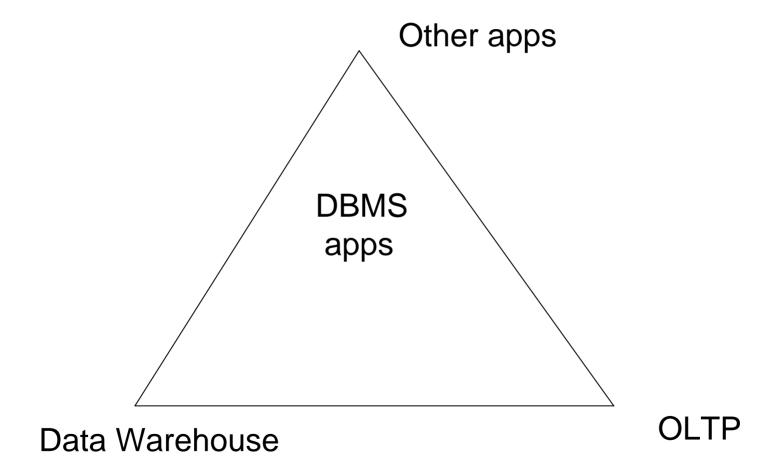
Record 3

Record 4

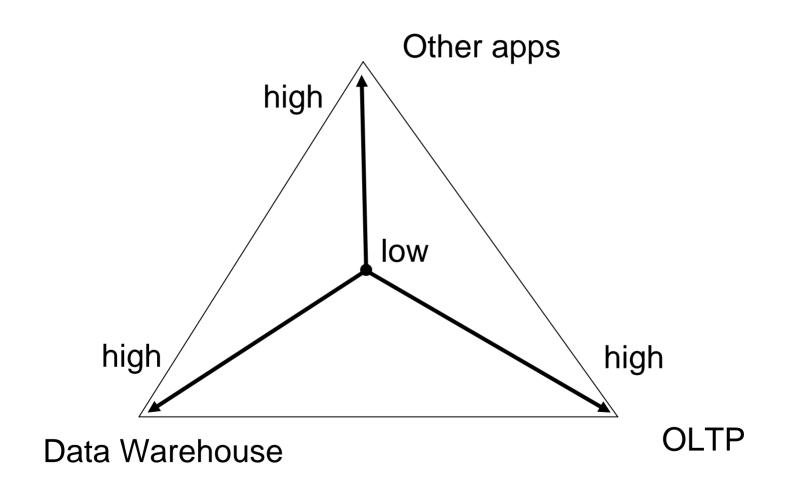
E.g. DB2, Oracle, Sybase, SQLServer, Greenplum, Netezza, DatAllegro, Datupia, ...

At This Point, RDBMS is "long in the tooth"

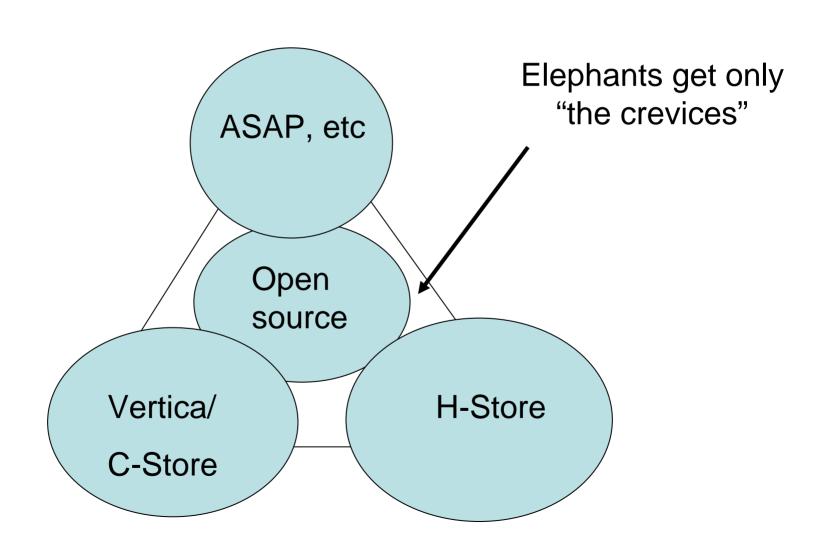
- There are at least 6 (non trivial) markets where a row store can be clobbered by a specialized architecture
 - Warehouses (Vertica, SybaselQ, KX, ...)
 - OLTP (H-Store)
 - RDF (Vertica et. al.)
 - Text (Google, Yahoo, …)
 - Scientific data (MatLab, ASAP prototype)
 - Streaming data (StreamBase Coral8, ...)


Definition of "Clobbered"

A factor of 50 in performance


Current DBMSs

- 30 years of "grow only" bloatware
- That is not good at anything
- And that deserves to be sent to the "home for tired software"


Pictorially:

The DBMS Landscape – Performance Needs

One Size Does Not Fit All -- Pictorially

Stonebraker's Prediction

- The DBMS market will move over the next decade or so from OSFA
 - To specialized (market-specific) architectures
 - And open source systems
- Presumably to the detriment of the elephants

A Couple of Slides of Color on Some of the Markets

Data warehouses

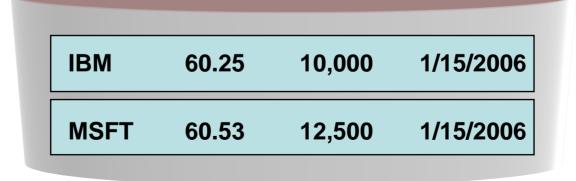
OLTP

Scientific and intelligence data

Data Warehouse World

C-Store prototype (2004-5)

Commercialized by Vertica Systems (2005)


Data Warehouses – Column Stores are the Answer

Used in: Sybase IQ, Vertica

Row Store:

Used in: Oracle, SQL Server, DB2, Netezza,...

Data Warehouses – Column Stores Clobber Row Stores

- Read only what you need
 - "Fat" fact tables are typical
 - Analytics read only a few columns
- Better compression
- Execute on compressed data
- Materialized views help row stores and column stores about equally

Example of "Clobber"

- Vertica on an 2 processor system costing ~\$2K
- Netezza on a 112 processor system costing ~\$1M
- Customer load time benchmark
 - Vertica 2.8 times faster per processor/disk
- Customer query benchmark
 - Vertica 34X on 1/56th the hardware (factor of 1904)

Other Examples

- C-store paper (VLDB '05)
- Vertica has run about 50 benchmarks
 - Against all comers
 - Yet to win by less than a factor of 20 against a row store
 - About an order of magnitude better than other column stores
 - Only thing that comes close is KX

Things to Demand From ANY BI DBMS

- Scalable
 - Runs on a grid, with partitioning
- Replication for HA/DR
- "no knobs" operation (more than index selection)
 - Cannot hire enough DBAs
- On-line update in parallel with query
- Ability to run multiple analyses on compatible data
 - Time travel
- On-the-fly reprovisioning

OLTP – The Big Picture

- Where the time goes (TPC-C) (Sigmod '07)
 - 25% -- the buffer pool
 - 25% -- locking
 - 25% -- latching
 - 25% -- recovery
 - 2% -- useful work
- Have to focus on overhead, not on algorithms or data structures

Introducing VoltDB

- Based on H-Store collaboration between:
 MIT, Brown, Yale & Vertica Systems
 - http://db.cs.yale.edu/hstore/
- An innovative database management system purposebuilt for:
 - Performance on OLTP Workloads
 - Scalability
 - High availability
 - Low cost of entry
 - Low cost of administration

VoltDB Assumptions

- Main memory operation
 - 1 TB is a VERY big OLTP data base
 - No disk stalls
- No user stalls (disallowed in all apps)
- Run transactions to completion
 - Single threaded
 - Eliminate "latch crabbing"
 - And locking

VoltDB Assumptions

- Built-in high availability and disaster recovery
 - Failover to a replica
 - No redo log

VoltDB Assumptions – Most Transactions are single-sited

- Simple transactions are naturally single-sited:
 - Place my order
 - Read my reservation
 - Update my user information
- Other transactions can be made single sited though design
 - Replicate read-mostly data to all grid cells
 - Break transactions into separate read & write transactions
 - We know other tricks as well

OLTP Performance

- Elephant
 - 850 TPS (1/2 the land speed record per processor)
- H-Store
 - •70,416 TPS (41X the land speed record per processor)
- •VoltDB
 - •~10,000 TPS

VoltDB Summary

- No buffer pool overhead
 - There isn't one
- No crash recovery overhead
 - Done by failover
 - (optional) Asynchronous data transmission to reporting system
 - (optional) Asynchronous local data archive
- No latching or locking overhead
 - Transactions are run to completion single threaded

Scientific Data – Array Storage

 Factor of 100 penalty to simulate arrays on top of tables

Why SciDB?

Net result

- Mentality of "roll your own from the ground up" for every new science project
- Realization by the science community that this is longterm suicide
- Community wants to get behind something better
 - Great commonality of needs among domains

Our Partnership

- Science and high-end commercial folks
 - Who will put up some resources
 - And review design
- DBMS brain trust
 - Who will design the system, oversee its construction, and perform needed research
- Non-profit company
 - Which will manage the open source project
 - And support the resulting system
 - May need long term funding help

The SciDB Data Model

- •Tables?
 - Makes a few of you happy
 - Used by Sloan Sky Survey
- But
 - PanStarrs (Alex Szalay) wants arrays and scalability

The SciDB Data Model

•Arrays?

- Superset of tables (tables with a primary key are a 1-D array)
- Makes HEP, remote sensing, astronomy, oceanography folks happy

But

 Not biology and chemistry (who wants networks and sequences)

Other Features Which Science Guys Want (These could be in RDBMS, but Aren't)

- Uncertainty
 - Data has error bars
 - Which must be carried along in the computation (interval arithmetic)
 - Will look at more sophisticated error models later

Other Features

- Provenance (lineage)
 - What calibration generated the data
 - What was the "cooking" algorithm
 - In general repeatability of data derivation
- Supported by a command log
 - with query facilities (interesting research problem)
 - And redo

Other Features

- Named versions
- No overwrite
 - Keep all the data

Time Line

- •Q4/08
 - start company, begin research activities
- •Late 2009
 - Demoware available
- •Late 2010
 - V1 ships

SciDB Has a Good Chance at Success

- Community realizes shared infrastructure is good
- "Lighthouse" customers
- Strong team
- Computation goes inside the DBMS
 - Easier to share
 - And reuse

Summary

- Vertica
- VoltDb
- SciDB

- Special purpose
- fast