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Introduction
[ Jelele]e}

High-Dimensional Data: Images, Videos, etc...

Figure: Dimension of an image: 1000 x 700 x 3 > 2million!

Berkeley

ttp: wWw.eecs.berkeley.edu/~yang igh-Dimensional ulti-Viodel stimation
http:// berkeley.edu/-yang High-Dimensional Multi-Model Estimati


http://www.eecs.berkeley.edu/~yang

Introduction
[e] lele]e}

HD data are often multi-model
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Recognition of Multi-Model Data
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Face Recognition: “Where amazing happens!”
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Face Recognition: “Where amazing happens!”

Figure: Kevin Garnett, Steve Nash, Jason Kidd, Yao Ming.
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How to let computer compete with human perception?
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How to let computer compete with human perception?

o How to determine a class of models and the number of models?
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How to let computer compete with human perception?

o How to determine a class of models and the number of models?

o Curse of dimensionality! [Richard Bellman 1957]

WE'RE DOOMED ITS

MAOVIN, WHAT'S THE CLRSE OF CHDEAR .. . WOLLE | [IT'S WORSE THEN THAT:
WRONG? DIMENSTONALITY! IT FELP IF WE WE'RE SOING TO HAVE
AL QUR SEGMENTS RENAMED THEMP TO LOOK AT THE DATA,
SRE MELNINGLESS! “ JIM'
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How to let computer compete with human perception?

o How to determine a class of models and the number of models?

o Curse of dimensionality! [Richard Bellman 1957]

MADVIN, WHAT'S
WRONG?

WE'RE DOOMED ITS
THE CLIZSE OF
DIMENSTONALITY!
AL QUR SEGMENTS
SRE MELNINGLESS!
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o To make things worse: Robust to high noise and outliers?

du/-yang

7, 3
TO NS SP00K & S8R TREK

High-Dimensional Multi-Model Estimation



http://www.eecs.berkeley.edu/~yang

Introduction
o

Pattern Analysis of Multiple Geometric Models

© Unsupervised segmentation
Segment samples drawn from A = S; U S, U...U Sk in RP, and estimate model parameters.
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Introduction
o

Pattern Analysis of Multiple Geometric Models

© Unsupervised segmentation
Segment samples drawn from A = S; U S, U...U Sk in RP, and estimate model parameters.

@ Supervised recognition
Assume training examples {A1,--- , Ak} for K models. Given a test sample y, determine its

membership label(y) € [1,2,--- , K].
il 1
e

TestingInput  Feature Extraction
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Robust Segmentation
900000000

Affine Motion Segmentation

Assume multiple 3-D objects far away from the camera in a dynamic scene

o 3-D features py,...,py € R? are tracked in F
image frames.

o Image of p; in jth frame:

1T . .
m; = [;Z] —Ap +b €R2, j=1,.. F. parking-lot movie
o Stack images of p; in all F frames

mj; At by
xi=| :|=]: {pl,} € R,
m;e AfF  br
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Affine Motion Segmentation

Assume multiple 3-D objects far away from the camera in a dynamic scene

o 3-D features py,...,py € R3 are tracked in F
image frames.

o Image of p; in jth frame:

1T . .
m; = [;Z] —Ap +b €R2, j=1,.. F. parking-lot movie
o Stack images of p; in all F frames W N

‘f; ao,—,:‘o g::‘,g%§glgnzfs
mi1 Av b g RMN

X — |:pl:| c R2F £, 5
AR I I I 1 : oS

mje AfF  br

Challenge: Affine Motion Segmentation

Each motion satisfies a 4-D subspace model. Therefore motion segmentation becomes subspace
segmentation problem.
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Robust Segmentation
0@0000000O

Generalized Principal Component Analysis (GPCA)

@ For a single subspace

o Vit :(x3=0)
o Vit : (1 = 0)&(x2 = 0)
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Robust Segmentation
0@0000000O

Generalized Principal Component Analysis (GPCA)

@ For a single subspace

o Vit :(x3=0)
o Vit : (1 = 0)&(x2 = 0)

Q@ ForA=ViU\VWV,

Vz = (X1,X2,X3)T, ze ViuW, & {X3 = 0}|{(X1 = 0)&(X2 = 0)}
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0@0000000O

Generalized Principal Component Analysis (GPCA)

@ For a single subspace

o Vit :(x3=0)
o Vit : (1 = 0)&(x2 = 0)

Q@ ForA=ViU\VWV,
Vz = (X1,X2,X3)T, ze ViuW, & {X3 = 0}|{(X1 = 0)&(X2 = 0)}
© By De Morgan’s law

[ = 0}{(x1 = 0)&(0 = 0)} & (x1x5 = 0)&(xoxs = 0) ¢ { 1320

Xpx3=0
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Robust Segmentation
0@0000000O

Generalized Principal Component Analysis (GPCA)

@ For a single subspace

o Vit :(x3=0)
o Vit : (1 = 0)&(x2 = 0)

Q@ ForA=ViU\VWV,
Vz = (X1,X2,X3)T, ze ViuW, & {X3 = 0}|{(X1 = 0)&(X2 = O)}
© By De Morgan'’s law

[ = 0}{(x1 = 0)&(0 = 0)} & (x1x5 = 0)&(xoxs = 0) ¢ { 1320

Xpx3=0

Q Vanishing polynomials: p; = x1x3, p2 = x2x3
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Robust Segmentation
[e]e] lelele]ele]e]

Equivalence Relation

@ The equivalence between K subspaces and Kth-degree vanishing polynomials
Q Given p1 = x1x3, p2 = x2x3, V1 U V, uniquely determined.
@ All vanishing polynomials of arbitrary degree for V4 U V5 generated by p1 = x1x3, p2 = x2x3.
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Equivalence Relation

@ The equivalence between K subspaces and Kth-degree vanishing polynomials
Q Given p1 = x1x3, p2 = x2x3, V1 U V, uniquely determined.
@ All vanishing polynomials of arbitrary degree for V4 U V5 generated by p1 = x1x3, p2 = x2x3.

o Kth-degree vanishing polynomials Ix(.A) as a global signature
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Robust Segmentation
[e]e] lelele]ele]e]

Equivalence Relation

@ The equivalence between K subspaces and Kth-degree vanishing polynomials
Q Given p1 = x1x3, p2 = x2x3, V1 U V, uniquely determined.
@ All vanishing polynomials of arbitrary degree for V4 U V5 generated by p1 = x1x3, p2 = x2x3.

o Kth-degree vanishing polynomials Ix(.A) as a global signature

o Ix(A) is a polynomial subspace.

Subspace Properties
If p1(x) =0 and p2(x) =0
@ Closed under addition: (p; + p2)(x) = 0 = (p1 + p2) € Ik(A).
@ Closed under scalar multiplication: Va € R, ap;1(x) = 0 and ap,(x) = 0 = ap1, ap> € Ix(A).
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Equivalence Relation

@ The equivalence between K subspaces and Kth-degree vanishing polynomials
Q Given p1 = x1x3, p2 = x2x3, V1 U V, uniquely determined.
@ All vanishing polynomials of arbitrary degree for V4 U V5 generated by p1 = x1x3, p2 = x2x3.

o Kth-degree vanishing polynomials Ix(.A) as a global signature

o Ix(A) is a polynomial subspace.

Subspace Properties
If p1(x) =0 and p2(x) =0
@ Closed under addition: (p; + p2)(x) = 0 = (p1 + p2) € Ik(A).
@ Closed under scalar multiplication: Va € R, ap;1(x) = 0 and ap,(x) = 0 = ap1, ap> € Ix(A).

o Ik(A) is determined by a linearly-independent polynomial basis.

qw.eecs.berkeley.edu/~yang High-Dimensional Multi-Model Estimation


http://www.eecs.berkeley.edu/~yang

Robust Segmentation
[e]e]e] lele]ele]e]

Estimation of Vanishing Polynomials

@ Veronese embedding: Given N samples xg,...,xy € R3,

. Bl
L = [w(x),...,v(xn)] € RM2 N

-Dimensional Multi-Model Estimation
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Robust Segmentation
[e]e]e] lele]ele]e]

Estimation of Vanishing Polynomials

@ Veronese embedding: Given N samples xg,...,xy € R3,
. M[3]><N
Ly = [va(x1),...,v2(xn)] € R™2
()
(x1x2)
_ (x1x3)
- (e)?
(x2x3)
(x3)?
. €= [0’07170’070] P1 :Cll/Z(X) = X1X3
@ The null space of Ly is ¢ =[0,0,0,0,1,0] = P2 = Cova(X) = xox3

Figure: 2nd-degree vanishing polynomials: p; = x1x3, p» = X2Xx3.

-Dimensional Multi-Model Estimation
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Robust Segmentation
0000@0000

Calculate Subspace Basis Vectors using Polynomial Derivatives

o VIL, ceey VKL recovered by the derivatives

X1 X2

x3 0
VP = [prl VXPQ] = |:0 X3:| .

@ Pick z=[1,1,0]7 € V4, then V,P(z) = [

E
]

OO O
OO~ OO

H — T _
Pick2 = [0,0,117 € v then VsP(2) = | Figure: P(x) = [p1(x) p2(x)] = [xi, xo].
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Robust Segmentation
0000@0000

Calculate Subspace Basis Vectors using Polynomial Derivatives

o VIL, ceey VKL recovered by the derivatives

X1 X2

x3 0
VxP = [prl VXPQ] = |:0 X3:| .

@ Pick z=[1,1,0]7 € V4, then V,P(z) = [
Pick z = [0,0,1]7 € V4, then V,P(z) = [

Diagram of GPCA

o

RM

Null(L,)
=

Rank(L,) = M — hy(n
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Robust Segment
00000@000

Robust GPCA

(a) .08 (b) .12 (c) 16 (a) .08 (b) .12 (c) 16

Figure: (2,1, 1) with various noise-to-signal ratios Figure: (2,2, 1) with various noise-to-signal ratios

Berkeley

imensional Multi-Model Estimation


http://www.eecs.berkeley.edu/~yang
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Robust GPCA

(a) .08 (b) .12 (c) 16 (a) .08 (b) .12 (c) 16

Figure: (2,1, 1) with various noise-to-signal ratios Figure: (2,2, 1) with various noise-to-signal ratios

(a) 12% (b) 32%

Figure: One plane and two lines with various outlier Figure: Two planes and one line with various outlier
percentages percentages
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Robust Segmentation
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Outlier Elimination

Figure: Elimination of outliers.
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Robust Segmentation
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Experiment: Affine Motion Segmentation

Sequences:
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Experiment: Affine Motion Segmentation

Sequences:
KaT ol 2 5o0og0, 838 5o
L R
$ oot ST 2 :
PR ise Mg 3
RGPCA:

@ Other applications

(d) Image/Video (e) Vanishing Point Detection (f) Manifold Fitting

Segmentation

Reference:
SIAM Review: Estimation of subspace arrangements with applications in modeling and segmenting mixed data, 200B
erkeley

imensional Multi-Model Estimation
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Robust Segment
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Summary: GPCA

Advantages:
o Closed-form algebraic solution, not iterative.
@ Segmentation of subspaces with mixed dimensions.

o Robust to noise and outliers.
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Robust Segmentation
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Summary: GPCA

Advantages:
o Closed-form algebraic solution, not iterative.
@ Segmentation of subspaces with mixed dimensions.
@ Robust to noise and outliers.

Limitations:

o Only apply to mixture linear subspaces. (How about mixture nonlinear manifolds?)
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Summary: GPCA

Advantages:
o Closed-form algebraic solution, not iterative.
@ Segmentation of subspaces with mixed dimensions.
@ Robust to noise and outliers.
Limitations:
o Only apply to mixture linear subspaces. (How about mixture nonlinear manifolds?)

o User provides correct subspace number and dimensions. (How to select a good mixture
model?)
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Robust Segmentation
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Mixture Perspective Motions
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Robust Segmentation
@®00000

Mixture Perspective Motions

Given two image correspondences x1,x; € R3

o Epipolar

[0,

L N

[ f2 fi3
Xy | f1 f2 fo3 | X1 =0
31 f32 f33
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Robust Segmentation
@®00000

Mixture Perspective Motions

Given two image correspondences x1,x; € R3

o Epipolar o Homography

[ f2 fi3 h1 o b
X3 | 1 f22 fo3 | X1 = 0 X2 X | ho1 h o3 | X3 =0
31 f32 f33 h31 h3z h3s
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Robust Segmentation
@®00000

Mixture Perspective Motions

Given two image correspondences x1,x; € R3
o Epipolar o Homography

=
S

L NP

[ f2 fi3 h1 o b
X3 | 1 f22 fo3 | X1 = 0 X2 X | ho1 h o3 | X3 =0
31 f32 f33 h31 h3z h3s

Segmentation of mixture perspective motions

Each perspective constraint is linear w.r.t. (x1,x2), but in different form!
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Robust Segmentation
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Quadratic Manifolds in Joint Image Space

Joint image space: Stack x; = (x1,y1,1)7 and x2 = (x2, y2,1)7

y = (3, y1,%2,y2,1)T €R®
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Robust Segmentation
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Quadratic Manifolds in Joint Image Space

Joint image space: Stack x; = (x1,y1,1)7 and x2 = (x2, y2,1)7

y = (3, y1,%2,y2,1)T €R®

o Quadratic fundamental manifold (QFM)

0 0 ff_n ;21 ;31

X 0 0 fio fp f32
yiAy=y | A1 fi 0 0 A3 |y=0. 1)

12 0 0 f3

f31 f32 fi3 fo3 2f33

o Quadratic homograpy manifold (QHM)

0 0 0 h3y —hyp
0 0 O0hp —hy
y"Biy=y"| o o0 00 o y =0,
0 s
—hy1 —h 0 h33 —2hy3
0 0 *231 0 211
0 0 —h30 hy
yT - _
Boy=yT | —hss —hpp 0 0—hy3 | y=0, (2)
0 0 0 0 0
b1 ha —h33 0 2h3

0 0 hyy —h;; O
T - 0 0 hyy —hp O
y'Bsy =y hyy hoy 0 0 hy3 y=0.

“hu—hp 000 = Berkeley

0 M-tz o )  DPEIREN
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Segmentation of Quadratic Manifolds

o Convert mixture perspective motion as
segmentation of mixture quadratic manifolds
defined by

pi(y) =y  Qy=0. 3)
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Robust Segmentation
008000

Segmentation of Quadratic Manifolds

o Convert mixture perspective motion as
segmentation of mixture quadratic manifolds
defined by

pi(y) =y Qy=0. (3)

@ Vanishing polynomials (as global signature): The set of 2Kth degree polynomials hk(.A)
uniquely determines A = 5; U--- U Sk.
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Segmentation of Quadratic Manifolds

o Convert mixture perspective motion as
segmentation of mixture quadratic manifolds
defined by

pi(y) =y Qy=0. (3)

@ Vanishing polynomials (as global signature): The set of 2Kth degree polynomials hk(.A)
uniquely determines A = 5; U--- U Sk.

Robust Algebraic Segmentation

Y:{ylv'“ 7yn}:>l2K('A):>‘A:>{517“' 75K}

Reference:
IJCV (draft): Robust Algebraic Segmentation of Mixed Rigid-Body and Planar Motions, 2008.
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Robust Segm n
0O00@00

boxes MLESAC|MC-RANSAC| RAS |RAS4+RANSAC

FPR 9.24% 0.84% 1.68% 0.84%

VR 36.97% 84.87% 100% 87.39%
carsnbus3 MLESAC|MC-RANSAC| RAS |RAS4+RANSAC

FPR 45.75% 12.55% 2.83% 1.62%

VR 83.81% 90.28% 97.17% 85.83%
deliveryvan MLESAC|MC-RANSAC| RAS [RAS+RANSAC
FPR 23.23% 10.63% 5.91% 0.39%

VR 97.64% 96.85% 100% 94.09%

desk MLESAC|MC-RANSAC| RAS [RAS+RANSAC

FPR 9.00% 2.50% 3.00% 0.50%

VR 55.50% 93.50%  [91.50% 93.50%
lightbulb MLESAC|MC-RANSAC| RAS |RAS+RANSAC

FPR 39.52% 0.00% 0.00% 0.00%

VR 76.19% 82.86% 100% 99.52 %
manycars MLESAC|MC-RANSAC| RAS |RAS+RANSAC

FPR 30.56% 22.22% [0.00% 0.00%

VR 90.28% 95.83% 100% 88.89%
man-in-office MLESAC|MC-RANSAC| RAS |[RAS+RANSAC
FPR 20.56% 34.58% 20.56% 11.21%
VR 89.72% 95.33% [84.11% 82.24%
nrbooks3 MLESAC|MC-RANSAC| RAS |RAS+RANSAC
FPR 12.38% 9.05% 5.48% 0.95%

VR 41.19% 65.48%  [94.29% 88.33%
office MLESAC|MC-RANSAC| RAS |RAS+RANSAC

FPR 2.28% 0.33% 10.42% 0.00%

VR 89.59% 90.55%  [86.97% 93.49%
parking-lot MLESAC|MC-RANSAC| RAS |RAS+RANSAC
FPR 7.86% 5.00% 3.57% 2.86%

VR 98.57% 96.43% 100% 97.86%

posters-checkerboard[ MLESAC|MC-RANSAC| RAS [RAS-+RANSAC
FPR 20.58% 1.06% 9.23% 0.00%
VR 49.87% 97.36% 70.71% 95.25%
posters-keyboard |MLESAC|MC-RANSAC| RAS |RAS+RANSAC
FPR 8.59% 0.25% [10.61% 0.51%
VR 56.06% 83.33%  [78.03% 88.13%
toys-on-table MLESAC|MC-RANSAC| RAS |RAS+RANSAC Berkeley
FPR 38.10% 38.10% 15.08% 7.94% LA e
VR 91.27% 92.86%  |81.75% 77:78%
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Experiment

@ Visualization
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Robust Segmentation
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Experiment

@ Visualization
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@ Faster than RANSAC!
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Robust Segmentation
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Summary: Robust Algebraic Segmentation

Advantages:
o Segmentation of quadratic manifolds with mixed dimensions.
o Closed-form algebraic solution, not iterative.
@ Robust to noise and outliers.

Limitations:

o User provides correct subspace number and dimensions. (How to select a good mixture
model?)

Berkeley
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Robust Segmentation
[ JeJele]e]

Lossy Minimum Description Length (LMDL)

O Lossy coding length L.(V, A):
Quantize V = (vi,--- ,vy) € RPXN as a sequence of binary bits up to a distortion
E[llvi — %] < €.
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Robust Segmentation
[ JeJele]e]

Lossy Minimum Description Length (LMDL)

O Lossy coding length L.(V, A):

Quantize V = (vi,--- ,vy) € RPXN as a sequence of binary bits up to a distortion
E[llvi — %] < €.
@ Lossy MDL

A*(€) = argmin{Lc(V, A) + Overhead(.A)}.
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Robust Segmentation
[ JeJele]e]

Lossy Minimum Description Length (LMDL)

O Lossy coding length L.(V, A):

Quantize V = (vi,--- ,vy) € RPXN as a sequence of binary bits up to a distortion
E[llvi — %] < €.
@ Lossy MDL

A*(€) = argmin{Lc(V, A) + Overhead(.A)}.

© For mixture subspace model
o Model V; as a (degenerate) Gaussian model

1 D
Bit rate: R(V;) =  log, det(/ + Z—N\/,-V,T).
€=V
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Robust Segmentation
[ JeJele]e]

Lossy Minimum Description Length (LMDL)

O Lossy coding length L.(V, A):

Quantize V = (vi,--- ,vy) € RPXN as a sequence of binary bits up to a distortion
E[llvi — %] < €.
@ Lossy MDL

A*(€) = argmin{Lc(V, A) + Overhead(.A)}.

© For mixture subspace model
o Model V; as a (degenerate) Gaussian model
. 1 D T
Bit rate: R(V;) = 5 log, det(/ + GTNIV,VI ).
o Coding length for V; of N; samples

L(V;) = (N; + D)R(V}) + g log, det(1 + ;2,1,-“,7) + N;(— logy(N;i/N)).

Berkeley
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Robust Segmentation
[ JeJele]e]

Lossy Minimum Description Length (LMDL)

O Lossy coding length L.(V, A):

Quantize V = (vi,--- ,vy) € RPXN as a sequence of binary bits up to a distortion
E[llvi — %] < €.
@ Lossy MDL

A*(€) = argmin{Lc(V, A) + Overhead(.A)}.

© For mixture subspace model
o Model V; as a (degenerate) Gaussian model

1 D
Bit rate: R(V;) =  log, det(/ + Z—N\/,-V,T).
€=V

o Coding length for V; of N; samples
D 1
L(V)) = (N; + D)R(VA) + — log, det(1 + —puia]) + Ni(— logy(Ni/N)).

o Total coding length: L°(Vy, -, Vi) =3, L(V}).

Berkeley
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Robust Segmentation

A Greedy Optimization

@ Initialize: Assume N samples as individual groups.
@ Each iteration: Merge two groups that reduces largest coding length.
© To stop: If any further merging cannot reduces L°.

Q Output: Estimation of K and the grouping.

animation

Berkeley
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Robust Segmentation

Simulation
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Robust Segmentation
(e]e]e] Jo]

Image Segmentation via Mixture Subspace Models

39

Nature

e I

(h) Urban
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Robust Segmentation

Quantitative Comparison

Table: Average performance on the Berkeley image segmentation database.

PRI Vol GCE BDE
Humans 0.8754 | 1.1040 | 0.0797 4.994
CTMy—0.1 0.7561 | 2.4640 | 0.1767 | 9.4211
Mean-Shift [Comaniciu 2002] | 0.7550 2.477 0.2598 | 9.7001
N-Cuts [Shi 2000] 0.7229 | 2.9329 | 0.2182 | 9.6038
F-H [Felzenszwalb 2004] 0.7841 | 2.6647 | 0.1895 | 9.9497
PRI: Probabilistic Rand Index [Pantofaru 2005]. GCE: Global Consistency Error [Martin 2001].
Vol: Variation of Information [Meila 2005]. BDE: Boundary Displacement Error [Freixenet 2002].

Reference:
Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2008.

Berkeley
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Classification
@00

Classification of Mixture Subspaces

o Notation
o Training: For K classes, collect training samples {vi,1,- - ,via }, -+, {vk,1," - ,VKY,,K} € RP.
o Test: Present a new y € RP, solve for label(y) € [1,2,- - - , K].
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Classification
@00

Classification of Mixture Subspaces

o Notation
e Training: For K classes, collect training samples {vy 1, - - 7"1v"1}7 e {vk, ,VK,,,K} € RP.
o Test: Present a new y € RP, solve for label(y) € [1,2,--- , K].

o Facial disguise & occlusion
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Classification
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Sparse Representation

A signal is sparse if most of its coefficients are (approximately) zero.
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Classification
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Sparse Representation

A signal is sparse if most of its coefficients are (approximately) zero.

@ Sparsity in frequency domain

Figure: 2-D DCT transform.

@ Sparsity in spatial domain

Figure: Gene microarray data.
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o Sparsity in human visual cortex [Perrett & Oram 1993, Olshausen & Field 1997,

Riesenhuber & Poggio 2000]

http://www.eecs.berkeley.edu/~yang

response no response

High-Dimensional Multi-Model Estimation
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o Sparsity in human visual cortex [Perrett & Oram 1993, Olshausen & Field 1997,
Riesenhuber & Poggio 2000]

stimul

mplexity of preferre:

response no response

O Feed-forward: No iterative feedback loop.

@ Redundancy: Average 80-200 neurons for each feature representation.

© Recognition: Information exchange between stages is not about individual neurons, but
rather how many neurons as a group fire together.

FEl =
Berkeley

http://wuw.eecs.berkeley.edu/~yang High-Dimensional Multi-Model Estimation
P Yy yang g


http://www.eecs.berkeley.edu/~yang

© Face-subspace model: Assume y belongs to Class i

“

Qj1Vi1+ QjaVio+ -+ Qo Vi,
 h = A,

. A where A; = [vj1,Vi2, -+ ,Vin]
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© Face-subspace model: Assume y belongs to Class i

005

Qj1Vi1+ QjaVio+ -+ Qo Vi,
= A,

where A; = [vj1,Vi2, -+ ,Vin]

@ Nevertheless, Class i is the unknown variable we need to solve:

Sparse representation

http://wuw.

2

y=[A, A, Akl | - | = Ax

aK

Berkeley
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Classification
o

Classification of Mixture Subspace Model

© Face-subspace model: Assume y belongs to Class i

- [ 7 ]
e : | Yy = @iVi1+aioVio+ -+ Qi Vin,
Ty = A,
01 v
o o | where A; = [vj1,Vi2, -+ ,Vin]
N 008 »
05 015 -

@ Nevertheless, Class i is the unknown variable we need to solve:
ap

Sparse representation y = [A1, Az, -, Ak] - | = Ax.

aK

3] xoz[ou. 0al0--- O]TER".

v

TestingInput  Feature Extraction )
0
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Classification
L Je]

1-Minimization

O Ideal solution: ¢°-Minimization

(Pp) x* =argmin||x||o s.t. y = Ax.
X

[ - llo simply counts the number of nonzero terms.
However, generally £°-minimization is NP-hard.

http://wuw.eecs 4 High-Dimensional Multi-Model E:
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Classification
L Je]

1-Minimization

O Ideal solution: ¢°-Minimization

(Pp) x* =argmin||x||o s.t. y = Ax.
X

[ - llo simply counts the number of nonzero terms.
However, generally £°-minimization is NP-hard.

@ Compressive Sensing: Under mild condition, £%-minimization is equivalent to

(P1) x* =argmin||x||; s.t. y = Ax,
X

where ||x||1 = |x1| + |x2| + -+ - + |xn].
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Classification
L Je]

1-Minimization

O Ideal solution: ¢°-Minimization

(Pp) x* =argmin||x||o s.t. y = Ax.
X

[ - llo simply counts the number of nonzero terms.
However, generally £°-minimization is NP-hard.

@ Compressive Sensing: Under mild condition, £%-minimization is equivalent to

(P1) x* =argmin||x||; s.t. y = Ax,
X

where ||x||1 = |x1| + |x2| + -+ - + |xn].
@ (-Ball

y = Ax
¢°/¢* Equivalence Y

o ¢*-Minimization is convex. ‘h 10 ball
o Solution equal to £°-minimization.
i' A la
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Classification
(o] ]

bility of #1-Minimization

o (! near solution
y=Ax+e st |e|2<e.

- 1-0 ball

M iiba
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Classification
(o] ]

Stability of £*-Minimization

o (! near solution
y=Ax+e st |e|2<e.

- 1-0 ball

M iiba

o Bounded noise produces bounded ¢! solution
(P]) x* =argmin||x|j1 s.t. ||y — Ax||2 < e.
X

Restricted Isometry Property [Candés, Romberg, Tao 2004]: |[x* — xgl|2 < Ce.

eley.edu/~yang -Dimensional Multi-Model Estimation
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Stability of £*-Minimization

o (! near solution
y=Ax+e st |e|2<e.

- 1-0 ball

M iiba

o Bounded noise produces bounded ¢! solution
(P]) x* =argmin||x|j1 s.t. ||y — Ax||2 < e.
X

Restricted Isometry Property [Candés, Romberg, Tao 2004]: |[x* — xgl|2 < Ce.

@ ¢ -minimization routines
@ Matching pursuit [Mallat 1993]
@ Basis pursuit [Chen 1998]
© Lasso [Tibshirani 1996]
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Classification
[ Jelele)

Partial Features on Extended Yale B Database

Features Nose | Right Eye | Mouth & Chin
Dimension 4,270 5,040 12,936
SRC [%] 87.3 93.7 983
nearest-neighbor [%] | 49.2 68.8 72.7
nearest-subspace [%] | 83.7 78.6 94.4
Linear SVM [%] 708 85.8 953

SRC: sparse-representation classifier

Reference:

Robust face recognition via sparse representation, (in press) PAMI, 2008.

Berkeley
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Classification
(o] lele)

Occlusion Compensation
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Classification
(o] lele)

Occlusion Compensation

@ Sparse representation + sparse error

@ Occlusion compensation

-Dimensional Multi-Model Estimation
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Classification
ooeo

AR Database: 100 subjects, illumination, expression, occlusion

Figure: Training samples for Subject 1.

illumination & expression | sunglasses | scarves
[ 95% [ 975% [ 935% |

.edu/~yang High-Dimensional Multi-Model Estimation
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Random Pixel Corruption

Classification
[e]e]e] )

Recognifon rate (%)

Recognition rate

== Aigorithm 1
=8 PCA & NN
—¥—ICAl+NN
== LNMF + NN

10 20 30 40 50 60 n 80 %0
Parcent occluded (%)
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Future Directions
000

Future Direction: Distributed Sensor Perception (DSP)

Distributed Recognition

powerful processors mobile processors
(virtually) unlimited memory limited onboard memory
(virtually) unlimited bandwidth band-limited communications
simple sensor management complex sensor networks
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Future Directions
000

Future Direction: Distributed Sensor Perception (DSP)

Distributed Recognition
0

R AP

i oL

powerful processors

mobile processors

(virtually) unlimited memory

limited onboard memory

(virtually) unlimited bandwidth

band-limited communications

simple sensor management

complex sensor networks



http://www.eecs.berkeley.edu/~yang

Future Directions
(o] le]

CITRIC: Wireless Smart Camera Sensor Platform

o CITRIC platform @ A 3-second counter-sniper demo

1.3 MegaPixel
Camera

Audio ADC

13-624 MHz

Intel PXA270
Microprocessor
64 MB
Mobile 8
SDRAM

16 MB NOR Flash  Power Management IC

o Early adopters

CITRIC

y.edu/~yang High-Dimensional Multi-Model Estimation
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Future Directions
ocoe

DexterNet: Wireless Body Sensor Network Platform

@ Heterogeneous body sensors o Applications

. I @ Wearable action recognition
= B L NN

o Layout

SensorMote 1

SensorMote 2

GPS device Base-station

SensorMote 3 N800 (mobie device)

(in bag)

SensorMote 5 > Sensor Mote 4

High-Dimensional Multi-Model Estimation
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Future Directions
[ Jelelele}
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Future Directions
[e] lele]e}

1-Minimization Routines

o Matching pursuit [Mallat 1993]
@ Find most correlated vector v; in A with y: i = argmax (y, vj).
Q@ A—AD x — (y,v), y —y — xvi.
© Repeat until ||y|| < e.

o Basis pursuit [Chen 1998]

@ Start with number of sparse coefficients m = 1.
@ Select m linearly independent vectors B, in A as a basis

Xm = B;y.

© Repeat swapping one basis vector in B, with another vector not in By, if improve ||y — BmXm|.
Q If |ly — Bmxml||2 < €, stop; Otherwise, m < m + 1, repeat Step 2.

o Quadratic solvers: y = Axg +z € RY, where ||z|2 < €

*

x* = argmin{|[x[l1 + Ally — Ax|l2}

[LASSO, Second-order cone programming]: Much more expensive.

Matlab Toolboxes for £X-Minimization

o /-Magic by Candes
@ SparseLab by Donoho
@ cvx by Boyd
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Future Directions
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Mild Conditions for £*/¢° Equivalence

(P1) x* =argmin||x||1 s.t. y = Ax
X

Solve #1-minimization achieves the optimal sparse solution under the following conditions
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Mild Conditions for £*/¢° Equivalence

(P1) x* =argmin||x||1 s.t. y = Ax
X

Solve #1-minimization achieves the optimal sparse solution under the following conditions

@ Short answer: For most underdetermined systems A, such as random matrices, the
equivalence holds

k
Asmyptotically with % < 0.5
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Future Directions
[e]e] le]e}

Mild Conditions for £*/¢° Equivalence

(P1) x* =argmin||x||1 s.t. y = Ax
X

Solve #1-minimization achieves the optimal sparse solution under the following conditions

@ Short answer: For most underdetermined systems A, such as random matrices, the
equivalence holds

k
Asmyptotically with % < 0.5

o Long answers
@ (In)-coherence [Gribvonel & Nielsen 2003, Donoho & Elad 2003]:
[(a, b)|

(A, B) = sup
acabes [lafl[b]]

Ixllo < 3(1+ WI,B)) suffices. A and B have to be incoherent.
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Mild Conditions for £*/¢° Equivalence

(P1) x* =argmin||x||1 s.t. y = Ax
X

Solve #1-minimization achieves the optimal sparse solution under the following conditions

@ Short answer: For most underdetermined systems A, such as random matrices, the
equivalence holds

k
Asmyptotically with % < 0.5

o Long answers
@ (In)-coherence [Gribvonel & Nielsen 2003, Donoho & Elad 2003]:

wp L@
scabes al bl

(A, B) =

Ixllo < 3(1+ WIB)) suffices. A and B have to be incoherent.
@ Restricted Isometry [Candes & Tao 2005]:
Define 64(A) = minéd such that
(1= 8)IxI3 < I1AXI3 < (1+ 8)[xIZ Vk-sparse x.

S2k(A) < v/2 — 1 suffices. The columns of A should be uniformly well-spread. B
= erkeley
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Future Directions
[e]ele] lo}

k-Neighborlyness [Donoho 2006]

o Define cross polytope C and quotient polytope P such that P = AC.
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Future Directions
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k-Neighborlyness [Donoho 2006]

o Define cross polytope C and quotient polytope P such that P = AC.

o If x is k-sparse, x lie in a (k — 1)-face of C in R".
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Future Directions
[e]ele] lo}

k-Neighborlyness [Donoho 2006]

o Define cross polytope C and quotient polytope P such that P = AC.
o If x is k-sparse, x lie in a (k — 1)-face of C in R".

o Necessary and Sufficient: If £1/¢° holds for all k-sparse x, all (k — 1)-faces of C must be the
faces of P on the boundary.

Berkeley
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Future Directions
[e]e]e]e] }

Sparse Representation in Classification: a Cross-and-Bouquet Model

o Traditional compressive sensing focuses on
y=Ax+e
@ A is component-wise Gaussian.

@ A is sparse Bernoulli.
© A is megadictionary [/|F], where F is Fourier or wavelets.

Berkeley
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Future Directions
[e]e]e]e] }

Sparse Representation in Classification: a Cross-and-Bouquet Model

o Traditional compressive sensing focuses on
y=Ax+e
@ A is component-wise Gaussian.

@ A is sparse Bernoulli.
© A is megadictionary [/|F], where F is Fourier or wavelets.

@ Solving sparse representation for recognition purpose represents a special model

y=[a 1 /][]

A

Highly coherent
( volume < 1.5 x 107229 )

Reference: Berkeley

John Wright and Yi Ma, Dense Error Correction via 11 Minimization.
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