Classification

Future Directions

## High-Dimensional Multi-Model Estimation – Its Algebra, Statistics, and Sparse Representation

Allen Y. Yang yang@eecs.berkeley.edu

Dec 2, 2008, Johns Hopkins University



Introduction ●○○○○○ Robust Segmentation

Classification

< 🗇 🕨

Future Directions

# High-Dimensional Data: Images, Videos, etc...



Figure: Dimension of an image:  $1000 \times 700 \times 3 > 2$  million!



Robust Segmentation

Classification

Future Directions

### HD data are often multi-model





Robust Segmentation

Classification

Future Directions

## Recognition of Multi-Model Data





| Introduction      | Robust Segmentation  | Classification | Future Directions |
|-------------------|----------------------|----------------|-------------------|
| Face Recognition: | "Where amazing happe | ens!"          |                   |
|                   |                      |                |                   |
|                   |                      |                |                   |
|                   |                      |                |                   |



< - **1** →

| Face Recognition: | "Mhere amazing happens!"                |                |                   |
|-------------------|-----------------------------------------|----------------|-------------------|
| 000000            | 000000000000000000000000000000000000000 | 000000000      | 0000000           |
| Introduction      | Robust Segmentation                     | Classification | Future Directions |





| Introduction      | Robust Segmentation                     | Classification | Future Direction |
|-------------------|-----------------------------------------|----------------|------------------|
| 000000            | 000000000000000000000000000000000000000 | 000000000      | 0000000          |
| Face Recognition: | "Where amazing happe                    | ns!"           |                  |







| Introduction      | Robust Segmentation  | Classification | Future Directio |
|-------------------|----------------------|----------------|-----------------|
| Face Recognition: | "Where amazing happe | ens!"          |                 |
|                   |                      |                |                 |









| Introduction      | Robust Segmentation  | Classification | Future Directions |
|-------------------|----------------------|----------------|-------------------|
| Face Recognition: | "Where amazing happe | ens!"          |                   |
|                   |                      |                |                   |
|                   |                      | 2              |                   |
|                   |                      | - Joseph Land  |                   |
|                   |                      | None all       |                   |

Figure: Kevin Garnett, Steve Nash, Jason Kidd, Yao Ming.

< ≣⇒

| Introduction |
|--------------|
| 000000       |

Classification

< 1 b

Future Directions

## How to let computer compete with human perception?



| Introduction |
|--------------|
| 000000       |

Classification

Future Directions

### How to let computer compete with human perception?

• How to determine a class of models and the number of models?





| Introduction |
|--------------|
| 000000       |

Classification

Future Directions

### How to let computer compete with human perception?

• How to determine a class of models and the number of models?



• Curse of dimensionality! [Richard Bellman 1957]





| Introduction |
|--------------|
| 000000       |

Classification

Future Directions

### How to let computer compete with human perception?

• How to determine a class of models and the number of models?



• Curse of dimensionality! [Richard Bellman 1957]



• To make things worse: Robust to high noise and outliers?



- A 🗐 🕨

Robust Segmentation

Classification

Future Directions

### Pattern Analysis of Multiple Geometric Models

Unsupervised segmentation

Segment samples drawn from  $\mathcal{A} = S_1 \cup S_2 \cup \ldots \cup S_K$  in  $\mathbb{R}^D$ , and estimate model parameters.





Introduction ○○○○● Robust Segmentation

Classification

Future Directions

## Pattern Analysis of Multiple Geometric Models

Unsupervised segmentation

Segment samples drawn from  $\mathcal{A} = S_1 \cup S_2 \cup \ldots \cup S_K$  in  $\mathbb{R}^D$ , and estimate model parameters.



Supervised recognition

Assume training examples  $\{A_1, \cdots, A_K\}$  for K models. Given a test sample y, determine its membership label(y)  $\in [1, 2, \cdots, K]$ .



| Introduction |
|--------------|
|              |

Classification

Future Directions

### Affine Motion Segmentation

Assume multiple 3-D objects far away from the camera in a dynamic scene

- 3-D features  $\mathbf{p}_1, \dots, \mathbf{p}_N \in \mathbb{R}^3$  are tracked in F image frames.
- Image of **p**<sub>i</sub> in *j*th frame:

$$\mathbf{m}_{ij} \doteq \begin{bmatrix} x_{ij} \\ y_{ij} \end{bmatrix}^{T} = A_{j}\mathbf{p}_{i} + \mathbf{b}_{j} \in \mathbb{R}^{2}, \quad j = 1, \dots, F.$$

• Stack images of **p**<sub>i</sub> in all F frames

$$\mathbf{x}_{i} = \begin{bmatrix} \mathbf{m}_{i1} \\ \vdots \\ \mathbf{m}_{iF} \end{bmatrix} = \begin{bmatrix} A_{1} & \mathbf{b}_{1} \\ \vdots & \\ A_{F} & \mathbf{b}_{F} \end{bmatrix} \begin{bmatrix} \mathbf{p}_{i} \\ 1 \end{bmatrix} \in \mathbb{R}^{2F}.$$

parking-lot movie





| Introduc | tion |
|----------|------|
| 00000    | 00   |

Robust Segmentation ●●●●●●●●●●●●●● Classification

Future Directions

### Affine Motion Segmentation

Assume multiple 3-D objects far away from the camera in a dynamic scene

- 3-D features  $\mathbf{p}_1, \dots, \mathbf{p}_N \in \mathbb{R}^3$  are tracked in F image frames.
- Image of **p**<sub>i</sub> in *j*th frame:

$$\mathbf{m}_{ij} \doteq \begin{bmatrix} x_{ij} \\ y_{ij} \end{bmatrix}^{T} = A_{j}\mathbf{p}_{i} + \mathbf{b}_{j} \in \mathbb{R}^{2}, \quad j = 1, \dots, F.$$

• Stack images of **p**<sub>i</sub> in all F frames

$$\mathbf{x}_i = \begin{bmatrix} \mathbf{m}_{i1} \\ \vdots \\ \mathbf{m}_{iF} \end{bmatrix} = \begin{bmatrix} A_1 & \mathbf{b}_1 \\ \vdots & \\ A_F & \mathbf{b}_F \end{bmatrix} \begin{bmatrix} \mathbf{p}_i \\ 1 \end{bmatrix} \in \mathbb{R}^{2F}.$$

### parking-lot movie



★ E ► < E ►</p>

#### Challenge: Affine Motion Segmentation

Each motion satisfies a 4-D subspace model. Therefore motion segmentation becomes **subspace segmentation problem**.



Robust Segmentation

Classification

Future Directions

### Generalized Principal Component Analysis (GPCA)

- I For a single subspace
  - $V_1^{\perp}$  :  $(x_3 = 0)$
  - $V_2^{\perp}$  :  $(x_1 = 0)\&(x_2 = 0)$





Robust Segmentation

Classification

Future Directions

## Generalized Principal Component Analysis (GPCA)

- I For a single subspace
  - $V_1^{\perp}$  : ( $x_3 = 0$ )

• 
$$V_2^{\perp}$$
 :  $(x_1 = 0)\&(x_2 = 0)$ 



$$\forall \mathbf{z} = (x_1, x_2, x_3)^T, \quad \mathbf{z} \in V_1 \cup V_2 \Leftrightarrow \{x_3 = 0\} | \{(x_1 = 0)\&(x_2 = 0)\}$$



Robust Segmentation

Classification

Future Directions

## Generalized Principal Component Analysis (GPCA)

- I For a single subspace
  - $V_1^{\perp}$  :  $(x_3 = 0)$

• 
$$V_2^{\perp}$$
 :  $(x_1 = 0)\&(x_2 = 0)$ 



 $\textbf{@ For } \mathcal{A} = V_1 \cup V_2$ 

$$\forall \mathbf{z} = (x_1, x_2, x_3)^T, \quad \mathbf{z} \in V_1 \cup V_2 \Leftrightarrow \{x_3 = 0\} | \{(x_1 = 0)\&(x_2 = 0)\}$$

By De Morgan's law

$$\{x_3 = 0\} | \{(x_1 = 0)\&(x_2 = 0)\} \Leftrightarrow (x_1x_3 = 0)\&(x_2x_3 = 0) \Leftrightarrow \begin{cases} x_1x_3 = 0\\ x_2x_3 = 0 \end{cases}$$



Robust Segmentation

Classification

Future Directions

## Generalized Principal Component Analysis (GPCA)

- I For a single subspace
  - $V_1^{\perp}$  :  $(x_3 = 0)$

• 
$$V_2^{\perp}$$
 :  $(x_1 = 0)\&(x_2 = 0)$ 



$$\forall \mathbf{z} = (x_1, x_2, x_3)^T, \quad \mathbf{z} \in V_1 \cup V_2 \Leftrightarrow \{x_3 = 0\} | \{(x_1 = 0)\&(x_2 = 0)\}$$

By De Morgan's law

$$\{x_3 = 0\} | \{(x_1 = 0)\&(x_2 = 0)\} \Leftrightarrow (x_1x_3 = 0)\&(x_2x_3 = 0) \Leftrightarrow \begin{cases} x_1x_3 = 0\\ x_2x_3 = 0 \end{cases}$$

**Over the set of the** 



| ction | Robust Segmentation                     | Classification | Future Directions |
|-------|-----------------------------------------|----------------|-------------------|
| 00    | 000000000000000000000000000000000000000 | 000000000      | 00000000          |
|       |                                         |                |                   |

### Equivalence Relation

Introdu

- The equivalence between K subspaces and Kth-degree vanishing polynomials
  - **(**) Given  $p_1 = x_1x_3$ ,  $p_2 = x_2x_3$ ,  $V_1 \cup V_2$  uniquely determined.
  - **(a)** All vanishing polynomials of arbitrary degree for  $V_1 \cup V_2$  generated by  $p_1 = x_1 x_3$ ,  $p_2 = x_2 x_3$ .



< 1 b

| Introduction |
|--------------|
|              |

Classification

< 🗇 🕨

Future Directions

### Equivalence Relation

- The equivalence between K subspaces and Kth-degree vanishing polynomials
  - **(**) Given  $p_1 = x_1x_3$ ,  $p_2 = x_2x_3$ ,  $V_1 \cup V_2$  uniquely determined.
  - **(2)** All vanishing polynomials of arbitrary degree for  $V_1 \cup V_2$  generated by  $p_1 = x_1 x_3$ ,  $p_2 = x_2 x_3$ .
- Kth-degree vanishing polynomials  $I_{\mathcal{K}}(\mathcal{A})$  as a global signature



| Introduction |  |
|--------------|--|
|              |  |

Classification

Future Directions

### Equivalence Relation

- The equivalence between K subspaces and Kth-degree vanishing polynomials
  - **(**) Given  $p_1 = x_1x_3$ ,  $p_2 = x_2x_3$ ,  $V_1 \cup V_2$  uniquely determined.
  - **(a)** All vanishing polynomials of arbitrary degree for  $V_1 \cup V_2$  generated by  $p_1 = x_1 x_3$ ,  $p_2 = x_2 x_3$ .
- Kth-degree vanishing polynomials  $I_{\mathcal{K}}(\mathcal{A})$  as a global signature
- $I_{\mathcal{K}}(\mathcal{A})$  is a polynomial subspace.

#### Subspace Properties

If  $p_1(x) = 0$  and  $p_2(x) = 0$ 

- **()** Closed under addition:  $(p_1 + p_2)(\mathbf{x}) = 0 \Rightarrow (p_1 + p_2) \in I_{\mathcal{K}}(\mathcal{A}).$
- **2** Closed under scalar multiplication:  $\forall a \in \mathbb{R}$ ,  $ap_1(\mathbf{x}) = 0$  and  $ap_2(\mathbf{x}) = 0 \Rightarrow ap_1, ap_2 \in I_K(\mathcal{A})$ .



| Introduction |  |
|--------------|--|
|              |  |

Classification

Future Directions

### Equivalence Relation

- The equivalence between K subspaces and Kth-degree vanishing polynomials
  - **(**) Given  $p_1 = x_1x_3$ ,  $p_2 = x_2x_3$ ,  $V_1 \cup V_2$  uniquely determined.
  - **(2)** All vanishing polynomials of arbitrary degree for  $V_1 \cup V_2$  generated by  $p_1 = x_1x_3$ ,  $p_2 = x_2x_3$ .
- Kth-degree vanishing polynomials  $I_{\mathcal{K}}(\mathcal{A})$  as a global signature
- $I_{\mathcal{K}}(\mathcal{A})$  is a polynomial subspace.

#### Subspace Properties

If  $p_1(\mathbf{x}) = 0$  and  $p_2(\mathbf{x}) = 0$ 

- **()** Closed under addition:  $(p_1 + p_2)(\mathbf{x}) = 0 \Rightarrow (p_1 + p_2) \in I_{\mathcal{K}}(\mathcal{A}).$
- **2** Closed under scalar multiplication:  $\forall a \in \mathbb{R}$ ,  $ap_1(\mathbf{x}) = 0$  and  $ap_2(\mathbf{x}) = 0 \Rightarrow ap_1, ap_2 \in I_K(\mathcal{A})$ .
- $I_{\mathcal{K}}(\mathcal{A})$  is determined by a linearly-independent polynomial basis.



| Introduction | Robust Segmentation                     | Classification | Future Directions |
|--------------|-----------------------------------------|----------------|-------------------|
| 000000       | 000000000000000000000000000000000000000 | 000000000      | 0000000           |
|              |                                         |                |                   |

### Estimation of Vanishing Polynomials

**()** Veronese embedding: Given *N* samples  $\mathbf{x}_1, \ldots, \mathbf{x}_N \in \mathbb{R}^3$ ,

$$\begin{array}{lll} L_2 &\doteq & [\nu_2(\mathbf{x}_1), \dots, \nu_2(\mathbf{x}_N)] \in \mathbb{R}^{M_2^{[3]} \times N} \\ & = & \begin{bmatrix} \cdots & (x_1)^2 & \cdots \\ \cdots & (x_1x_2) & \cdots \\ \cdots & (x_1x_3) & \cdots \\ \cdots & (x_2)^2 & \cdots \\ \cdots & (x_3)^2 & \cdots \end{bmatrix} \end{array}$$



| Introduction | Robust Segmentation                     | Classification | Future Directions |
|--------------|-----------------------------------------|----------------|-------------------|
| 000000       | 000000000000000000000000000000000000000 | 000000000      | 00000000          |

### Estimation of Vanishing Polynomials

**()** Veronese embedding: Given *N* samples  $\mathbf{x}_1, \ldots, \mathbf{x}_N \in \mathbb{R}^3$ ,

$$\begin{array}{lll} L_2 &\doteq & [\nu_2(\mathbf{x}_1), \ldots, \nu_2(\mathbf{x}_N)] \in \mathbb{R}^{M_2^{[3]} \times N} \\ & = & \begin{bmatrix} \cdots & (x_1)^2 & \cdots \\ \cdots & (x_1x_2) & \cdots \\ \cdots & (x_1x_3) & \cdots \\ \cdots & (x_2x_3) & \cdots \\ \cdots & (x_3)^2 & \cdots \end{bmatrix}$$

**2** The null space of  $L_2$  is  $\begin{array}{c} \mathbf{c}_1 = [0, 0, 1, 0, 0, 0] \\ \mathbf{c}_2 = [0, 0, 0, 0, 1, 0] \end{array} \Rightarrow \begin{array}{c} p_1 = \mathbf{c}_1 \nu_2(\mathbf{x}) = x_1 x_3 \\ p_2 = \mathbf{c}_2 \nu_2(\mathbf{x}) = x_2 x_3 \end{array}$ 



Figure: 2nd-degree vanishing polynomials:  $p_1 = x_1x_3$ ,  $p_2 = x_2x_3$ .



Robust Segmentation

Classification

< □ > < 同 >

Future Directions

### Calculate Subspace Basis Vectors using Polynomial Derivatives

 $\ \, {\pmb 0} \ \, V_1^\perp, \cdots, V_K^\perp \text{ recovered by the } derivatives$ 

$$\nabla_{\mathbf{x}} P = \left[ \nabla_{\mathbf{x}} p_1 \ \nabla_{\mathbf{x}} p_2 \right] = \begin{bmatrix} x_3 & 0 \\ 0 & x_3 \\ x_1 & x_2 \end{bmatrix}.$$

$$\begin{array}{l} \textbf{ Pick } \mathbf{z} = [1,1,0]^T \in V_1, \text{ then } \nabla_{\mathbf{x}} P(\mathbf{z}) = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}. \\ \text{ Pick } \mathbf{z} = [0,0,1]^T \in V_2, \text{ then } \nabla_{\mathbf{x}} P(\mathbf{z}) = \begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}. \end{array}$$



Figure:  $P(\mathbf{x}) \doteq [p_1(\mathbf{x}) \ p_2(\mathbf{x})] = [x_1x_3, x_2x_3].$ 



Robust Segmentation

Classification

Future Directions

### Calculate Subspace Basis Vectors using Polynomial Derivatives

 $\ \, {\pmb 0} \ \, V_1^\perp, \cdots, V_K^\perp \text{ recovered by the } derivatives$ 

$$\nabla_{\mathbf{x}} P = \left[ \nabla_{\mathbf{x}} p_1 \nabla_{\mathbf{x}} p_2 \right] = \left[ \begin{array}{c} x_3 & 0 \\ 0 & x_3 \\ x_1 & x_2 \end{array} \right].$$

$$\begin{array}{l} \textbf{@} \quad \mathsf{Pick} \ \textbf{z} = [1,1,0]^T \in V_1, \ \mathsf{then} \ \nabla_{\textbf{x}} P(\textbf{z}) = \begin{bmatrix} 0 & 0 \\ 1 & 0 \\ 1 & 1 \end{bmatrix} \\ \mathsf{Pick} \ \textbf{z} = [0,0,1]^T \in V_2, \ \mathsf{then} \ \nabla_{\textbf{x}} P(\textbf{z}) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \\ \end{array}$$



Figure:  $P(\mathbf{x}) \doteq [p_1(\mathbf{x}) \ p_2(\mathbf{x})] = [x_1x_3, x_2x_3].$ 





| Introduction | Robust Segmentation                     | Classification | Future Direction |
|--------------|-----------------------------------------|----------------|------------------|
| 000000       | 000000000000000000000000000000000000000 | 000000000      | 0000000          |
| Robust GPCA  |                                         |                |                  |



Figure: (2, 1, 1) with various noise-to-signal ratios



Figure: (2, 2, 1) with various noise-to-signal ratios

< 1 b



| Introduction |  |
|--------------|--|
|              |  |

Robust GPCA

Robust Segmentation

Classification

Future Directions



Figure: (2, 1, 1) with various noise-to-signal ratios



Figure: One plane and two lines with various outlier percentages



Figure: (2, 2, 1) with various noise-to-signal ratios



Figure: Two planes and one line with various outlier percentages



| Introduction | Robust Segmentation                     | Classification | Future Directions |
|--------------|-----------------------------------------|----------------|-------------------|
|              | 000000000000000000000000000000000000000 |                |                   |

**Outlier Elimination** 

Figure: Elimination of outliers.



Robust Segmentation

Classification

Future Directions

## Experiment: Affine Motion Segmentation

#### Sequences:



RGPCA:



**Robust Segmentation**  Classification

Future Directions

### **Experiment:** Affine Motion Segmentation

#### Sequences:



Other applications



#### Reference:

SIAM Review: Estimation of subspace arrangements with applications in modeling and segmenting mixed data, 200



< 注 > < 注 >

< 1 b

| Introduction  | Robust Segmentation                     | Classification | <b>Future Directions</b> |
|---------------|-----------------------------------------|----------------|--------------------------|
| 000000        | 000000000000000000000000000000000000000 | 000000000      | 00000000                 |
| Summary: GPCA |                                         |                |                          |

Advantages:

- Closed-form algebraic solution, not iterative.
- Segmentation of subspaces with mixed dimensions.
- Robust to noise and outliers.



| Introduction  | Robust Segmentation                     | Classification | Future Directions |
|---------------|-----------------------------------------|----------------|-------------------|
| 000000        | 000000000000000000000000000000000000000 | 000000000      | 0000000           |
| Summary: GPCA |                                         |                |                   |

Advantages:

- Closed-form algebraic solution, not iterative.
- Segmentation of subspaces with mixed dimensions.
- Robust to noise and outliers.

Limitations:

• Only apply to mixture linear subspaces. (How about mixture nonlinear manifolds?)


| Introduction  | Robust Segmentation                     | Classification |  |
|---------------|-----------------------------------------|----------------|--|
| 000000        | 000000000000000000000000000000000000000 | 000000000      |  |
| Summary: GPCA |                                         |                |  |

## Advantages:

- Closed-form algebraic solution, not iterative.
- Segmentation of subspaces with mixed dimensions.
- Robust to noise and outliers.

#### Limitations:

- Only apply to mixture linear subspaces. (How about mixture nonlinear manifolds?)
- User provides correct subspace number and dimensions. (How to select a good mixture model?)



ture Directions

| Introduction        | Robust Segmentation                     | Classification | Future Directions |
|---------------------|-----------------------------------------|----------------|-------------------|
| 000000              | 000000000000000000000000000000000000000 | 000000000      | 00000000          |
| Mixture Perspective | Motions                                 |                |                   |



| Introduction        | Robust Segmentation           | Classification | Future Directions |
|---------------------|-------------------------------|----------------|-------------------|
| 000000              | 00000000 <b>000000</b> 000000 | 000000000      | 00000000          |
| Mixture Perspective | Motions                       |                |                   |

Given two image correspondences  $\textbf{x}_1, \textbf{x}_2 \in \mathbb{R}^3$ 

• Epipolar





| Introduction        | Robust Segmentation           | Classification | Future Directions |
|---------------------|-------------------------------|----------------|-------------------|
| 000000              | 00000000 <b>000000</b> 000000 | 000000000      | 0000000           |
| Mixture Perspective | Motions                       |                |                   |

Given two image correspondences  $\textbf{x}_1, \textbf{x}_2 \in \mathbb{R}^3$ 

• Epipolar



Homography





| Introduction        | Robust Segmentation                     | Classification | Future Directions |
|---------------------|-----------------------------------------|----------------|-------------------|
| 000000              | 000000000000000000000000000000000000000 | 000000000      | 0000000           |
| Mixture Perspective | Motions                                 |                |                   |

Given two image correspondences  $\textbf{x}_1, \textbf{x}_2 \in \mathbb{R}^3$ 

• Epipolar



Homography



$$\mathbf{x}_{2} \times \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \mathbf{x}_{1} = \mathbf{0}$$

Segmentation of mixture perspective motions

Each perspective constraint is linear w.r.t.  $(x_1, x_2)$ , but in different form!



| Introduction        | Robust Segmentation                     | Classification | Future Directions |
|---------------------|-----------------------------------------|----------------|-------------------|
| 000000              | 000000000000000000000000000000000000000 | 000000000      | 00000000          |
| Quadratic Manifolds | in Joint Image Space                    |                |                   |

Quadratic Manifolds in Joint Image Space

Joint image space: Stack  $\mathbf{x}_1 = (x_1, y_1, 1)^T$  and  $\mathbf{x}_2 = (x_2, y_2, 1)^T$  $\mathbf{y} = (x_1, y_1, x_2, y_2, 1)^T \in \mathbb{R}^5$ 



| ntroduction | Robust Segmentation           | Classification | Future Directions |
|-------------|-------------------------------|----------------|-------------------|
| 00000       | 00000000 <b>000000</b> 000000 | 000000000      | 00000000          |
|             | 1 I I I I I C                 |                |                   |

### Quadratic Manifolds in Joint Image Space

Joint image space: Stack  $\mathbf{x}_1 = (x_1, y_1, 1)^T$  and  $\mathbf{x}_2 = (x_2, y_2, 1)^T$  $\mathbf{y} = (x_1, y_1, x_2, y_2, 1)^T \in \mathbb{R}^5$ 

• Quadratic fundamental manifold (QFM)

$$\mathbf{y}^{\mathsf{T}} A \mathbf{y} \doteq \mathbf{y}^{\mathsf{T}} \begin{pmatrix} 0 & 0 & f_{11} & f_{21} & f_{31} \\ 0 & 0 & f_{12} & f_{22} & f_{32} \\ f_{11} & f_{12} & 0 & 0 & f_{13} \\ f_{21} & f_{22} & 0 & 0 & f_{23} \\ f_{31} & f_{32} & f_{13} & f_{23} & 2f_{33} \end{pmatrix} \mathbf{y} = \mathbf{0}.$$
(1)

• Quadratic homograpy manifold (QHM)

$$\mathbf{y}^{T}B_{1}\mathbf{y} \doteq \mathbf{y}^{T} \begin{pmatrix} 0 & 0 & 0 & h_{31} & -h_{21} \\ 0 & 0 & 0 & h_{32} & -h_{22} \\ 0 & 0 & 0 & 0 & 0 \\ h_{31} & h_{32} & 0 & 0 & h_{33} \\ -h_{21} & -h_{22} & 0 & h_{33} & 0 & h_{11} \\ 0 & 0 & -h_{31} & 0 & h_{11} \\ 0 & 0 & -h_{32} & 0 & -h_{33} \\ -h_{31} & -h_{32} & 0 & 0 & 0 & 0 \\ h_{11} & h_{12} & -h_{33} & 0 & 2h_{13} \\ 0 & 0 & h_{21} & -h_{11} & 0 \\ h_{21} & h_{22} & 0 & 0 & -h_{23} \\ -h_{11} & -h_{12} & 0 & 0 & -h_{13} \\ 0 & 0 & h_{23} & -h_{13} & 0 \end{pmatrix} \mathbf{y} = 0.$$
(2)
Berkeley

Robust Segmentation

Classification

Future Directions

## Segmentation of Quadratic Manifolds

 Convert mixture perspective motion as segmentation of mixture quadratic manifolds defined by

$$p_j(\mathbf{y}) \doteq \mathbf{y}^T Q_j \mathbf{y} = 0.$$
 (3)





Robust Segmentation

Classification

Future Directions

### Segmentation of Quadratic Manifolds

 Convert mixture perspective motion as segmentation of mixture quadratic manifolds defined by

$$p_j(\mathbf{y}) \doteq \mathbf{y}^T Q_j \mathbf{y} = 0. \tag{3}$$



Vanishing polynomials (as global signature): The set of 2Kth degree polynomials I<sub>2K</sub>(A) uniquely determines A = S<sub>1</sub> ∪ · · · ∪ S<sub>K</sub>.



Robust Segmentation

Classification

### Segmentation of Quadratic Manifolds

 Convert mixture perspective motion as segmentation of mixture quadratic manifolds defined by

$$p_j(\mathbf{y}) \doteq \mathbf{y}^T Q_j \mathbf{y} = 0. \tag{3}$$



. . . . . . . .

Vanishing polynomials (as global signature): The set of 2Kth degree polynomials I<sub>2K</sub>(A) uniquely determines A = S<sub>1</sub> ∪ · · · ∪ S<sub>K</sub>.

Robust Algebraic Segmentation

$$Y = \{\mathbf{y}_1, \cdots, \mathbf{y}_n\} \Rightarrow I_{2K}(\mathcal{A}) \Rightarrow \mathcal{A} \Rightarrow \{S_1, \cdots, S_K\}$$

Reference:

IJCV (draft): Robust Algebraic Segmentation of Mixed Rigid-Body and Planar Motions, 2008.



# Robust Segmentation

Classification

Future Directions

| boxes                | MLESAC | MC-RANSAC | RAS    | RAS+RANSAC |
|----------------------|--------|-----------|--------|------------|
| FPR                  | 9.24%  | 0.84%     | 1.68%  | 0.84%      |
| VR                   | 36.97% | 84.87%    | 100%   | 87.39%     |
| carsnbus3            | MLESAC | MC-RANSAC | RAS    | RAS+RANSAC |
| FPR                  | 45.75% | 12.55%    | 2.83%  | 1.62%      |
| VR                   | 83.81% | 90.28%    | 97.17% | 85.83%     |
| deliveryvan          | MLESAC | MC-RANSAC | RAS    | RAS+RANSAC |
| FPR                  | 23.23% | 10.63%    | 5.91%  | 0.39%      |
| VR                   | 97.64% | 96.85%    | 100%   | 94.09%     |
| desk                 | MLESAC | MC-RANSAC | RAS    | RAS+RANSAC |
| FPR                  | 9.00%  | 2.50%     | 3.00%  | 0.50%      |
| VR                   | 55.50% | 93.50%    | 91.50% | 93.50%     |
| lightbulb            | MLESAC | MC-RANSAC | RAS    | RAS+RANSAC |
| FPR                  | 39.52% | 0.00%     | 0.00%  | 0.00%      |
| VR                   | 76.19% | 82.86%    | 100%   | 99.52 %    |
| manycars             | MLESAC | MC-RANSAC | RAS    | RAS+RANSAC |
| FPR                  | 30.56% | 22.22%    | 0.00%  | 0.00%      |
| VR                   | 90.28% | 95.83%    | 100%   | 88.89%     |
| man-in-office        | MLESAC | MC-RANSAC | RAS    | RAS+RANSAC |
| FPR                  | 20.56% | 34.58%    | 20.56% | 11.21%     |
| VR                   | 89.72% | 95.33%    | 84.11% | 82.24%     |
| nrbooks3             | MLESAC | MC-RANSAC | RAS    | RAS+RANSAC |
| FPR                  | 12.38% | 9.05%     | 5.48%  | 0.95%      |
| VR                   | 41.19% | 65.48%    | 94.29% | 88.33%     |
| office               | MLESAC | MC-RANSAC | RAS    | RAS+RANSAC |
| FPR                  | 2.28%  | 0.33%     | 10.42% | 0.00%      |
| VR                   | 89.59% | 90.55%    | 86.97% | 93.49%     |
| parking-lot          | MLESAC | MC-RANSAC | RAS    | RAS+RANSAC |
| FPR                  | 7.86%  | 5.00%     | 3.57%  | 2.86%      |
| VR                   | 98.57% | 96.43%    | 100%   | 97.86%     |
| posters-checkerboard | MLESAC | MC-RANSAC | RAS    | RAS+RANSAC |
| FPR                  | 20.58% | 1.06%     | 9.23%  | 0.00%      |
| VR                   | 49.87% | 97.36%    | 70.71% | 95.25%     |
| posters-keyboard     | MLESAC | MC-RANSAC | RAS    | RAS+RANSAC |
| FPR                  | 8.59%  | 0.25%     | 10.61% | 0.51%      |
| VR                   | 56.06% | 83.33%    | 78.03% | 88.13%     |
| toys-on-table        | MLESAC | MC-RANSAC | RAS    | RAS+RANSAC |
| FPR                  | 38.10% | 38.10%    | 15.08% | 7.94%      |
| VR                   | 91.27% | 92.86%    | 81.75% | 77,78%     |



http://www.eecs.berkeley.edu/~yang

High-Dimensional Multi-Model Estimation

Robust Segmentation

Classification

Future Directions

## Experiment

#### Visualization





Robust Segmentation

Classification

Future Directions

## Experiment

#### Visualization



Paster than RANSAC!



| Introduction | Robust Segmentation           | Classification | Future Directions |
|--------------|-------------------------------|----------------|-------------------|
| 000000       | 0000000 <b>00000</b> 000000   | 000000000      | 0000000           |
| Summary:     | Robust Algebraic Segmentation |                |                   |

Advantages:

- Segmentation of quadratic manifolds with mixed dimensions.
- Closed-form algebraic solution, not iterative.
- Robust to noise and outliers.

Limitations:

• User provides correct subspace number and dimensions. (How to select a good mixture model?)



Future Directions

## Lossy Minimum Description Length (LMDL)

● Lossy coding length  $L_{\epsilon}(V, A)$ : Quantize  $V = (v_1, \dots, v_N) \in \mathbb{R}^{D \times N}$  as a sequence of binary bits up to a distortion  $\mathbb{E}[||v_i - \hat{v}_i||^2] \le \epsilon^2$ .



Robust Segmentation

Classification

Future Directions

## Lossy Minimum Description Length (LMDL)

- Lossy coding length  $L_{\epsilon}(V, A)$ : Quantize  $V = (v_1, \dots, v_N) \in \mathbb{R}^{D \times N}$  as a sequence of binary bits up to a distortion  $\mathbb{E}[\|v_i - \hat{v_i}\|^2] \le \epsilon^2$ .
- O Lossy MDL

 $\mathcal{A}^*(\epsilon) = \arg\min\{L_{\epsilon}(V, \mathcal{A}) + \mathsf{Overhead}(\mathcal{A})\}.$ 



Robust Segmentation

Classification

Future Directions

## Lossy Minimum Description Length (LMDL)

- Lossy coding length  $L_{\epsilon}(V, A)$ : Quantize  $V = (v_1, \dots, v_N) \in \mathbb{R}^{D \times N}$  as a sequence of binary bits up to a distortion  $\mathbb{E}[||v_i - \hat{v}_i||^2] \le \epsilon^2$ .
- O Lossy MDL

 $\mathcal{A}^*(\epsilon) = \arg\min\{L_{\epsilon}(V, \mathcal{A}) + \mathsf{Overhead}(\mathcal{A})\}.$ 

- Is For mixture subspace model
  - Model V<sub>i</sub> as a (degenerate) Gaussian model

Bit rate: 
$$R(V_i) = \frac{1}{2} \log_2 \det(I + \frac{D}{\epsilon^2 N_i} V_i V_i^T).$$



Robust Segmentation

Classification

Future Directions

## Lossy Minimum Description Length (LMDL)

- Lossy coding length  $L_{\epsilon}(V, A)$ : Quantize  $V = (v_1, \dots, v_N) \in \mathbb{R}^{D \times N}$  as a sequence of binary bits up to a distortion  $\mathbb{E}[||v_i - \hat{v_i}||^2] \le \epsilon^2$ .
- O Lossy MDL

$$\mathcal{A}^*(\epsilon) = \arg\min\{L_{\epsilon}(V, \mathcal{A}) + \mathsf{Overhead}(\mathcal{A})\}.$$

- For mixture subspace model
  - Model V<sub>i</sub> as a (degenerate) Gaussian model

Bit rate: 
$$R(V_i) = \frac{1}{2} \log_2 \det(I + \frac{D}{\epsilon^2 N_i} V_i V_i^T).$$

• Coding length for V<sub>i</sub> of N<sub>i</sub> samples

$$L(V_i) = (N_i + D)R(V_i) + \frac{D}{2}\log_2 \det(1 + \frac{1}{\epsilon^2}\mu_i\mu_i^T) + N_i(-\log_2(N_i/N)).$$



Robust Segmentation

Classification

Future Directions

## Lossy Minimum Description Length (LMDL)

- Lossy coding length  $L_{\epsilon}(V, A)$ : Quantize  $V = (v_1, \dots, v_N) \in \mathbb{R}^{D \times N}$  as a sequence of binary bits up to a distortion  $\mathbb{E}[||v_i - \hat{v}_i||^2] \le \epsilon^2$ .
- O Lossy MDL

$$\mathcal{A}^*(\epsilon) = \arg\min\{L_{\epsilon}(V, \mathcal{A}) + \mathsf{Overhead}(\mathcal{A})\}.$$

- I For mixture subspace model
  - Model V<sub>i</sub> as a (degenerate) Gaussian model

Bit rate: 
$$R(V_i) = \frac{1}{2} \log_2 \det(I + \frac{D}{\epsilon^2 N_i} V_i V_i^T).$$

• Coding length for V<sub>i</sub> of N<sub>i</sub> samples

$$L(V_i) = (N_i + D)R(V_i) + \frac{D}{2}\log_2 \det(1 + \frac{1}{\epsilon^2}\mu_i\mu_i^T) + N_i(-\log_2(N_i/N)).$$

• Total coding length:  $L^{s}(V_{1}, \cdots, V_{K}) = \sum_{i} L(V_{i}).$ 



| Introduction |
|--------------|
|              |

Robust Segmentation

Classification

Future Directions

## A Greedy Optimization

- **1** Initialize: Assume N samples as individual groups.
- **2** Each iteration: Merge two groups that reduces largest coding length.
- To stop: If any further merging cannot reduces L<sup>s</sup>.
- **Output**: Estimation of *K* and the grouping.



animation



| Robust Segmentation                     | Classific |
|-----------------------------------------|-----------|
| 000000000000000000000000000000000000000 |           |

## Simulation

Introduction





**Robust Segmentation**  Classification

Future Directions

## Image Segmentation via Mixture Subspace Models



(g) Nature













(h) Urban





http://www.eecs.berkeley.edu/~yang

High-Dimensional Multi-Model Estimation

Robust Segmentation

Classification

Future Directions

### Quantitative Comparison

Table: Average performance on the Berkeley image segmentation database.

|                             | PRI    | Vol    | GCE    | BDE    |
|-----------------------------|--------|--------|--------|--------|
| Humans                      | 0.8754 | 1.1040 | 0.0797 | 4.994  |
| $CTM_{\gamma=0.1}$          | 0.7561 | 2.4640 | 0.1767 | 9.4211 |
| Mean-Shift [Comaniciu 2002] | 0.7550 | 2.477  | 0.2598 | 9.7001 |
| N-Cuts [Shi 2000]           | 0.7229 | 2.9329 | 0.2182 | 9.6038 |
| F-H [Felzenszwalb 2004]     | 0.7841 | 2.6647 | 0.1895 | 9.9497 |

PRI: Probabilistic Rand Index [Pantofaru 2005]. Vol: Variation of Information [Meila 2005]. GCE: Global Consistency Error [Martin 2001]. BDE: Boundary Displacement Error [Freixenet 2002].

#### Reference:

Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2008.



| troduction | Robust Segmentation                     | Classification | Future Directions |
|------------|-----------------------------------------|----------------|-------------------|
| 00000      | 000000000000000000000000000000000000000 | ••••           | 00000000          |

### Classification of Mixture Subspaces

#### Notation

- Training: For K classes, collect training samples  $\{\mathbf{v}_{1,1}, \cdots, \mathbf{v}_{1,n_1}\}, \cdots, \{\mathbf{v}_{K,1}, \cdots, \mathbf{v}_{K,n_K}\} \in \mathbb{R}^D$ .
- Test: Present a new  $\mathbf{y} \in \mathbb{R}^{D}$ , solve for  $label(\mathbf{y}) \in [1, 2, \cdots, K]$ .



| duction | Robust Segmentation  |
|---------|----------------------|
| 000     | 00000000000000000000 |

Classification ●000000000

### Classification of Mixture Subspaces

#### Notation

Intro

- Training: For K classes, collect training samples  $\{\mathbf{v}_{1,1}, \cdots, \mathbf{v}_{1,n_1}\}, \cdots, \{\mathbf{v}_{K,1}, \cdots, \mathbf{v}_{K,n_K}\} \in \mathbb{R}^D$ .
- Test: Present a new  $\mathbf{y} \in \mathbb{R}^{D}$ , solve for label $(\mathbf{y}) \in [1, 2, \cdots, K]$ .
- Facial disguise & occlusion





| Introduction          | Robust Segmentation | Classification<br>○●○○○○○○○ | Future Directions |
|-----------------------|---------------------|-----------------------------|-------------------|
| Sparse Representation | on                  |                             |                   |

#### Sparsity

A signal is sparse if most of its coefficients are (approximately) zero.



| Introduction |
|--------------|
| 000000       |

Robust Segmentation

Classification

Future Directions

### Sparse Representation

#### Sparsity

A signal is sparse if most of its coefficients are (approximately) zero.

O Sparsity in frequency domain



Figure: 2-D DCT transform.

#### Ø Sparsity in spatial domain



Figure: Gene microarray data.



Future Directions

• Sparsity in human visual cortex [Perrett & Oram 1993, Olshausen & Field 1997, Riesenhuber & Poggio 2000]





 Future Directions

• Sparsity in human visual cortex [Perrett & Oram 1993, Olshausen & Field 1997, Riesenhuber & Poggio 2000]



- **I Feed-forward**: No iterative feedback loop.
- **@** Redundancy: Average 80-200 neurons for each feature representation.
- Pecognition: Information exchange between stages is not about individual neurons, but rather how many neurons as a group fire together.





| ntroduction | Robust Segmentation | Classification | Future Directions |
|-------------|---------------------|----------------|-------------------|
| 000000      | 000000000000000000  | 00000000       | 00000000          |

## Classification of Mixture Subspace Model

• Face-subspace model: Assume y belongs to Class i



$$\mathbf{y} = \alpha_{i,1}\mathbf{v}_{i,1} + \alpha_{i,2}\mathbf{v}_{i,2} + \dots + \alpha_{i,n_1}\mathbf{v}_{i,n_i},$$
  
=  $A_i\alpha_i$ ,

where 
$$A_i = [\mathbf{v}_{i,1}, \mathbf{v}_{i,2}, \cdots, \mathbf{v}_{i,n_i}].$$



| Introduction | Robust Segmentation | Classification | Future Directions |
|--------------|---------------------|----------------|-------------------|
| 000000       | 000000000000000000  | 00000000       | 00000000          |

### Classification of Mixture Subspace Model

• Face-subspace model: Assume y belongs to Class i



$$\mathbf{y} = \alpha_{i,1}\mathbf{v}_{i,1} + \alpha_{i,2}\mathbf{v}_{i,2} + \dots + \alpha_{i,n_1}\mathbf{v}_{i,n_i}, = A_i\alpha_i,$$

where 
$$A_i = [\mathbf{v}_{i,1}, \mathbf{v}_{i,2}, \cdots, \mathbf{v}_{i,n_i}].$$

- **2** Nevertheless, Class *i* is the **unknown** variable we need to solve:
  - Sparse representation  $\mathbf{y} = [A_1, A_2, \cdots, A_K] \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_K \end{bmatrix} = A\mathbf{x}.$



| ntroduction | Robust Segmentation | Classification | <b>Future Directions</b> |
|-------------|---------------------|----------------|--------------------------|
| 000000      | 000000000000000000  | 00000000       | 00000000                 |

### Classification of Mixture Subspace Model

• Face-subspace model: Assume y belongs to Class i



$$\mathbf{y} = \alpha_{i,1}\mathbf{v}_{i,1} + \alpha_{i,2}\mathbf{v}_{i,2} + \dots + \alpha_{i,n_1}\mathbf{v}_{i,n_i},$$
  
=  $A_i\alpha_i$ ,

医下 医

where 
$$A_i = [\mathbf{v}_{i,1}, \mathbf{v}_{i,2}, \cdots, \mathbf{v}_{i,n_i}].$$

**2** Nevertheless, Class *i* is the **unknown** variable we need to solve:

Sparse representation  $\mathbf{y} = [A_1, A_2, \cdots, A_K] \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_K \end{bmatrix} = A\mathbf{x}.$ 

$$\mathbf{O} \quad \mathbf{x}_0 = \begin{bmatrix} \mathbf{0} \cdots \mathbf{0} \ \alpha_i^T \ \mathbf{0} \cdots \mathbf{0} \end{bmatrix}^T \in \mathbb{R}^n.$$

#### Sparse representation x<sub>0</sub> encodes membership!

http://www.eecs.berkeley.edu/~yang High-Dimensional Multi-Model Estimation

| Introduction           | Robust Segmentation                     | Classification | Future Directions |
|------------------------|-----------------------------------------|----------------|-------------------|
| 000000                 | 000000000000000000000000000000000000000 | 0000000        | 0000000           |
| $\ell^1$ -Minimization |                                         |                |                   |

**()** Ideal solution:  $\ell^0$ -Minimization

$$(P_0) \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_0 \text{ s.t. } \mathbf{y} = A\mathbf{x}.$$

 $\|\cdot\|_0$  simply counts the number of nonzero terms. However, generally  $\ell^0$ -minimization is *NP-hard*.



| Introduction   | Robust Segmentation                     | Classification | Future Directions |
|----------------|-----------------------------------------|----------------|-------------------|
| 000000         | 000000000000000000000000000000000000000 | 00000000       | 0000000           |
| 1 Minimization |                                         |                |                   |

**Ideal solution:**  $\ell^0$ -Minimization

$$(P_0) \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_0 \text{ s.t. } \mathbf{y} = A\mathbf{x}.$$

 $\|\cdot\|_0$  simply counts the number of nonzero terms. However, generally  $\ell^0$ -minimization is *NP-hard*.

**@** Compressive Sensing: Under mild condition,  $\ell^0$ -minimization is equivalent to

 $(P_1) \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ s.t. } \mathbf{y} = A\mathbf{x},$ 

where  $\|\mathbf{x}\|_1 = |x_1| + |x_2| + \dots + |x_n|$ .



| Introduction           | Robust Segmentation | Classification | Future Directions |
|------------------------|---------------------|----------------|-------------------|
| $\ell^1$ -Minimization |                     |                |                   |

● Ideal solution: ℓ<sup>0</sup>-Minimization

$$(P_0) \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_0 \text{ s.t. } \mathbf{y} = A\mathbf{x}.$$

 $\|\cdot\|_0$  simply counts the number of nonzero terms. However, generally  $\ell^0$ -minimization is *NP-hard*.

**2** Compressive Sensing: Under mild condition,  $\ell^0$ -minimization is equivalent to

 $(P_1) \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ s.t. } \mathbf{y} = A\mathbf{x},$ 

where 
$$\|\mathbf{x}\|_1 = |x_1| + |x_2| + \dots + |x_n|$$
.  
 $\ell^1$ -Ball

#### $\ell^0/\ell^1$ Equivalence

- $\ell^1$ -Minimization is convex.
- Solution equal to  $\ell^0$ -minimization.



Robust Segmentation

Classification

Future Directions

## Stability of $\ell^1$ -Minimization

•  $\ell^1$  near solution

 $\mathbf{y} = A\mathbf{x} + \mathbf{e}$  s.t.  $\|\mathbf{e}\|_2 < \epsilon$ .




Robust Segmentation

Classification ○○○○○●○○○○ Future Directions

# Stability of $\ell^1$ -Minimization

 $\bullet \ \ell^1$  near solution

 $\mathbf{y} = A\mathbf{x} + \mathbf{e}$  s.t.  $\|\mathbf{e}\|_2 < \epsilon$ .



• Bounded noise produces bounded  $\ell^1$  solution

$$(P_1') \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ s.t. } \|\mathbf{y} - A\mathbf{x}\|_2 < \epsilon.$$

Restricted Isometry Property [Candès, Romberg, Tao 2004]:  $\|\mathbf{x}^* - \mathbf{x}_0\|_2 < C\epsilon$ .



Robust Segmentation

Classification ○○○○○●○○○○ Future Directions

# Stability of $\ell^1$ -Minimization

 $\bullet \ \ell^1$  near solution

 $\mathbf{y} = A\mathbf{x} + \mathbf{e}$  s.t.  $\|\mathbf{e}\|_2 < \epsilon$ .



• Bounded noise produces bounded  $\ell^1$  solution

$$(P_1') \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ s.t. } \|\mathbf{y} - A\mathbf{x}\|_2 < \epsilon.$$

Restricted Isometry Property [Candès, Romberg, Tao 2004]:  $\|\mathbf{x}^* - \mathbf{x}_0\|_2 < C\epsilon$ .

## • $\ell^1$ -minimization routines

- Matching pursuit [Mallat 1993]
- Basis pursuit [Chen 1998]
- Lasso [Tibshirani 1996]



Robust Segmentation

Classification

Future Directions

## Partial Features on Extended Yale B Database



| Features             | Nose  | Right Eye | Mouth & Chin |
|----------------------|-------|-----------|--------------|
| Dimension            | 4,270 | 5,040     | 12,936       |
| SRC [%]              | 87.3  | 93.7      | 98.3         |
| nearest-neighbor [%] | 49.2  | 68.8      | 72.7         |
| nearest-subspace [%] | 83.7  | 78.6      | 94.4         |
| Linear SVM [%]       | 70.8  | 85.8      | 95.3         |

SRC: sparse-representation classifier

Reference:

Robust face recognition via sparse representation, (in press) PAMI, 2008.



Robust Segmentation

Classification

< 🗇 🕨

Future Directions

# Occlusion Compensation





Robust Segmentation

Classification ○○○○○○●○○ Future Directions

## Occlusion Compensation



Sparse representation + sparse error

$$\mathbf{y} = A\mathbf{x} + \mathbf{e}$$



**@** Occlusion compensation

$$\mathbf{y} = \begin{bmatrix} A & | & I \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix} = B\mathbf{w}$$



Robust Segmentation

Classification

Future Directions

## AR Database: 100 subjects, illumination, expression, occlusion



Figure: Training samples for Subject 1.

| 10-10-10-10-10-10-10-10-10-10-10-10-10-1 |            | DE      |
|------------------------------------------|------------|---------|
| illumination & expression                | sunglasses | scarves |
| 95%                                      | 97.5%      | 93.5%   |



Robust Segmentation

Classification

< □ > < 同 >

Future Directions

## Random Pixel Corruption





Robust Segmentation

Classification

Future Directions

## Future Direction: Distributed Sensor Perception (DSP)



simple sensor management





Robust Segmentation

Classification

Future Directions

## Future Direction: Distributed Sensor Perception (DSP)



virtually) unlimited memory (virtually) unlimited bandwidth simple sensor management





< 1 b

< ∃⇒



Robust Segmentation

Classification

Future Directions

## CITRIC: Wireless Smart Camera Sensor Platform

• CITRIC platform

• A 3-second counter-sniper demo



Early adopters



CITRIC



Robust Segmentation

Classification

Future Directions

## DexterNet: Wireless Body Sensor Network Platform

Heterogeneous body sensors





Layout



- Applications
  - Wearable action recognition



### WARD database

|          |   |           |          | 205-22  | nàna  | sui a | and a | 46   |      |     |      |  |
|----------|---|-----------|----------|---------|-------|-------|-------|------|------|-----|------|--|
| And Inc. | - | Loss News | - 10     |         | -     | 20    | -     | -    | 64   | No. | 14   |  |
|          |   |           |          | 2000    | au    |       |       | 1    |      |     |      |  |
|          |   |           |          | 1002    | -     | -     | -     |      | 80   | -   | -    |  |
|          |   |           |          | 201     | 1000  |       | 1000  | 1    |      |     |      |  |
|          |   |           | Con part | 2007    | -     | -     | -     | -    | 60   | -   | 14   |  |
| -        |   |           | -        | - 19    | (if)  | -     | 44    | Ψ.   |      |     |      |  |
|          |   |           |          |         | - 04  | 24    | Xi    | - 64 | - 44 | 10  | - 54 |  |
|          |   |           |          | 100 100 | 11.50 | 12:34 | ti i  | N.   |      |     |      |  |
|          |   |           |          |         | -     | -     | nie.  | 10   | No.  | 100 | 10   |  |





프 🖌 🔺 프 🕨

Robust Segmentation

Classification

< 1 b

Future Directions

## Acknowledgments

### Collaborators

- Berkeley: Dr. Shankar Sastry, Dr. Ruzena Bajcsy, Dr. Edmund Seto, Phoebus Chen, Posu Yan
- UIUC: Dr. Yi Ma, Dr. Robert Fossum, John Wright, Shankar Rao
- Cornell: Philip Kuryloski
- JHU: Dr. René Vidal
- UMich: Dr. Harm Derksen
- UT Dallas: Dr. Roozbeh Jafari
- Tampere University of Technology: Ville-Pekka Seppa
- Telecom Italia: Dr. Marco Sgnoi, Roberta Giannantonio, Raffaele Gravina

#### Funding Support

- ARO MURI: Heterogeneous Sensor Networks in Urban Terrains
- ARO MURI: Adaptive Coordinated Control of Intelligent Multi-Agent Teams
- NSF TRUST Center

#### References

- SIAM Review: Estimation of Subspace Arrangements with Applications in Modeling and Segmenting Mixed Data, 2008.
- IJCV (draft): Robust Algebraic Segmentation of Mixed Rigid-Body and Planar Motions, 2008.
- CVIU: Unsupervised Segmentation of Natural Images via Lossy Data Compression, 2008.
- PAMI (in press): Robust face recognition via sparse representation, 2008.
- ICDSC: CITRIC: A Low-Bandwidth Wireless Camera Network Platform, 2008.
- IPSN (draft): DexterNet: An open platform for heterogeneous body sensor networks and its applications, 2008;

| Robust Segmentation                     | Classification | Future Directions |
|-----------------------------------------|----------------|-------------------|
| 000000000000000000000000000000000000000 | 000000000      | 00000000          |

## l<sup>1</sup>-Minimization Routines

Introduction

- Matching pursuit [Mallat 1993]
  - **()** Find most correlated vector  $\mathbf{v}_i$  in A with  $\mathbf{y}$ :  $i = \arg \max \langle \mathbf{y}, \mathbf{v}_j \rangle$ .

  - Bepeat until ||y|| < ε.</p>
- Basis pursuit [Chen 1998]
  - **()** Start with number of sparse coefficients m = 1.
  - 2 Select m linearly independent vectors  $B_m$  in A as a basis

$$\mathbf{x}_m = B_m^{\dagger} \mathbf{y}.$$

- **(a)** Repeat swapping one basis vector in  $B_m$  with another vector not in  $B_m$  if improve  $\|\mathbf{y} B_m \mathbf{x}_m\|$ . **(a)** If  $\|\mathbf{y} - B_m \mathbf{x}_m\|_2 < \epsilon$ , stop; Otherwise,  $m \leftarrow m + 1$ , repeat Step 2.
- Quadratic solvers:  $\mathbf{y} = A\mathbf{x}_0 + \mathbf{z} \in \mathbb{R}^d$ , where  $\|\mathbf{z}\|_2 < \epsilon$

$$\mathbf{x}^* \quad = \quad \arg\min\{\|\mathbf{x}\|_1 + \lambda \|\mathbf{y} - A\mathbf{x}\|_2\}$$

[LASSO, Second-order cone programming]: Much more expensive.

### Matlab Toolboxes for $\ell^1$ -Minimization

- $\ell^1$ -Magic by Candes
- SparseLab by Donoho
- cvx by Boyd

| Introduction        | Robust Segmentation         | Classification | Future Directions |
|---------------------|-----------------------------|----------------|-------------------|
| Mild Conditions for | $\ell^1/\ell^0$ Equivalence |                |                   |

$$(P_1) \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ s.t. } \mathbf{y} = A\mathbf{x}$$

Solve  $\ell^1\text{-minimization}$  achieves the optimal sparse solution under the following conditions



| Introduction        | Robust Segmentation         | Classification | Future Directions |
|---------------------|-----------------------------|----------------|-------------------|
| Mild Conditions for | $\ell^1/\ell^0$ Equivalence |                |                   |

$$(P_1) \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ s.t. } \mathbf{y} = A\mathbf{x}$$

Solve  $\ell^1$ -minimization achieves the optimal sparse solution under the following conditions

• **Short answer**: For most underdetermined systems *A*, such as random matrices, the equivalence holds

Asmyptotically with 
$$rac{k\uparrow}{d\uparrow} < 0.5$$

< ∃ >

| Introduction        | Robust Segmentation                     | Classification | Future Directions |
|---------------------|-----------------------------------------|----------------|-------------------|
| 000000              | 000000000000000000000000000000000000000 | 000000000      | 00000000          |
| Mild Conditions for | $r \ell^1 / \ell^0$ Equivalence         |                |                   |

$$(P_1)$$
  $\mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1$  s.t.  $\mathbf{y} = A\mathbf{x}$ 

Solve  $\ell^1$ -minimization achieves the optimal sparse solution under the following conditions

• Short answer: For most underdetermined systems *A*, such as random matrices, the equivalence holds

Asmyptotically with 
$$rac{k\uparrow}{d\uparrow} < 0.5$$

Long answers

(In)-coherence [Gribvonel & Nielsen 2003, Donoho & Elad 2003]:

$$\mu(A, B) \doteq \sup_{\mathbf{a} \in A, \mathbf{b} \in B} \frac{|\langle \mathbf{a}, \mathbf{b} \rangle|}{\|\mathbf{a}\| \|\mathbf{b}\|}$$

 $\|\mathbf{x}\|_0 \leq \frac{1}{2}(1 + \frac{1}{\mu(A,B)})$  suffices. A and B have to be incoherent.



| Mild Conditions fo | $r \ell^1 / \ell^0$ Equivalance         |                |                   |
|--------------------|-----------------------------------------|----------------|-------------------|
| 000000             | 000000000000000000000000000000000000000 | 000000000      | 00000000          |
| Introduction       | Robust Segmentation                     | Classification | Future Directions |

$$(P_1) \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ s.t. } \mathbf{y} = A\mathbf{x}$$

Solve  $\ell^1$ -minimization achieves the optimal sparse solution under the following conditions

• Short answer: For most underdetermined systems *A*, such as random matrices, the equivalence holds

Asmyptotically with 
$$rac{k\uparrow}{d\uparrow} < 0.5$$

Long answers

(In)-coherence [Gribvonel & Nielsen 2003, Donoho & Elad 2003]:

$$\mu(A, B) \doteq \sup_{\mathbf{a} \in A, \mathbf{b} \in B} \frac{|\langle \mathbf{a}, \mathbf{b} \rangle|}{\|\mathbf{a}\| \|\mathbf{b}\|}$$

 $\|\mathbf{x}\|_{0} \leq \frac{1}{2}(1 + \frac{1}{\mu(A,B)}) \text{ suffices. } A \text{ and } B \text{ have to be incoherent.}$  **@** Restricted Isometry [Candes & Tao 2005]: Define  $\delta_{k}(A) \doteq \min \delta$  such that

$$(1-\delta) \|\mathbf{x}\|_2^2 \leq \|A\mathbf{x}\|_2^2 \leq (1+\delta) \|\mathbf{x}\|_2^2 \quad \forall k \text{-sparse } \mathbf{x}.$$

 $\delta_{2k}(A) \leq \sqrt{2} - 1$  suffices. The columns of A should be uniformly well-spread.

→ ∃ →

Robust Segmentation

Classification

Future Directions

# k-Neighborlyness [Donoho 2006]



• Define cross polytope C and quotient polytope P such that P = AC.



Robust Segmentation

Classification

Future Directions

## k-Neighborlyness [Donoho 2006]



- Define cross polytope C and quotient polytope P such that P = AC.
- If x is k-sparse, x lie in a (k-1)-face of C in  $\mathbb{R}^n$ .



| Introduction |
|--------------|
| 000000       |

Robust Segmentation

Classification

Future Directions

## k-Neighborlyness [Donoho 2006]



- Define cross polytope C and quotient polytope P such that P = AC.
- If x is k-sparse, x lie in a (k-1)-face of C in  $\mathbb{R}^n$ .
- Necessary and Sufficient: If ℓ<sup>1</sup>/ℓ<sup>0</sup> holds for all k-sparse x, all (k − 1)-faces of C must be the faces of P on the boundary.



Robust Segmentation

Classification

Future Directions

## Sparse Representation in Classification: a Cross-and-Bouquet Model

• Traditional compressive sensing focuses on

 $\mathbf{y} = A\mathbf{x} + \mathbf{e}$ 

- A is component-wise Gaussian.
- A is sparse Bernoulli.
- $\bigcirc$  A is megadictionary [I|F], where F is Fourier or wavelets.



Robust Segmentation

Classification

Future Directions

## Sparse Representation in Classification: a Cross-and-Bouquet Model

• Traditional compressive sensing focuses on

 $\mathbf{y} = A\mathbf{x} + \mathbf{e}$ 

- A is component-wise Gaussian.
- A is sparse Bernoulli.
- **(3)** A is megadictionary [I|F], where F is Fourier or wavelets.
- Solving sparse representation for recognition purpose represents a special model

$$\mathbf{y} = \begin{bmatrix} A & | & I \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{e} \end{bmatrix}$$



Reference:

John Wright and Yi Ma, Dense Error Correction via 11 Minimization.



3.0