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Introduction Robust Segmentation Classification Future Directions

High-Dimensional Data: Images, Videos, etc...

Figure: Dimension of an image: 1000× 700× 3 > 2million!
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Introduction Robust Segmentation Classification Future Directions

HD data are often multi-model
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Introduction Robust Segmentation Classification Future Directions

Recognition of Multi-Model Data
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Introduction Robust Segmentation Classification Future Directions

Face Recognition: “Where amazing happens!”

Figure: Kevin Garnett, Steve Nash, Jason Kidd, Yao Ming.

http://www.eecs.berkeley.edu/~yang High-Dimensional Multi-Model Estimation

http://www.eecs.berkeley.edu/~yang


Introduction Robust Segmentation Classification Future Directions

Face Recognition: “Where amazing happens!”

Figure: Kevin Garnett, Steve Nash, Jason Kidd, Yao Ming.

http://www.eecs.berkeley.edu/~yang High-Dimensional Multi-Model Estimation

http://www.eecs.berkeley.edu/~yang


Introduction Robust Segmentation Classification Future Directions

Face Recognition: “Where amazing happens!”

Figure: Kevin Garnett, Steve Nash, Jason Kidd, Yao Ming.

http://www.eecs.berkeley.edu/~yang High-Dimensional Multi-Model Estimation

http://www.eecs.berkeley.edu/~yang


Introduction Robust Segmentation Classification Future Directions

Face Recognition: “Where amazing happens!”

Figure: Kevin Garnett, Steve Nash, Jason Kidd, Yao Ming.

http://www.eecs.berkeley.edu/~yang High-Dimensional Multi-Model Estimation

http://www.eecs.berkeley.edu/~yang


Introduction Robust Segmentation Classification Future Directions

Face Recognition: “Where amazing happens!”

Figure: Kevin Garnett, Steve Nash, Jason Kidd, Yao Ming.

http://www.eecs.berkeley.edu/~yang High-Dimensional Multi-Model Estimation

http://www.eecs.berkeley.edu/~yang


Introduction Robust Segmentation Classification Future Directions

How to let computer compete with human perception?

How to determine a class of models and the number of models?

Curse of dimensionality! [Richard Bellman 1957]

To make things worse: Robust to high noise and outliers?
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Introduction Robust Segmentation Classification Future Directions

Pattern Analysis of Multiple Geometric Models

1 Unsupervised segmentation
Segment samples drawn from A = S1 ∪ S2 ∪ . . .∪ SK in RD , and estimate model parameters.

2 Supervised recognition
Assume training examples {A1, · · · ,AK} for K models. Given a test sample y, determine its
membership label(y) ∈ [1, 2, · · · ,K ].
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Introduction Robust Segmentation Classification Future Directions

Affine Motion Segmentation

Assume multiple 3-D objects far away from the camera in a dynamic scene

3-D features p1, . . . , pN ∈ R3 are tracked in F
image frames.

Image of pi in jth frame:

mij
.

=
[

xij
yij

]T
= Aj pi + bj ∈ R2, j = 1, . . . ,F . parking-lot movie

Stack images of pi in all F frames

xi =

mi1

...
miF

 =

A1 b1

...
AF bF

[pi
1

]
∈ R2F .

Challenge: Affine Motion Segmentation

Each motion satisfies a 4-D subspace model. Therefore motion segmentation becomes subspace
segmentation problem.
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Introduction Robust Segmentation Classification Future Directions

Generalized Principal Component Analysis (GPCA)

1 For a single subspace

V⊥1 : (x3 = 0)

V⊥2 : (x1 = 0)&(x2 = 0) V1

V2

R3x3

x1

x2

2 For A = V1 ∪ V2

∀z = (x1, x2, x3)T , z ∈ V1 ∪ V2 ⇔ {x3 = 0}|{(x1 = 0)&(x2 = 0)}

3 By De Morgan’s law

{x3 = 0}|{(x1 = 0)&(x2 = 0)} ⇔ (x1x3 = 0)&(x2x3 = 0)⇔
{

x1x3=0
x2x3=0

4 Vanishing polynomials: p1 = x1x3, p2 = x2x3

http://www.eecs.berkeley.edu/~yang High-Dimensional Multi-Model Estimation

http://www.eecs.berkeley.edu/~yang


Introduction Robust Segmentation Classification Future Directions

Generalized Principal Component Analysis (GPCA)

1 For a single subspace

V⊥1 : (x3 = 0)

V⊥2 : (x1 = 0)&(x2 = 0) V1

V2

R3x3

x1

x2

2 For A = V1 ∪ V2

∀z = (x1, x2, x3)T , z ∈ V1 ∪ V2 ⇔ {x3 = 0}|{(x1 = 0)&(x2 = 0)}

3 By De Morgan’s law

{x3 = 0}|{(x1 = 0)&(x2 = 0)} ⇔ (x1x3 = 0)&(x2x3 = 0)⇔
{

x1x3=0
x2x3=0

4 Vanishing polynomials: p1 = x1x3, p2 = x2x3

http://www.eecs.berkeley.edu/~yang High-Dimensional Multi-Model Estimation

http://www.eecs.berkeley.edu/~yang


Introduction Robust Segmentation Classification Future Directions

Generalized Principal Component Analysis (GPCA)

1 For a single subspace

V⊥1 : (x3 = 0)

V⊥2 : (x1 = 0)&(x2 = 0) V1

V2

R3x3

x1

x2

2 For A = V1 ∪ V2

∀z = (x1, x2, x3)T , z ∈ V1 ∪ V2 ⇔ {x3 = 0}|{(x1 = 0)&(x2 = 0)}

3 By De Morgan’s law

{x3 = 0}|{(x1 = 0)&(x2 = 0)} ⇔ (x1x3 = 0)&(x2x3 = 0)⇔
{

x1x3=0
x2x3=0

4 Vanishing polynomials: p1 = x1x3, p2 = x2x3

http://www.eecs.berkeley.edu/~yang High-Dimensional Multi-Model Estimation

http://www.eecs.berkeley.edu/~yang


Introduction Robust Segmentation Classification Future Directions

Generalized Principal Component Analysis (GPCA)

1 For a single subspace

V⊥1 : (x3 = 0)

V⊥2 : (x1 = 0)&(x2 = 0) V1

V2

R3x3

x1

x2

2 For A = V1 ∪ V2

∀z = (x1, x2, x3)T , z ∈ V1 ∪ V2 ⇔ {x3 = 0}|{(x1 = 0)&(x2 = 0)}

3 By De Morgan’s law

{x3 = 0}|{(x1 = 0)&(x2 = 0)} ⇔ (x1x3 = 0)&(x2x3 = 0)⇔
{

x1x3=0
x2x3=0

4 Vanishing polynomials: p1 = x1x3, p2 = x2x3

http://www.eecs.berkeley.edu/~yang High-Dimensional Multi-Model Estimation

http://www.eecs.berkeley.edu/~yang


Introduction Robust Segmentation Classification Future Directions

Equivalence Relation

The equivalence between K subspaces and K th-degree vanishing polynomials
1 Given p1 = x1x3, p2 = x2x3, V1 ∪ V2 uniquely determined.
2 All vanishing polynomials of arbitrary degree for V1 ∪ V2 generated by p1 = x1x3, p2 = x2x3.

K th-degree vanishing polynomials IK (A) as a global signature

IK (A) is a polynomial subspace.

Subspace Properties

If p1(x) = 0 and p2(x) = 0

1 Closed under addition: (p1 + p2)(x) = 0⇒ (p1 + p2) ∈ IK (A).

2 Closed under scalar multiplication: ∀a ∈ R, ap1(x) = 0 and ap2(x) = 0⇒ ap1, ap2 ∈ IK (A).

IK (A) is determined by a linearly-independent polynomial basis.
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Introduction Robust Segmentation Classification Future Directions

Estimation of Vanishing Polynomials

1 Veronese embedding: Given N samples x1, . . . , xN ∈ R3,

L2
.

= [ν2(x1), . . . , ν2(xN)] ∈ RM
[3]
2 ×N

=


··· (x1)2 ···
··· (x1x2) ···
··· (x1x3) ···
··· (x2)2 ···
··· (x2x3) ···
··· (x3)2 ···



2 The null space of L2 is
c1 = [0, 0, 1, 0, 0, 0]
c2 = [0, 0, 0, 0, 1, 0]

⇒ p1 = c1ν2(x) = x1x3

p2 = c2ν2(x) = x2x3

V1

V2

R3x3

x1

x2

Figure: 2nd-degree vanishing polynomials: p1 = x1x3, p2 = x2x3.
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Introduction Robust Segmentation Classification Future Directions

Calculate Subspace Basis Vectors using Polynomial Derivatives

1 V⊥1 , · · · ,V⊥K recovered by the derivatives

∇xP = [∇xp1 ∇xp2 ] =

[
x3 0
0 x3
x1 x2

]
.

2 Pick z = [1, 1, 0]T ∈ V1, then ∇xP(z) =
[

0 0
0 0
1 1

]
.

Pick z = [0, 0, 1]T ∈ V2, then ∇xP(z) =
[

1 0
0 1
0 0

]
.

V1

V2

R3x3

x1

x2

Figure: P(x)
.
= [p1(x) p2(x)] = [x1x3, x2x3].

Diagram of GPCA

V1

V2 RD

=⇒
νn(x) Null(Ln)

p(x) = cT x

=⇒ =⇒
∇x

Rank(Ln) = M
[D]
n − hI (n)

V1

V2RM
[D]
n RM

[D]
n RD
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Introduction Robust Segmentation Classification Future Directions

Robust GPCA

(a) .08 (b) .12 (c) .16

Figure: (2, 1, 1) with various noise-to-signal ratios

(a) .08 (b) .12 (c) .16

Figure: (2, 2, 1) with various noise-to-signal ratios

(a) 12% (b) 32%

Figure: One plane and two lines with various outlier
percentages

(a) 12% (b) 32%

Figure: Two planes and one line with various outlier
percentages
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Introduction Robust Segmentation Classification Future Directions

Outlier Elimination

Figure: Elimination of outliers.
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Introduction Robust Segmentation Classification Future Directions

Experiment: Affine Motion Segmentation

Sequences:

RGPCA:

Other applications

(a) Image/Video
Segmentation

(b) Vanishing Point Detection (c) Manifold Fitting

Reference:

SIAM Review: Estimation of subspace arrangements with applications in modeling and segmenting mixed data, 2008.
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Experiment: Affine Motion Segmentation

Sequences:

RGPCA:

Other applications

(d) Image/Video
Segmentation

(e) Vanishing Point Detection (f) Manifold Fitting

Reference:

SIAM Review: Estimation of subspace arrangements with applications in modeling and segmenting mixed data, 2008.
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Introduction Robust Segmentation Classification Future Directions

Summary: GPCA

Advantages:

Closed-form algebraic solution, not iterative.

Segmentation of subspaces with mixed dimensions.

Robust to noise and outliers.

Limitations:

Only apply to mixture linear subspaces. (How about mixture nonlinear manifolds?)

User provides correct subspace number and dimensions. (How to select a good mixture
model?)
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Introduction Robust Segmentation Classification Future Directions

Mixture Perspective Motions

Given two image correspondences x1, x2 ∈ R3

Epipolar

xT
2

[
f11 f12 f13
f21 f22 f23
f31 f32 f33

]
x1 = 0

Homography

x2 ×
[

h11 h12 h13
h21 h22 h23
h31 h32 h33

]
x1 = 0

Segmentation of mixture perspective motions

Each perspective constraint is linear w.r.t. (x1, x2), but in different form!
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Quadratic Manifolds in Joint Image Space

Joint image space: Stack x1 = (x1, y1, 1)T and x2 = (x2, y2, 1)T

y = (x1, y1, x2, y2, 1)T ∈ R5

Quadratic fundamental manifold (QFM)

yT Ay
.

= yT

 0 0 f11 f21 f31
0 0 f12 f22 f32

f11 f12 0 0 f13
f21 f22 0 0 f23
f31 f32 f13 f23 2f33

 y = 0. (1)

Quadratic homograpy manifold (QHM)

yT B1y
.

= yT

 0 0 0 h31 −h21
0 0 0 h32 −h22
0 0 0 0 0

h31 h32 0 0 h33
−h21 −h22 0 h33 −2h23

 y = 0,

yT B2y
.

= yT

 0 0 −h31 0 h11
0 0 −h32 0 h12
−h31 −h32 0 0 −h33

0 0 0 0 0
h11 h12 −h33 0 2h13

 y = 0,

yT B3y
.

= yT

 0 0 h21 −h11 0
0 0 h22 −h12 0

h21 h22 0 0 h23
−h11 −h12 0 0 −h13

0 0 h23 −h13 0

 y = 0.

(2)
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.

= yT

 0 0 0 h31 −h21
0 0 0 h32 −h22
0 0 0 0 0

h31 h32 0 0 h33
−h21 −h22 0 h33 −2h23

 y = 0,

yT B2y
.

= yT

 0 0 −h31 0 h11
0 0 −h32 0 h12
−h31 −h32 0 0 −h33

0 0 0 0 0
h11 h12 −h33 0 2h13

 y = 0,

yT B3y
.

= yT

 0 0 h21 −h11 0
0 0 h22 −h12 0

h21 h22 0 0 h23
−h11 −h12 0 0 −h13

0 0 h23 −h13 0

 y = 0.

(2)
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Segmentation of Quadratic Manifolds

Convert mixture perspective motion as
segmentation of mixture quadratic manifolds
defined by

pj (y)
.

= yT Qj y = 0. (3)

Vanishing polynomials (as global signature): The set of 2K th degree polynomials I2K (A)
uniquely determines A = S1 ∪ · · · ∪ SK .

Robust Algebraic Segmentation

Y = {y1, · · · , yn} ⇒ I2K (A)⇒ A⇒ {S1, · · · , SK}

Reference:

IJCV (draft): Robust Algebraic Segmentation of Mixed Rigid-Body and Planar Motions, 2008.
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Introduction Robust Segmentation Classification Future Directions

boxes MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 9.24% 0.84% 1.68% 0.84%
VR 36.97% 84.87% 100% 87.39%

carsnbus3 MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 45.75% 12.55% 2.83% 1.62%
VR 83.81% 90.28% 97.17% 85.83%

deliveryvan MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 23.23% 10.63% 5.91% 0.39%
VR 97.64% 96.85% 100% 94.09%

desk MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 9.00% 2.50% 3.00% 0.50%
VR 55.50% 93.50% 91.50% 93.50%

lightbulb MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 39.52% 0.00% 0.00% 0.00%
VR 76.19% 82.86% 100% 99.52 %

manycars MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 30.56% 22.22% 0.00% 0.00%
VR 90.28% 95.83% 100% 88.89%

man-in-office MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 20.56% 34.58% 20.56% 11.21%
VR 89.72% 95.33% 84.11% 82.24%

nrbooks3 MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 12.38% 9.05% 5.48% 0.95%
VR 41.19% 65.48% 94.29% 88.33%

office MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 2.28% 0.33% 10.42% 0.00%
VR 89.59% 90.55% 86.97% 93.49%

parking-lot MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 7.86% 5.00% 3.57% 2.86%
VR 98.57% 96.43% 100% 97.86%

posters-checkerboard MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 20.58% 1.06% 9.23% 0.00%
VR 49.87% 97.36% 70.71% 95.25%

posters-keyboard MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 8.59% 0.25% 10.61% 0.51%
VR 56.06% 83.33% 78.03% 88.13%

toys-on-table MLESAC MC-RANSAC RAS RAS+RANSAC

FPR 38.10% 38.10% 15.08% 7.94%
VR 91.27% 92.86% 81.75% 77.78%
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Experiment

1 Visualization

2 Faster than RANSAC!
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Summary: Robust Algebraic Segmentation

Advantages:

Segmentation of quadratic manifolds with mixed dimensions.

Closed-form algebraic solution, not iterative.

Robust to noise and outliers.

Limitations:

User provides correct subspace number and dimensions. (How to select a good mixture
model?)
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Lossy Minimum Description Length (LMDL)

1 Lossy coding length Lε(V ,A):
Quantize V = (v1, · · · , vN) ∈ RD×N as a sequence of binary bits up to a distortion
E[‖vi − v̂i‖2] ≤ ε2.

2 Lossy MDL
A∗(ε) = arg min{Lε(V ,A) + Overhead(A)}.

3 For mixture subspace model
Model Vi as a (degenerate) Gaussian model

Bit rate: R(Vi ) =
1

2
log2 det(I +

D

ε2Ni
ViV

T
i ).

Coding length for Vi of Ni samples

L(Vi ) = (Ni + D)R(Vi ) +
D

2
log2 det(1 +

1

ε2
µiµ

T
i ) + Ni (− log2(Ni/N)).

Total coding length: Ls (V1, · · · ,VK ) =
∑

i L(Vi ).
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A Greedy Optimization

1 Initialize: Assume N samples as individual groups.

2 Each iteration: Merge two groups that reduces largest coding length.

3 To stop: If any further merging cannot reduces Ls .

4 Output: Estimation of K and the grouping.

animation
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Simulation
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Image Segmentation via Mixture Subspace Models

(g) Nature

(h) Urban

(i) Portraits

(j) Water
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Quantitative Comparison

Table: Average performance on the Berkeley image segmentation database.

PRI VoI GCE BDE
Humans 0.8754 1.1040 0.0797 4.994

CTMγ=0.1 0.7561 2.4640 0.1767 9.4211
Mean-Shift [Comaniciu 2002] 0.7550 2.477 0.2598 9.7001
N-Cuts [Shi 2000] 0.7229 2.9329 0.2182 9.6038
F-H [Felzenszwalb 2004] 0.7841 2.6647 0.1895 9.9497

PRI: Probabilistic Rand Index [Pantofaru 2005].
VoI: Variation of Information [Meila 2005].

GCE: Global Consistency Error [Martin 2001].
BDE: Boundary Displacement Error [Freixenet 2002].

Reference:

Unsupervised Segmentation of Natural Images via Lossy Data Compression, CVIU, 2008.
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Classification of Mixture Subspaces

Notation
Training: For K classes, collect training samples {v1,1, · · · , v1,n1

}, · · · , {vK,1, · · · , vK,nK
} ∈ RD .

Test: Present a new y ∈ RD , solve for label(y) ∈ [1, 2, · · · ,K ].

Facial disguise & occlusion
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Sparse Representation

Sparsity

A signal is sparse if most of its coefficients are (approximately) zero.

1 Sparsity in frequency domain

Figure: 2-D DCT transform.

2 Sparsity in spatial domain

Figure: Gene microarray data.
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Sparsity in human visual cortex [Perrett & Oram 1993, Olshausen & Field 1997,
Riesenhuber & Poggio 2000]

1 Feed-forward: No iterative feedback loop.
2 Redundancy: Average 80-200 neurons for each feature representation.
3 Recognition: Information exchange between stages is not about individual neurons, but

rather how many neurons as a group fire together.
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Classification of Mixture Subspace Model

1 Face-subspace model: Assume y belongs to Class i

y = αi,1vi,1 + αi,2vi,2 + · · ·+ αi,n1
vi,ni

,
= Aiαi ,

where Ai = [vi,1, vi,2, · · · , vi,ni
].

2 Nevertheless, Class i is the unknown variable we need to solve:

Sparse representation y = [A1,A2, · · · ,AK ]

 α1
α2

...
αK

 = Ax.

3 x0 = [ 0 ··· 0 αT
i 0 ··· 0 ]T ∈ Rn.

Sparse representation x0 encodes membership!
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`1-Minimization

1 Ideal solution: `0-Minimization

(P0) x∗ = arg min
x
‖x‖0 s.t. y = Ax.

‖ · ‖0 simply counts the number of nonzero terms.
However, generally `0-minimization is NP-hard.

2 Compressive Sensing: Under mild condition, `0-minimization is equivalent to

(P1) x∗ = arg min
x
‖x‖1 s.t. y = Ax,

where ‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|.
3 `1-Ball

`0/`1 Equivalence

`1-Minimization is convex.

Solution equal to `0-minimization.
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Stability of `1-Minimization

`1 near solution
y = Ax + e s.t. ‖e‖2 < ε.

Bounded noise produces bounded `1 solution

(P′1) x∗ = arg min
x
‖x‖1 s.t. ‖y − Ax‖2 < ε.

Restricted Isometry Property [Candès, Romberg, Tao 2004]: ‖x∗ − x0‖2 < Cε.

`1-minimization routines
1 Matching pursuit [Mallat 1993]
2 Basis pursuit [Chen 1998]
3 Lasso [Tibshirani 1996]
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Partial Features on Extended Yale B Database

Features Nose Right Eye Mouth & Chin
Dimension 4,270 5,040 12,936

SRC [%] 87.3 93.7 98.3
nearest-neighbor [%] 49.2 68.8 72.7
nearest-subspace [%] 83.7 78.6 94.4
Linear SVM [%] 70.8 85.8 95.3

SRC: sparse-representation classifier

Reference:

Robust face recognition via sparse representation, (in press) PAMI, 2008.
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Occlusion Compensation

1 Sparse representation + sparse error

y = Ax + e

2 Occlusion compensation

y =
[
A | I

] [x
e

]
= Bw
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AR Database: 100 subjects, illumination, expression, occlusion

Figure: Training samples for Subject 1.

illumination & expression sunglasses scarves

95% 97.5% 93.5%
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Random Pixel Corruption
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Future Direction: Distributed Sensor Perception (DSP)

Centralized Recognition

powerful processors
(virtually) unlimited memory

(virtually) unlimited bandwidth
simple sensor management

Distributed Recognition

mobile processors
limited onboard memory

band-limited communications
complex sensor networks
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CITRIC: Wireless Smart Camera Sensor Platform

CITRIC platform

Early adopters

A 3-second counter-sniper demo

CITRIC
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DexterNet: Wireless Body Sensor Network Platform

Heterogeneous body sensors

Layout

Applications

1 Wearable action recognition

2 WARD database

3 Long-term asthma study
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`1-Minimization Routines

Matching pursuit [Mallat 1993]
1 Find most correlated vector vi in A with y: i = arg max 〈y, vj〉.
2 A← A(i), xi ← 〈y, vi 〉, y← y − xi vi .
3 Repeat until ‖y‖ < ε.

Basis pursuit [Chen 1998]
1 Start with number of sparse coefficients m = 1.
2 Select m linearly independent vectors Bm in A as a basis

xm = B†my.

3 Repeat swapping one basis vector in Bm with another vector not in Bm if improve ‖y − Bmxm‖.
4 If ‖y − Bmxm‖2 < ε, stop; Otherwise, m ← m + 1, repeat Step 2.

Quadratic solvers: y = Ax0 + z ∈ Rd , where ‖z‖2 < ε

x∗ = arg min{‖x‖1 + λ‖y − Ax‖2}

[LASSO, Second-order cone programming]: Much more expensive.

Matlab Toolboxes for `1-Minimization

`1-Magic by Candes

SparseLab by Donoho

cvx by Boyd
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Mild Conditions for `1/`0 Equivalence

(P1) x∗ = arg min
x
‖x‖1 s.t. y = Ax

Solve `1-minimization achieves the optimal sparse solution under the following conditions

Short answer: For most underdetermined systems A, such as random matrices, the
equivalence holds

Asmyptotically with
k ↑
d ↑

< 0.5

Long answers
1 (In)-coherence [Gribvonel & Nielsen 2003, Donoho & Elad 2003]:

µ(A,B)
.
= sup

a∈A,b∈B

|〈a, b〉|
‖a‖‖b‖

‖x‖0 ≤ 1
2 (1 + 1

µ(A,B) ) suffices. A and B have to be incoherent.

2 Restricted Isometry [Candes & Tao 2005]:
Define δk (A)

.
= minδ such that

(1− δ)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δ)‖x‖2
2 ∀k-sparse x.

δ2k (A) ≤
√

2− 1 suffices. The columns of A should be uniformly well-spread.
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k-Neighborlyness [Donoho 2006]

Define cross polytope C and quotient polytope P such that P = AC .

If x is k-sparse, x lie in a (k − 1)-face of C in Rn.

Necessary and Sufficient: If `1/`0 holds for all k-sparse x, all (k − 1)-faces of C must be the
faces of P on the boundary.
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Sparse Representation in Classification: a Cross-and-Bouquet Model

Traditional compressive sensing focuses on

y = Ax + e

1 A is component-wise Gaussian.
2 A is sparse Bernoulli.
3 A is megadictionary [I |F ], where F is Fourier or wavelets.

Solving sparse representation for recognition purpose represents a special model

y = [ A | I ] [ x
e ]

Reference:

John Wright and Yi Ma, Dense Error Correction via l1 Minimization.
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